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CREEP BUCKLING OF A WEDGE-SHAPED FLOATING ICE PLATE
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The paper is concerned with the problem of creep buckling of a floating ice plate pressing
against a rigid, vertical-walled, engineering structure of a finite length. The plate is modelled
as a truncated wedge of a semi-infinite length and constant thickness, resting on a liquid base
and subjected to transverse bending due to the elastic reaction of the base and in-plane axial
compression due to wind and water drag forces. The ice is treated as a viscous material, with
the viscosity varying with the depth of the ice cover. The results of numerical calculations,
carried out by the finite-element method, show the evolution of creep buckles in the plate, and
also illustrate the behaviour of the ice cover at different levels of the in-plane axial loading, at
different temperatures across the ice, and for different geometries of the wedge-shaped plate.
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NOTATIONS

b(z) plate width at z,

bo structure width,

g gravitational acceleration,

h  plate thickness,
Lc,Lo critical and dominant buckle half-wavelengths,
bending moment per unit width of a plate,
axial in-plane force per unit width of a plate,
total axial force in a plate cross-section,
transverse shear force per unit width of a plate,
distributed transverse load intensity,
parameter defining flexural viscous response of a plate,
ice temperature,
time,
plate deflection,
z,y,2 rectangular Cartesian coordinates,
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a wedge angle,
€z; infinitesimal normal strain,
& plate deflection curvature,
po  ice viscosity,
o water density,
0z normal stress.

1. INTRODUCTION

When a floating sea, lake, or river ice cover interacts with engineering struc-
tures, such as dams, breakwaters and off-shore rigging platforms, it is usually
subjected to in-plane forces resulting from the wind and water current action as
well as thermal expansion. These, approximately horizontal, forces can lead to
the failure of the ice sheet by either its out-of plane buckling or crushing (brit-
tle fracture) of ice, as observed in both the laboratory (SODHI et al. [16]) and
field (SANDERSON [12]) conditions. Theoretical and experimental analyses show
that the brittle fracture of ice is a dominant failure mechanism in ice sheets of
thicknesses exceeding about 0.5 m. Elastic buckling, investigated by KERR [6],
NEVEL [11] and STAROSZCZYK [18], is possible for only relatively thin ice sheets,
of thicknesses usually not exceeding 0.3 to 0.4 m, depending on the geometry of
the floating plate and the type of boundary conditions at the ice-structure con-
tact zone. There is, however, a vast field evidence SANDERSON [12] that under
some conditions, in particular at very low horizontal velocities of the floating
ice cover, the ice significantly thicker than 0.5 m, and even more than 1.0 m, is
also susceptible to the out-of-plane buckling. Typically, during late Arctic spring,
when ice becomes softer and undergoes thermal expansion, buckles form in float-
ing ice sheets over the periods of up to several days, until tensile cracks develop
at the upper surface of ice, leading to its gradual failure. Similar buckle features
occur when ice is pushed against a vertical structure at very low loading levels.

The reason for such a behaviour of floating ice is its creep, which is sub-
stantial comparing with other materials encountered in civil engineering. For
instance, at an axial stress of 1 MPa, which can be regarded as a typical stress
magnitude in the ice-structure interaction events, the time required for creep
strains to exceed those due to the elastic response of ice is less that one minute
(MELLOR [7], SANDERSON [12]). This indicates that not only elastic, but also,
and first of all, creep (viscous) effects in ice must be taken into account when
attempting to determine realistic contact forces between the floating ice and an
engineering structure, and also to describe properly the behaviour of the ice cover
itself. Despite its importance, however, the mechanism of creep buckling, unlike
elastic buckling, has not attracted much research interest as yet. Among very
few examples of theoretical investigations of this phenomenon are the analyses
by SJOLIND [14] and (SANDERSON [12]). Both are devoted to the problem of
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creep buckling of a floating ice plate of a uniform width and thickness, with a
finite length in the first paper, and a semi-infinite length in the other. In the
present work we extend those two analyses by considering the creep buckling
of a floating ice plate that in the horizontal plane has a shape of a truncated
wedge. Such a geometry reflects the conditions frequently occurring in nature,
when radial cracks propagating from the vertical edges of the structure develop
in the ice plate, bounding in this way the domain of ice which interacts with the
structure. The plate, of a constant thickness, is assumed to be non-homogeneous
along the vertical direction to account for the possible variation of the anisotropic
properties of ice with its depth, and also to take account of the strong influence
of temperature gradients across the plate on the creep rate of the material.

