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The main goal of this paper is to present a computational analysis of damage evolution in
adhesive joint connecting composite pipes subjected to cyclic static axial tension with constant
amplitude. The approach uses the simplified average shear stress criterion for defect propaga-
tion in the adhesive layer and applies the continuum damage mechanics concept to continuum
crack-like damage representation in terms of the finite element stiffness. Numerical studies are
performed using the commercial Finite Element Method displacement-based ANSYS program,
with its special purpose finite element containing birth and death option. Computed damage
evolution per a loading cycle leads further to estimation of the cumulative damage growth in
terms of a crack-like type for different load amplitude levels. Finally, a numerically determined
relation between the applied load amplitude and the load cycles number to failure is derived.
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1. INTRODUCTION

For many years composite materials have been extensively used in piping
systems as an efficient alternative to carbon and stainless steel structures, in
corrosive fluid transport and in the petrochemical as well as in pulp industries.
Nowadays, composite pipe acquires its importance in the offshore oil and gas
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industry due to its light weight and corrosion resistance. Limitations on com-
posite pipes sizes resulting from manufacturing and transport, inspection and
repair requirements, make the application of composite pipe joints inevitable
in all piping systems. The continued integrity and long-term durability of new
composite pipelines depend partially on the integrity of the adhesive bonds for
Joining the pipe sections, as it was reported in [1]. Composite pipes used in ma-
rine and oil industry applications exhibit the adhesive joints as the weakest link
in a composite piping system, as it is reported in [2]. Thus, in order to increase
the reliability of adhesive bonded joints, more detailed theoretical, experimental
and computational studies of these joints are necessary. Pipe joints are usually
subjected to internal liquid pressure, and/or external thermomechanical load-
ings — axial or bending loads arising from expansion, contraction and pressure
variations in real engineering pipeline systems.

That is why the issue of fatigue crack-like damage propagation in a compos-
ite pipe joint under axial tension is computationally studied in this paper. The
averaged shear stress criterion for damage propagation in the adhesive layer is
used. The concept of the continuum crack-like damage is represented in terms
of the finite element stiffness [3] as a damage measure [4]. The crack-like dam-
age propagation in the adhesive layer is analysed as a function of load cycles
and load amplitude in numerical studies performed by means of the Finite El-
ement Method (FEM) displacement-based program ANSYS [5|. The numerical
approach presented makes it possible to predict composite pipe joint life under
axial loads only and to propose a relation between amplitude of the applied load
versus the number of cycles to failure. Next, this problem can be extended to
numerical analysis of damage evolution under random material parameters and
implemented in the framework of the Probabilistic Design System of ANSYS.

2. COMPUTATIONAL DAMAGE MODEL

2.1. Simplified damage model of a composite pipe joint

Deterministic computational model of a crack-like damage propagation within
a composite pipe joint is based on the following assumptions:

* composite components are linear elastic and transversely isotropic materi-
als;

e three-dimensional problem is simplified to the axisymmetric case with four
components of the stress tensor ¢ = {04, or, oy, Tra};

e neither bending nor large deformation effects are included;

e possible defect nucleation and growth is localized in the adhesive layer and
results from the high stress concentrations at the joint edges;
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e no initial manufacturing flaws, pre-cracks or other defects are assumed to
exist in the original adhesive layer (before the beginning of the static cyclic
loading process);

e there are no microdefects forming and their coalescence during composite
tension (typical for metallic materials) apart from crack formation and
propagation;

e the static cyclic load has constant amplitude in time;

e no time-dependent nonlinear effects such as creep due to the static cyclic
loading character are considered;

e fatigue crack-like damage propagation is stable.

Further, it is known that the stresses along the adhesive layer are not uniform
and their gradients arise at the joint edges. It results from extension of the
specimen layers in the opposite directions (composite pipe and coupling), cf.
Fig. 1. Then it is assumed that the defect starts to grow longitudinally along
the adhesive layer, uniformly over all the pipe circumference under tensile load,
when the resulting average shear stress (Tga(aq)) Over some distance d on the
high stress concentration region satisfies the following relation:

d
1
(2.1) (TRA(ad)) = = / TRA(ad)8X A 2 TRA(ad)>
0
where 75 A(ad) denotes the static shear strength of the adhesive layer.

pipes

TRA(ad)
(TRA(ad))

O - stress concentration regions

FiG. 1. Pipe-to-pipe adhesive connection: 3D and 2D views.