The analysis is carried out by applying the standard theory of thin plates
resting on a liquid foundation and undergoing in-plane axial loading. The ma-
terial response of ice is supposed to be viscous, with the ice viscosity strongly
depending on temperature, but, unlike the common ice mechanics approach,
independent of stress (such a simplifying assumption is adopted because of rel-
atively low stress magnitudes occurring in the problem under consideration, see
remarks in Sec. 2.2). The numerical results, obtained by means of the finite-
element method, illustrate the evolution of the plate creep behaviour. In par-
ticular, the effect of different load levels on the plate deflection history and the
time at which the plate fails due to reaching its bearing capacity is examined. In
addition, the role which such factors as the structure width, the plate thickness
and its in-plane shape, as well as ice temperature, play in creep buckling of the
ice cover, is investigated.

2. PROPERTIES OF FLOATING ICE

Before formulating a theoretical model for the ice plate undergoing creep
buckling due to transverse and in-plane loading, we give a short summary of
the floating ice properties that are most relevant to the analysis carried out in
Secs. 3 and 4. First of all, we discuss the creep, or viscous, behaviour of floating
ice which is influenced by the three main factors: (1) the material anisotropy of
ice, which usually varies with the depth of ice cover, (2) the stress dependence
of the ice viscosity, and (3) the strong effect of temperature on the rate of creep.
These factors are discussed in the three subsequent subsections, followed by a
subsection on the flexural strength of the floating ice.

2.1. Anisotropy of floating ice

As ice is formed on the free surface of sea, lake or river water, it is made
up of a conglomerate of randomly oriented ice grains, of the size ranging from
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1 to 3 mm. Such ice, known in ice mechanics as granular T-1 ice, is macroscop-
ically isotropic, and constitutes the upper layer of floating ice sheets, with a
typical depth of this layer of about 30 cm (SANDERSON [12]). During the sub-
sequent growth of ice further downwards, large, regular and vertically elongated
crystals of the size of up to 10 cm are formed. Such ice, referred to as columnar
S-2 ice, is transversely isotropic about the vertical axis, and develops in sea wa-
ter. When, however, fresh water freezes under calm conditions typical of lakes
or reservoirs, another type of columnar ice, called columnar S-1 ice, forms. This
ice is also transversely isotropic, with the rotational symmetry axis coinciding
again with the vertical, and its viscous macroscopic behaviour resembles very
much that of a single ice crystal. Under some conditions, where uniform direc-
tional water currents occur, for instance in rivers, another type of ice, known as
columnar S-3 ice, can develop in the bottom layer of floating ice cover (WEEKS
and Gow [20], STANDER and MICHEL [17]). This type of ice is orthotropic in
its mechanical properties, with one axis of the material symmetry aligned with
the water current direction.

The creep properties of all types of anisotropic columnar ice vary considerably
with direction. In the extreme case of S-1 ice, maximum and minimum axial
viscosities can differ by a factor of 2 to 3, and the shear viscosities can differ
by a factor of about 5. When, however, the loading is applied in the horizontal
plane, as is the case in this study, the differences between various types of ice
in terms of its creep response in the horizontal plane are smaller. Compared to
the isotropic T-1 ice viscosity, the relevant axial viscosities for columnar ice are
larger by a factor of about 1.3 to 1.5.

2.2. Stress dependence of ice viscosity

In general, the creep response of ice is nonlinear, with the viscosity of ice
depending on the deviatoric stress magnitude. At high stress levels, within the
range between about 0.1 and 1.5 MPa (HUTTER [5]), a conventional approach
in ice mechanics is to use the GLEN [4] power flow law, being a form of the
Norton-type creep law known in metallurgy, with the power exponent equal to
about 3 (that means that, in one-dimensional case, the rate of deformation is pro-
portional to the third power of the stress). Some experimental results (MELLOR
and TESTA [8]) indicate, however, that Glen’s law significantly overestimates the
magnitude of the ice viscosity in lower stress regimes. Therefore, a number of al-
ternative flow laws which agree better with experiments performed at low stresses
have subsequently been proposed, for instance a formulation by SMITH and MOR-
LAND [15]. The latter describes the stress dependence of the isotropic ice viscosity
in terms of a normalised deviatoric stress invariant by means of a polynomial
representation, with coefficients determined by correlation with empirical data.
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There is some evidence, however, for instance the experimental results re-
ported by DOAKE and WOLFF [2], indicating that at low stresses, roughly below
0.2 MPa, ice creeps in a nearly linear manner. This is supported by theoretical
considerations due to HUTTER [5] and MORLAND [10], who argue that nonlinear
viscous behaviour of ice would imply infinitely large instantaneous viscosities at
zero stresses, which seems to be physically unsound. Hence, it has been sug-
gested that at low stresses, up to about 0.2 MPa, ice creep behaviour can be
satisfactorily approximated by a linear viscous flow law, that means that ice can
be treated as a Newtonian fluid, with a constant (stress-independent) viscosity.

2.8. Temperature effect

Temperature has a significant influence on creep behaviour of polycrystalline
ice. A common approach in glaciology is to describe this influence by an Arrhe-
nius type law. Such a relationship describes well the viscous properties of cold
ice, at temperatures below, say, —20° C. At higher temperatures, however, espe-
cially very close to the ice melting point, that is within the temperature range
relevant to floating ice, some experimental evidence indicates that the Arrhenius
dependence is inappropriate, and hence other relations have been formulated.
We use a representation proposed by SMITH and MORLAND [15], obtained by
fitting to the experimental data by MELLOR and TESTA [9], which is given in
the form

po(T)
po(Tm)

where po is the isotropic ice viscosity, T' and T,, denote, respectively, the ice
current and melting point temperatures, and T is a dimensionless temperature
defined by T = (T — T,,,)/[20° C]. It follows from (2.1) that the viscosity of ice
at —1° C is about 3.5 times lower than that at —5°. As temperature variations
of such order are quite usual in floating ice due to diurnal (24 hours) cycles of
heating and cooling, this indicates how substantially the creep properties of ice
can change over relatively short time scales. However, these rapid changes in ice
viscosity affect only the upper part of the ice plate. The solution of the heat
conduction equation

(2.1) = [0.68 exp(12T) + 0.32 exp(3T)] ',

T ]

922~ .3t

where z is the vertical coordinate, ¢t is time, and k = 1.15 x 107% m? s7! is
the thermal diffusivity coefficient for ice, shows that a free surface temperature
perturbation during 24-hours temperature cycles is attenuated by a factor of 10
at a depth of ice of about 0.41 m; more rapid temperature variations decrease
with depth even stronger.

(2:2) k
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2.4. Flezural strength of floating ice

Experimental tests conducted on simply-supported or cantilever beams made
of ice, the results of which have been summarised by SCHWARZ and WEEKS [13]
and HUTTER [5], demonstrate that the flexural strength (calculated from simple
elastic beam analyses) of floating sea ice depends very significantly on its poros-
ity. For pure, poreless ice, the flexural strength varies between 0.7 and 1.0 MPa,
but it decreases very rapidly with increasing ice porosity, so that at about 0.1
(10%) volume porosity the strength of ice reduces to about 0.2 MPa, and, ac-
cording to [13], does not change considerably for porosities larger than 0.1. Since
sea ice is practically always porous, it seems sensible to ignore in applications
the influence of porosity on the flexural strength of floating ice and hence to
assume a constant value of 0.2 MPa.

On the other hand, the ice plate failure mechanism can be investigated by
applying the methods of fracture mechanics, that is by analysing the problem
of formation and subsequent propagation of tensile cracks from the free surface
towards the depth of the plate, as a result of a combined action of bending mo-
ments and in-plane compressive axial forces. An example of such an analysis,
restricted to the case of a beam (instead of a plate), can be found in SANDER-
SON [12]. Following that analysis, a critical stress o¢; at which the beam of ice
starts to fail depends on the depth of surface cracks, the beam thickness, and the
magnitudes of the bending and compressive forces. For crack depths assumed to
be small compared to the beam thickness, and adopting ice fracture toughness
of the value 0.1 MPa m!/? (SANDERSON [12]), a simplified analysis yields the
values of the critical stress equal to ¢ ~ 0.35 MPa for ice 0.2 m thick, and o,
~ 0.22 MPa for ice 0.5 m thick, both based on the assumption that ice starts
to break when a surface crack reaches a depth of 1/10 of the ice beam. These
stress magnitudes, given many uncertainties associated with a proper descrip-
tion of micro-mechanisms involved in ice failure, agree reasonably well with the
above-mentioned values determined, indirectly, from experiments. Accordingly,
in this work we adopt the value of 0.2 MPa to define the flexural strength of
natural floating ice.

3. GOVERNING EQUATIONS

The geometry of the problem under consideration and the adopted coordinate
system are depicted in Fig. 1. A coherent plate of floating ice in the form of a
truncated wedge (Fig. 1la) is pushed by wind and water drag forces towards
an engineering structure situated at z = 0, modelled as a vertical and rigid
wall of the length by. We idealise the problem by assuming that the floating
wedge-shaped plate is symmetric about the z-axis and extends to infinity in the