The condition expressed in Eq. (2.1) is called the average stress criterion after
it was applied to strength prediction of the notched laminated composites under
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uniaxial tension [6]; graphical representation of this criterion is schematically
shown in Fig. 1. The distance d is called the characteristic length and can stand
for the damage accumulated or nonlinear process zone. Here it is expressed in
terms of the critical fracture mechanics parameter as the critical Stress Intensity
Factor (Kjj.) and shear strength of the adhesive layer as

1
(2.2) gz g (uan_) ;
2 TRA(ad)

Since Eq. (2.2) is based on the assumption of the square-root stress singularity
at the front of the sharp crack tip, it does not represent precisely the stress
distribution in the tubular adhesive layer in the stress concentration region or
when the crack-like damage zone is present. However, this characteristic length
serves only to estimate the upper bound on the finite element size at the crack-
like damage tip.

Therefore, it is postulated that after the crack-like defect has nucleated, it
steadily propagates along the adhesive layer as the main single crack-like damage
zone and leads to average shear stress increase over the distance d together with
the number of load cycles N as

RA(ad)
(2.3) (TRA(ad),N) d/TRA(ad) NdX4 = d/T(aD;—dXA'

Dy denotes the classical scalar damage variable which may be written in terms
of the nucleated and propagating main crack, ay, and the initial adhesive layer
length, lo4(0), as follows:

(2.4) D= =N
lad(O)

The defect propagation terminates at N = Ny being the number of load cycles
at failure

(25) DNf =1& aN; = lad(O)’

which corresponds to the loss of stiffness for all those finite elements in adhesive
layer that are placed on the crack-like damage propagation path.

3. NUMERICAL MODEL

3.1. Fatigue test description

The boundary-differential equation system which describes crack-like damage
propagation over the adhesive layer in a composite pipe joint may be defined over
a pipe element with the length dl, y = dX 4 — day as follows:
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(i) equilibrium and damage equations

(3.1) dF, = dF,yn =dF,,
m
(3:2) dap7 (D3, = D) = Tra(d),NTDopdla,n,
m
(3.3) dUcZ (D% — D7) = Tra@a)NTDicdlan;
(ii) constitutive relations
dw,, AT OA dw, 510
) Pl iR T
G RrA(ad) (Yp — Ye)
(3.5) TRA(ad),N = (a)t L=,
ad
iii) boundary conditions
(iii) y
(36) 40}y o et M 00 e ol Bt afova s L1
: dly Xa=ly Ep dln X il E, )
(3.7) &ty 0 B~ W =0,
din Xa=0 din Xer =1,

where F, N, Foqn, Fe,N represent internal axial forces in the pipe, adhesive
layer and coupling, respectively; internal axial stresses in the pipe, adhesive and
coupling are denoted by o,, T A(ad),n and oc. Let us assume that E,, E. and
Gaq are the axial modulus of the pipe, elastic modulus of the connecting layer
and the adhesive shear modulus; w, and w, denote axial displacements of the
pipe and its coupling. A boundary value problem described by Eqgs. (3.1)-(3.7)
is solved numerically here for the pipe and coupling shear strains 7,, 7. and the
adhesive shear stresses Tp(qa),N-

3.2. Displacement Finite Element Method solution
The potential energy of deforming damaged body is represented by
(38) H[’Il,i,DN]=U[DN]“V,

where U[Dy] and V denote the strain elastic energy of the system in the N-th
fatigue cycle and the work of external loadings, respectively. Then, using com-
patible displacement model of FEM, the potential energy can be decomposed in
terms of finite elements energies constituting the model as

E
(3.9) I [uDy] = Y- 11 [u?, DY),

e=1
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where E denotes the total number of finite elements in the model and the in-
dex e refers to the e-th finite element; uge) represents the vector of discretized
displacements. Then, it is assumed that the functions u;(zy) for z € £2, are ap-

proximated in each e-th finite element by the shape functions <P,(§)($k) as simply

uge)(mk) = wgg)(mk)qée) [3] with € =1, 2, ..., N(®). The vector of element nodal

displacements is represented by qée) with N(€) denoting the number of degrees

of freedom in this element. As far as linear elastic material behavior is assumed,
the total potential energy of the system can be defined as

E
1 :
(3.10)  Hu, @)=Y / s€ir Ciiu (Dﬁs’) e9dn - / tTuid (092) |
=1 2, 2,
Finally, as a result of the first variation of the potential energy functional with
respect to particular nodal displacement component (0I1/9q,), it is possible to

obtain the basic FEM system of algebraic equations to be solved for the unknown
nodal displacements as

E E
(3.11) Z {kffﬂ),ngv} = Zf((f) (no summation over N),
= ;

e=1
(e) .
(3.12) 1) nis kopoy = no damage,
42 r(€) x kif[g(()) = damage

where two values are assigned to the damage variable only: 7(¢)=1 or r(¢)=1x 1076,
and that is why the element stiffness is equal to its initial value or 0. It is ob-
served that no energy is dissipated due to the propagating crack-like damage
according to the Griffith model |8] and the damage propagation is considered
only as the material volume reduction by the corresponding reduction of the
finite element stiffness. The Stochastic Finite Element Method (SFEM) or the
Monte-Carlo simulation (MCS) can be used in case of some input parameters of
the analysis being random variables or fields [7].