CREEP BUCKLING OF A WEDGE-SHAPED... 117

positive direction of z, so its geometry is fully defined by the structure length bg
and the angle a. Further, we also assume that the loading exerted on the plate is
symmetric about the z-axis, so that the net horizontal reaction of the structure,
denoted by P, acts in the direction of the z-axis. The plate of a uniform thickness
h (Fig. 1b), with its upper face at z = 0 and its lower face at z = h, is supposed
to be in perfect contact with the underlying water, hence no lift-off of the plate
can take place. At the ice-structure contact area z = 0 the plate edge is supposed
to be simply supported.
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F1G. 1. Geometry of a wedge-shaped plate of floating ice interacting with a rigid structure of
the width bo: (a) plane view, (b) plate cross-section, (c) definition of internal forces.
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The problem is solved by applying the classical theory of thin plates (T1MO-
SHENKO and WOINOWSKY-KRIEGER [19]), assuming that the plate deflections
are small (that is of the order of the plate thickness), and the plate cross-sections
that are normal to the middle plane in the undeformed state also remain plane
and normal to the middle surface when the plate is deflected. In our case, the
plate is bent by transverse loads coming from the elastic reaction of the liquid
base when the ice is either lifted or depressed from its floating equilibrium state.
Besides the bending, the plate is also subjected to in-plane compressive stresses
along the z-axis, resulting from the wind and water drag forces.

Denote the plate deflection along the z-axis by w, and define the plate internal
forces acting per unit width: the bending moment M, the vertical shear force @,
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and the normal (tensile) force N, in the way shown in Fig. 1c. Then, neglecting
the plate own weight, the equilibrium balances of forces in the z-axis direction
and the bending moments acting on an infinitesimal plate element cut by a pair
of planes parallel to the yz coordinate planes yield the two following relations:
oQ 0w oM
In (3.1), q is the transverse distributed load acting in the z-axis direction, and
is equal to the underlying liquid reaction. We assume that the latter reaction is
elastic and the liquid foundation is of the Winkler-Zimmerman type, in which
case the foundation pressure at any point is proportional to the plate deflection
at that point. Hence, the lateral load ¢ is given by

(32) q = —pgw,

where p is the water density and g is the acceleration due to gravity. By eliminat-
ing now the shear force @ from (3.1) and using (3.2), we obtain the differential
equation
*M 0w

(3.3) B2 + N_a? = pguw.
We further simplify the analysis by assuming that, due to the symmetry of the
problem with respect to the z-axis, the plate deflection w and the forces acting on
the plate are all the functions of only one spatial coordinate x and time ¢, that is
w = w(z,t), M = M(z,t), N = N(z,t), etc. This is equivalent to assuming that
the plate is bent cylindrically in the zz plane, with no bending in the yz plane,
which, effectively, reduces the problem to that of a beam of variable cross-section,
resting on an elastic base and undergoing bending and axial compression.

The bending moment per unit width of the plate, M(z), is determined by
integrating the normal stress o4;(z, 2) across the plate depth

h
(3.4) M = /amzdz.
0
The normal strains along the z-axis, €4 (z, z), are defined by a relation following
from the assumption of the plane cross-sections in the deformed state, yielding
(3.5) €zz = K(2 — 20),

where & is the local curvature of the plate deflection curve, and z is the position
of a neutral plane. The stress and the strain are connected by a constitutive law of



CREEP BUCKLING OF A WEDGE-SHAPED... 119

the form depending on a specific material of which the body is made. In line with
what has been said in Secs. 2.2 and 2.4, and in particular that: (1) the average
stress in ice at its flexural failure is about 0.2 MPa, (2) the viscous response
of ice up to the latter stress level of 0.2 MPa can be approximated by a linear
relation, and additionally (3) the elastic constants for ice are practically stress-
independent (cf. HUTTER [5]), it seems well justified in our problem to confine
attention to the case of linear viscoelasticity. For a general linearly viscoelastic
material, being in a simple stress state, the constitutive equation relating o
and €;; can be written in the form (FINDLEY et al. [3])

(3.6) P(ozz) = Q(€ezz),

where P and Q are linear differential operators with respect to time, ¢, defined
by

m ar n a,,.
(3.7) 'P=Zpr§;, Q=ZQ1~W-
r=0 r=0
In the above definitions, pg, p1, ..., Pm, and qo, q1, . . ., ¢n, are material parame-

ters, and without loss of generality we can set po = 1. By applying the operator
P to Eq. (3.4), followed by the replacement of P(oz;) by Q (€zz) in view of (3.6),
and then using (3.5) to express €;; in terms of k, we obtain the relation

h
(3.8) P(M) = / Ok skt 56 s
0

Although the operator Q contains only time derivatives, it cannot be pulled out
of the integral since the material properties, described by the parameters gg to
gn, may in general be functions of the depth 2. For small deflections w and the
derivatives (dw/dz)? < 1, the plate curvature & (regarded positive if it is convex
downwards) can be approximated in terms of w by k = —8%w/0z?. By using
the latter relation for « in (3.8), next differentiating (3.8) twice with respect to
z, and combining the resulting equation with (3.3) (after the application of the
operator P), we arrive at the following equation:

(3.9) /h Q ((39471‘1:) z2(z—2)dz— NP (3—2:;;) + pgP(w) = 0.
0

This equation describes the behaviour of the whole class of viscoelastic plates
resting on a liquid base and subjected to axial loading along the z-axis. The
equations for particular materials of which the plate is made (for instance elastic
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solid, Maxwell fluid, Kelvin solid, Burgers four-parameter fluid, etc.) can be
derived by an appropriate choice of rheological parameters p, and ¢, appearing
in (3.7) and defining a given material model. In the problem analysed here we
deal with the behaviour of the material in which the irreversible deformations
due to creep exceed elastic strains by two to three orders of magnitude. For this
reason, ignoring the purely elastic (instant) response of ice, as well as transient
creep effects, we assume that the response of ice to stress is that of a purely
viscous material. Such a material is described by means of only two rheological
parameters, namely po (equal to unity) and q;, with the other equal to zero.
Accordingly, the constitutive relation reads

(3~10) Ozz = q1 €z 5

where the superposed dot denotes the time derivative. After performing on (3.9)
the operations prescribed by P and Q, we obtain the relation

(3.11) R%-—N%i—zg + pgw = 0,
where R is given by
h
(3.12) A= /ql(z) z(z — zp)dz.
0

Obviously, the parameter ¢ is related to the viscosity of ice. To establish this
relation, we recall that the viscous behaviour of creeping materials is commonly
described in terms of deviatoric stresses, reflecting the fact that for many ma-
terials, including ice, the mean (hydrostatic) pressure has negligibly small effect
on the rate of creep. Hence, we express the viscous response of ice by
(3.13) Sij = 2poéiy,  Sij = 0ij — %Ukk‘sij :
where oy, S;j, and é;; are components of the stress, deviatoric stress, and strain-
rate tensors, respectively, oy denotes the mean pressure, §;; is the Kronecker
symbol, and pg is viscosity. If we assume that in our case the ice plate, loaded
along the z-axis, is not constrained in the lateral direction along the y-axis, then
Sze = (2/3) 04z, and hence o, = 3ugérz. By comparing the latter expression
with (3.10) we find that gq; = 3ug. If, however, the plate is constrained in the
y direction, that is éyy = 0, then Szz = (1/2) 044, and g1 = 4puo.

Equation (3.11) describes the deflection w(z, t) of the plate of a unit width. In
order to derive the relation for the wedge-shaped plate, with its width b varying
with , we multiply both sides of (3.11) by b(z) defined by
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(3.14) b(z) = by + 2z tan

to obtain the relation for the creep behaviour of a floating ice sheet under the
combined action of bending and axial compression:

M Pw
4t e ETe e 50
(3.15) Rb(z) pp +P 502 + pgb(z)w =0
In the above equation, P = —Nb is the total compressive load that is transmit-

ted along the z-axis direction through the whole cross-section b of the sheet.
The load P is assumed to be independent of z in the vicinity of the rigid
wall located at z = 0, that is in the region where, for @ > 0, the failure
of the plate due to creep buckling occurs. In doing so, we neglect the influ-
ence of the wind and water drag forces on the local variation of the total ax-
ial force in the plate. This is because the change with z of the axial stresses
in the plate due to drag tractions is very small compared to the magnitude
of P near z = 0. Indeed, even supposing extreme weather conditions, say a
wind of the speed 30 ms™! and a current of the speed of 1 ms™!, their com-
bined effect will be a horizontal distributed load of the intensity in the re-
gion of 5 to 10 Pa (SANDERSON [12]). This translates, in the case of a plate
as thin as 0.1 m, in an increase with z of the axial stress by about 100 Pa,
which is about three orders of magnitude less than the stress levels during the
plate failure (see Sec. 2.4). The differential equation (3.15) is solved with the
boundary conditions at z = 0 representing the case of a simply-supported plate,
and expressed by w(0,t) = 0 and 0?w/8z%(0,t) = 0, since other types of bound-
ary conditions seem to be less likely to occur in the field (SANDERSON [12]). At
T — 00, the regularity conditions are applied.

In derivation of Eq. (3.15) we have assumed that the ice response is lin-
early viscoelastic. Thus, strictly, our theoretical model should not be applied
to non-linearly viscoelastic materials, for instance when the floating ice cover
is subjected to stress levels which are significantly in excess of 0.2 MPa and
nonlinear creep effects become important. In some cases, however, as argued
by CALLADINE [1] and SANDERSON [12], even for nonlinear constitutive viscous
flow laws the relation (3.15) can still be used, provided that there are only small
variations in stresses and strain-rates about their respective mean values, and
hence the relations between the bending moment and the plate curvature-rate
remain linear. Although such an approach cannot be considered to be a rigorous
treatment of the problem, and instead the governing equations should be derived
by applying the methods of nonlinear viscoelasticity from the very outset, the
method of combining equations analogous to (3.15) and nonlinear creep laws has
been employed by a number of investigators, for example by SJOLIND [14] and
SANDERSON [12].
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4. PLATE OF UNIFORM WIDTH