4. COMPUTATIONAL ILLUSTRATION AND DISCUSSION

The purpose of this computational study is two-fold: (1) life prediction of
the composite pipe joint subjected to the pure tension static cyclic load and
(2) estimation of load amplitude level on the joint life. The composite pipes
Jjoint degradation is described by the relation between crack-like damage length
versus fatigue load cycles number. Computational experiments are arranged as
follows:
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e determination of the crack-like damage growth per cycle;
e calculation of the cumulative crack-like damage growth versus the loading
cycles number;
e estimation of the relation between the load amplitude level and the loading
cycles number to failure.
The load applied varies with time as it is shown in Fig. 2 and each load cycle
is divided into two time intervals of 6 months. The cycle asymmetry ratio R
is equal to 0, while the load amplitude is equal to the applied maximum load,
Omax- Since static cycle load is applied, no frequency effect is considered here.

R=0min/Cmax=0
AG=Cmax-Cmin=Cmax

© A Single cycle: Ng=2xT
@
7)) ]
@ | O=Omax
»
b e
=
e it e >
- G=Cpin=0

Number of loading cycles, N

Fic. 2. Applied fatigue load.

Let us note that the axial symmetry of the composite pipe joint results in a
simplification of the entire computational model and essentially speeds up the
numerical analysis — only one half of the composite pipe joint in axial direction

‘ c Dimensions:

Rp =5.08x10”m
t,=t;=1.27x10°m
tas =1.27x10"m
ladoy=2.54x10"°m
l, =3.81x10”m

A

FiG. 3. Computational model.



370 L. FIGIEL, M. KAMINSKI

is considered due to its symmetry. The final computational model geometrical
input to the FEM displacement-based commercial program ANSYS is schemat-
ically shown in Fig. 3. The pipe and the coupling component are made up of
a unidirectional E-glass-reinforced epoxy composite (50% fiber volume fraction)
with material properties taken from [9], and adhesive layer (rubber-toughened
epoxy) properties are used [10]. All material properties of the composite pipe
Jjoint components are listed in Table 1.

Table 1. Material properties of the model.

Property Rubber toughened epoxy | E-glass/epoxy
Longitudinal modulus [GPa| 3.05 45
Transverse modulus [GPa] 3.05 12
Shear modulus [GPal 1.13 5.5
Poisson’s ratio 0.35 0.28 -
Shear strength [MPa] 54 70
Fracture toughness Gric [kJ/m?| 3.55 ~

The axisymmetric FEM analysis is carried out using four node finite elements
PLANE42. These finite elements have three translational nodal degrees of free-
dom (DOF) in the axial UA(i,j,k,1), Tadial wp( j k) and hoop Up(ij k) directions.
Then, the finite element displacements are described using the following linear
functions:

(4.1) B i(u,ﬁ(l——s)(l—t)+uAj(1+s)(1—t)
+uAk(1+s)(l+t)+u,u(1—3)(1+t)),
@2 un = (- (1 - 0+ ug (1 +5)(1 - 1
+uRk(1+s)(1+t)+uRl(1—s)(l+t)),
(4.3) e i(u;;i(l—s)(l—t)-ku;{j(l+s)(1—t)

+ (1 +8)(1+8) + um(l - s)(1+ t)).

The model mesh is prepared to have greater density in high stress concentration
regions — at the top (¢) and the bottom edge () of the joint. In these regions the
finite element size was equal to the process zone ‘d’ calculated from Eq. (2.2).
During solution, the averaged value of shear stress component computed in the
finite element was compared to the static shear strength (75 i d)) of the adhesive
layer.
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Once this value has been exceeded in some element, its stiffness is multiplied
by the reduction factor equal to r(¢) = 1 x 107 and element is deactivated. This
analysis was terminated when all the finite elements in adhesive layer placed on
the crack-like damage propagation path had been deactivated (a lack of material
along the crack path). The frontal equation solver was used together with the
Newton—Raphson iteration technique for the problem solution.