Because of the presence of the variable coefficient b(z), no exact closed-form
analytic solution of (3.15) is available for the general case of a wedge-shaped ice
sheet defined by a > 0, and hence a numerical method must be employed. Only
in a particular case of a plate of uniform width, when a = 0 and b(z) = by,
which simplifies (3.15) to the equation with constant coefficients

4, e

(4.1) Rbo g Ly p ?9 ~ + pgbow = 0,

can some analytic results be obtained (SJOLIND [14], SANDERSON [12]). Before
proceeding further, however, it is useful to realise two essential differences be-
tween the elastic and creep buckling mechanisms. First, elastic buckling occurs
instantly after a critical load has been reached and is followed by unstable failure
of ice, with the presence of underlying water having a destabilising effect on the
floating plate [14]. In contrast, creep buckling is a time-dependent process which
can occur at any load level, and leads to the failure of ice only if sufficiently
large strain-rates (and hence stresses) in the plate have been reached. Increasing
a load magnitude will simply result in increasing the rate of creep buckling. And
second, unlike elastic buckling, creep buckling requires an initial perturbation
in the plate deflection; this perturbation will subsequently evolve under applied
loading. However, not any initial buckle w(z,0) will grow with time under a given
load level P. In order to demonstrate this, we re-write Eq. (4.1) in the form

0w
(4.2) Rbo e e p(z,1),
where
32
(4.3) p(z,t) = — ( Bz +pgbow)

The expression p(z,t) can be treated in (4.2) as a transverse load depending
on the axial force P and the current deflection w(z,t). The existing deflection
will grow with time only if p(z,t) > 0, and, reversely, it will decay with time
if p(z,t) < 0. A stationary state, with w not evolving, occurs for p(z,t) = 0,
that is when the expression in parentheses in Eq. (4.3) becomes zero. Assuming
that (4.3) can be solved by separation of variables, and taking account of the
boundary conditions w(0,t) = 0 and 8%?w/8z%(0,t) = 0, we adopt a general
solution in the form

(4.4) w(z,t) = A(t) sin(rz /L),



CREEP BUCKLING OF A WEDGE-SHAPED... 123

where A(t) is a time-dependent buckle amplitude, and L is an arbitrary half-
wavelength. By substituting (4.4) into (4.3), we find a critical length of a buckle
half-wave, denoted by L., given by the following relation:

P
4.5 L. =my|—.
i H V pgbo

The critical length L. determines the longest buckling half-wave whose amplitude
can increase with time. Any existing buckles for which L > L. will decrease with
time (provided that P is not increasing).

Now a question arises how, for L < L., the length of a buckle affects the rate
of growth of its amplitude. To answer this question, we suppose that amplitudes
A(t) of creeping buckles increase in an exponential manner, that is

(4.6) A(t) = wo exp(t/T),

where wg is an initial small deflection amplitude, and 7 is a time constant.
On inserting the latter relation into (4.4), and then substituting the resulting
expression for w(z,t) into the differential Eq. (4.1), we obtain the relation

17 1P LA2 L\4
. ) 4
) ¢ N [bo ™ SRy
which expresses the growth-rate constant 7 in terms of the buckle length L and
the axial load P. From among all possible perturbations of different lengths L,
the fastest growing is that for which 7 attains the minimum value. Hence, by

differentiating (4.7) with respect to L and setting it to zero, we find that 7 is
minimised for the buckle half-wavelength Lo defined by

/ P
. Lo = s -
(4.8) 0=T 5ogb0

which, like L., depends on the load magnitude P but does not depend on the
material viscous properties described by R. As the creep deformation of the
plate proceeds from its initial state with small perturbations, the buckle of the
length Lo, with the largest growth-rate of the amplitude, soon becomes the
dominant buckling mode. The corresponding time constant for the dominant
buckle, obtained by substituting (4.8) into (4.7), is defined by

4Rpgh?
(4.9) o = lff 0,

By comparing the expressions (4.5) and (4.8) we note that, independently of
the loading level P, the critical and dominant buckle half-wavelengths remain
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always at a constant ratio given by

(4.10) = =2,

5. NUMERICAL SOLUTION AND RESULTS

The fourth-order in space, and first-order in time, partial differential equation
(3.15), which describes the creep behaviour of a floating ice sheet of variable
width b(z) in response to the compressive load P, has been solved numerically by
applying the finite-element method. The weighted residual, or Galerkin, version
of the method has been used, in which the problem equation is satisfied in an
integral mean sense (ZIENKIEWICZ and TAYLOR [21]). In the space domain,
the plate has been discretised along the z-axis by introducing one-dimensional
finite elements. At each nodal point two parameters, w and dw/dz, are used
to approximate the plate deformation in order to ensure continuity of the plate
deflection and its slope between elements. In the time domain, the equation has
been integrated by applying an implicit #-method with equal time step lengths.

In numerical calculations, the results of which are presented below, 400 finite
elements of the same length, equal to 1.5 h, were used. Hence, the behaviour of
a semi-infinite plate was approximated by the plate of the finite length of 600 h.
The constant (stress-independent) isotropic viscosity of ice at the melting point
was adopted to be ug = 1 x 10!! kgm~! s™!, with its temperature dependence
described by (2.1) and the elastic constants, Young’s modulus E and Poisson’s
ratio v, were equal to 9.0 GPa and 0.31, respectively. The water density was
assumed to be p = 103 kgm~3, and g = 9.81 ms~2. The initial small deflection
of the plate was adopted as a sum of twenty harmonic components, given in
the form

20
(5.1) wo(z) = Y +wf” sin(inz/L),

i=1
where the signs (+) were selected at random, and all the component amplitudes

wol were equal and such that the maximum deflection wy = 0.001 m. L, defining
the length of the longest initial perturbation, was related to the dominant buckle
half-wavelength Ly for a plate of uniform width by choosing L = 3Lg. In this
way, wo(z) includes two components which are longer than the critical half-
wavelength L. determined by (4.8), one component (the third longest) with
the length equal to Lo, and the remaining harmonic components of the lengths
smaller than Lg. In the simulations, the value of the compressive load P exerted
on the floating plate is normalised by the magnitude of the force causing elastic
buckling of the respective plate. The latter force, denoted by P,, is calculated
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by using the results obtained by STAROSzZCzYK [18]. The evolution of the plate
deflection w(z, t) from its initial state, prescribed by (5.1), is followed up to the
time ¢, at which the tensile stress at any point in the plate reaches the stress
level o¢; = 0.2 MPa, the latter value chosen to be that corresponding to the ice
flexural strength for porous ice. The results presented below are obtained, if not
stated otherwise, for ice temperature equal to —2° C at the upper surface, and
0° C at the lower surface of the plate.

In Fig. 2 we illustrate the time variation of the deflection w(z,t) of the plate
of a unit width and the thickness A = 0.2 m, subjected to the compressive
loading P = 0.1 P, . The plots demonstrate how the plate displacements, shown
at the intervals of 4500 s=1.25 hr, gradually evolve from the initial, random
distribution of small perturbations, into a regular pattern, more and more domi-
nated with increasing time by the buckling mode of the length Lg given by (4.8).

w (m) (@)

sial t=75hr

6.25 hr
5.0 hr

0.011

0.00+

w (m) (b)
t=10.55 hr

10.0 hr
8.75 hr
7.5hr
X(m)

F1c. 2. Evolution of the deflection w(z,t) of a uniform-width plate of the thickness
h = 0.2 m under the load P/P, = 0.1: (a) for ¢t < 7.5 hr, (b) for ¢ > 7.5 hr. The solid
circles show the results of the analytic solution for the critical time ¢ = ¢, =10.55 hr.
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The solid line for the critical time ¢t = t. = 37980 s=10.55 hr displays the
deflection of the plate at the onset of its failure. We note that the deflections
w(z,t.) are of the order of h/2. For comparison, the results, indicated by the
solid circles, of the analytic solution discussed in Sec. 4, are also presented to
demonstrate the accuracy of the finite-element solution.

Figure 3 illustrates the effect of the in-plane load magnitude P/P, on the ice
displacement at the critical time t., when ice starts to fail; the respective values
of the critical times are given in hours. The results, obtained for the plate of a
unit width and the thickness h = 0.2 m, show that while the maximum plate
deflections w(z,t.) decrease by a factor of about two with a sixfold increase in

w (m) P/R = 0.05 (t = 45.0 hr)
012t : P/R=0.1 (t=10.55 hr)
' P/R=0.2 (t=252hr)

0.12+ WV P/R=0.3 (t=1.10 hr)

F1G. 3. Deflection of a uniform-width plate at the critical time ¢ = t. (expressed in hours) as
a function of the normalised load P/P., for the ice thickness h = 0.2 m.

0.101 a=0 (t = 10.55 hr)

a =10 (t = 8.69 hr)
0.05+

0.00+

-0.051

a =30 (t=5.59 hr)
| =20 (t=6.64 hr)

-0.10-

Fi1G. 4. Deflection of the plate at the critical time ¢ = t. as a function of the wedge angle o
(given in deg), for the normalised load P/P. = 0.1, the ice thickness h = 0.2 m and the
structure width bo = 10 m.
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the load level, the critical times at which the ice cover fails change with the
normalised load very substantially, decreasing by a factor of 41 for the same,
sixfold increase in loading.