For the purpose of simplification of this analysis, it was assumed that the only
active failure mode is the bonding failure. However, it is necessary to mention
that it is only one of several failure modes occurring in the composite pipes joint,
i.e. tensile failure in the pipe or in the coupling, as reported in [11].

First, the crack-like damage evolution per one cycle in the adhesive layer
was computed for five different load amplitudes omax = 216, 243, 270, 406 and
540 MPa. These amplitude values correspond to 4 x 75 Alad)’ 4.5 x T Alad)’ 5 X
TR A(ad)’ 7.5 X Tpataay and 10 X TEA( ad)’ respectively. Since below the applied
load amplitude oyax = 216 MPa no damage nucleation was observed, thus this
lpad value may be assigned to the load threshold o-th for the crack-like damage
evolution. The tendency of the longitudinal crack-like damage propagation was
obtained from the computer analysis as the difference between crack-like damage
tip X4(v,n-1) at the N-th and (N — 1)-th cycle. The crack-like damage tip
position was an axial coordinate of the finite element centroid with the reduced
stiffness with respect to the global coordinate system origin. Since the crack-
like damage growth occurred from two opposite sides of the joint, therefore two
extreme longitudinal positions of the crack-like damage tips were considered,
namely ¢ and b. Thus, the total crack-like damage growth per cycle is described as

(4.4) Aay = X4

t,b
Avy ~ XA

(N-1)
The main results of computational fatigue analysis are shown in Fig. 4. As it
could be expected, the crack-like damage growth per a cycle increases along
with the increasing load amplitude level and for higher load amplitude, smaller
loading cycles number is necessary to reach the entire joint failure; it is well
illustrated by the number of the dots in this diagram.

The results of crack-like damage growth per a cycle were summed separately
for each load amplitude level, to establish a single crack-like damage value as

(4.5) ay = aﬁv’b_l - Aaﬁ(,b.

The values of a cumulative crack-like damage growth versus number of the load-
ing cycles for different amplitudes are shown in Fig. 5. The loading cycles number
N was smaller or equal to the entire joint failure N = Ny denoted by dots. As it
was expected, the loading cycles number at the total failure increases together
with decreasing load amplitude level.
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a: Omax=216 MPa = 414" e
0.012} b: 6max=243 MPa = 4.5x7,4" ®
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FiG. 4. Crack-like damage growth per cycle.
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F1G. 5. Cumulative crack-like damage growth.

Finally, it was possible to obtain a relation between the load amplitude level
Omax and the loading cycles number at joint failure N - This relation is obtained
by linear extrapolation of the results in natural logarithmic scale, which is pre-
sented in Fig. 6. The following relation for prediction of the number of loading
cycles at the joint failure was proposed:

(4.6) Ny = 1.856 x 10° x et

2.174 "
Umax
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It is believed that the usage of Eq. (4.6) enables to predict the composite pipe
joint life by specification of the load amplitude level only. However, it should be
compared with other computational approaches to this problem and the relevant
experimental results. For the material system with different material properties,
it would be necessary to repeat all numerical procedures carried out here since
a and [ are material-dependent parameters.

6.4 Ln(omax)=an(Ny)+B

6.2 0=-0.46; p=6.64

Ln(omax)
(8]
(o0}

5.6

5.4
%

0.5 1 1.5 2 2.5 3
Ln(Ny)

FiG. 6. Fatigue life-prediction line.

The predicted life of composite pipe joint is relatively short, as one could
expect to be realistic. In fact, the pipelines are usually designed for about 40 to
50 years of the reliable performance. Short life of the composite pipe joint, as
determined in this study, is probably a consequence of several assumptions of
the computational model. Certainly, introducing of material nonlinearity, such
as creep effects, might elongate the computed life of composite pipe, joint. Fur-
thermore, it is necessary to mention that composite pipe, as well as the coupling,
usually consist of layers with the reinforcement located at various angles during
manufacturing. An effect of layers orientation is an important aspect in determi-
nation of the fatigue strength for laminated composites, as reported in [12]. In
this case it would be necessary to investigate an effect of layers orientation with
respect to the longitudinal direction X 4 on the damage process in the composite
pipe joint.

Next, the shear stresses 7z 4(qq) Were plotted for different load cycles in order
to present their redistribution during the crack-like damage propagation. They
are collected in Figures 7, 8, 9 and 10. These shear stresses were determined in
the middle of adhesive layer thickness and the crack-like damage tips on both
sides of a joint are denoted by ¢ and b.
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F1G. 7. Shear stresses in undamaged adhesive layer.