Figure 4 shows the deflection of a wedge-shaped plate at the onset of its failure
for various angles a (given in deg) and the fixed normalised load P/P, = 0.1.
The results are obtained for the plate h = 0.2 m thick and by = 10 m wide
at the edge £ = 0. We note that the deformation of the plate due to creep
buckling for the angles @ > 0, even as small as 10°, attenuates rapidly with z,
so practically only a few buckles in the neighbourhood of the structure can be
discerned.

The critical time t., required to fail a floating ice sheet due to its creep
deformation started from initial, small-amplitude imperfections, is plotted in
Figs. 5 and 6 as a function of the angle a defining the in-plane geometry of
the truncated wedge. Figure 5 illustrates, for the structure width by = 10 m
and the ice cover thickness h = 0.2 m kept constant, the dependence of the
critical time on the normalised load P/P, (the corresponding plate deflections
for selected ratios P/P, and a = 0 are shown in Fig. 3). Figure 6 displays, at
the constant load P/P, = 0.1, the variation of ¢, for different plate thicknesses
h. We note that for thinner ice plates the values of the critical time initially
slightly increase with the increasing angle «, while for thicker ice the values of
tr decrease monotonically with .

The influence of the temperature profile across the ice on the creep buckling
of the plate is illustrated in Fig. 7. The figure shows, for P/P, = 0.1, h =0.2 m

T T T T T T T I
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o
I

P/P, = 0.05 |

N
(=]
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—
=)

Critical time (hr)
\l
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[SLLEaY FOAGLED 505 | IS 1
0 5 10 15 20 25 30 35 40 45

Wedge angle (deg)

-k

F1G. 5. Variation of the critical time . (given in hours) with the angle o and the normalised
load P/P,. for the ice thickness h = 0.2 m and the structure width bo = 10 m.




128 R. STAROSZCZYK, B. HEDZIELSKI
14 | FUSADE ISP B Oz B P

- -
(=) N

©

Critical time (hr)
(=2

H

0 | | | | | | | 1
0 5 10 15 20 25 30 35 40 45
Wedge angle (deg)

F1G. 6. Variation of the critical time ¢, (given in hours) with the angle a and the ice
thickness h for the normalised load P/P. = 0.1 and the structure width bo = 10 m.

w (m)
0.10+ L: -2 C ( = 1055 hr)
T=-4C(t=14.22hr)
T=-6C(t=18.25hr)

0.05+

0.00

-0.051+

-0.10J-

Fic. 7. Plate deflection w(z) at the critical time ¢, (in hours) for various ice-free surface
temperatures T (in Celsius), for the plate of constant width and the thickness h = 0.2 m,
subjected to the load P/P. = 0.1.

and a = 0, the plate deflections w at the corresponding critical times ¢., together
with the values of the latter, for different temperatures Ty of ice at the top, free
surface of the plate; at the bottom surface the temperature of ice is regarded to
be constant, equal to 0° C. It is seen that an increase in ice viscosity caused by
the temperature decrease in the upper part of the plate cross-section, results in
an increase in the time needed to fail the plate. The plate displacements at the
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onset of failure, however, decrease with decreasing the ice free surface tempera-
ture: the cooling of ice from Ty = —2° C to Ty = —6° C leads to the reduction
of the plate deflections w(t.) by nearly 30%.

6. CONCLUSIONS

The problem of creep buckling of a wedge-shaped semi-infinite floating ice
plate subjected to in-plane compression has been treated numerically by us-
ing the finite-element method. An analytic solution, possible only in the simple
case of a parallel-sided plate, shows that the lengths of the dominant (i.e. the
fastest growing) and the critical (i.e. stationary) creep buckles are at a fixed ra-
tio, regardless of the load magnitude and the plate thickness. The results of the
numerical simulations illustrate the evolution of the plate deflection throughout
the process of creep buckling of ice, from randomly distributed small-amplitude
initial perturbations up to the critical time at which the ice cover fails. In partic-
ular, it is shown how the fastest-growing buckling mode develops and gradually
dominates the deformation of the plate. The influence of the compressive load
magnitude and the plate shape and thickness on the critical time, and the plate
deflection then, has been investigated. The critical times for the cases considered
have turned out to vary over a wide range of several orders of magnitude, depend-
ing on the load level and the plate geometry, whereas the plate deflections at the
start of ice failure change rather moderately, with typical maximum vertical dis-
placements equal to about 0.5 of the plate thickness. In addition, the effect of the
temperature variation across the ice cover on the plate behaviour has been ex-
amined, showing how a decrease in ice free surface temperature increases the re-
spective critical time, and decreases the maximum plate deflections at that time.
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