As it was expected, see Eq. (2.3), the maximum shear stresses increase to-
gether with the loading cycles number. It is caused by the fact that load transfer
area from a pipe to the coupling monotonously decreases. The crack-like damage
propagation is initially the same for both tips ¢ and b as a consequence of similar
shear stresses magnitudes; after that the shear stresses magnitudes change and
are different at the opposite crack-like damage tips. It probably results from the
non-uniform extension of the crack-like damage across the remaining adhesive
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F1G. 8. Shear stresses in adhesive layer after 2 cycles (2 years).
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FiG. 10. Shear stresses in adhesive layer after 8 cycles (8 years).

layer. It is necessary to mention that prior to failure, lower part of a pipe over-
lapped coupling. It does not demonstrate a realistic situation where both the
pipe and coupling would slide over each other. An increase of the stiffness of the
damaged elements will probably avoid this situation, however it can also lead to
an increase of stress transfer through those elements.
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The tendency of fatigue crack-like damage propagation was also considered
under different failure conditions, utilizing the concept of the average stress cri-
terion. That is why the averaged orthogonal and parallel stresses were compared
with the relevant strength values for different amplitudes of the load applied.
Computations revealed that it would be necessary to modify the failure criterion
given by Eq. (2.1) to predict the fatigue life, by the combination of the aver-
aged shear stress with average longitudinal tensile stress in case when the load
amplitude is higher than omax>406 MPa. Moreover, it is necessary to underline
again that this study is also simplified with respect to the averaged shear stress
criterion. All three shear stress components should be accounted for in further
numerical experiments to propose a damage initiation and propagation criterion,
as suggested in [13]; it could be completed in the 3D FEM analysis.

It should be mentioned that the computations presented above were executed
using 2606 finite elements (254 in the adhesive layer), thus the numerical exam-
ples have been undertaken next in order to estimate the total finite elements
number effect on the results. It was assumed that finite element number in the
adhesive layer may influence these results only. Thus, the vertical mesh division
effect was studied first with 400, 800, 1200, 1600, 2000 and 4000 finite elements,
respectively.

E| oo

: oy > 1000 elements
% 0.02

) 400 elements

o | o.0s5

()]

© \

E|l o

©° 800 elements
L1 oms

Xx

Q

g

(&)

2 4 6 8

Loading cycles number N

Fic. 11. Joint life sensitivity to the finite elements number in adhesive layer (vertical
direction).

The results obtained became independent of the decreasing finite element
size (cf. Fig. 11), while the finite element size, for which the results did not
change, was equal to le = 0.0001 m. It corresponds to 250 vertical mesh divisions
of the adhesive layer length considered. Computational results show that the
element size simulating characteristic length d should be much smaller than that
approximated by Eq. (2.2) and can be approximately equal to d ~ 0.0007 m.
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FiG. 13. Joint life sensitivity to the finite elements type in adhesive layer.

Similar comparative studies were carried out for different horizontal divisions
and demonstrated a rather small mesh effect on fatigue life prediction, which os-
cillated between 8.4 and 8.6 load cycles number (cf. Fig. 12). The finite element
mesh of this particular adhesive layer should be designed with at least 5 x 250
elements (horizontal x vertical ones) in order to avoid the mesh effect on the
life prediction (hard to be predicted).
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Finally, the influence of the finite element type in the adhesive layer on the
composite damage behavior was investigated. The computational experiments
were preformed with other two axisymmetric finite element types, available in
the ANSYS. First, the adhesive layer was discretized with the eight node quadri-
laterals PLANES2, and then with the six node triangular elements PLANE2.
A negligible influence of the element type on the damage behavior of the joint
was found in this study, as it is shown in Fig. 13.

5. CONCLUSIONS

Computational approach proposed in this work enabled numerical estimation
of the crack-like damage evolution in the composite pipe joint subjected to axial
static cyclic tension with constant amplitude. The computational analysis was
elaborated using the FEM computer system ANSYS and its option ‘Element
Birth and Death’. This numerical approach led to the fully automatic crack-
like damage propagation simulation without any re-meshing procedures. As the
result, the life of a composite pipe joint was predicted in the form of a number of
load cycles to failure versus this load amplitude. The approach is characterised
by some sensitivity of the results with respect to the mesh density around the
crack tip; negligible sensitivity to axisymmetric finite element types was verified.

The paper presents a simplified analysis of a relatively complex problem of
a damage evolution in the composite pipe joints. In further analysis, the cri-
terion for a crack-like damage propagation should be improved to account for
other shear stress components — the 3D analysis has to be done using the AN-
SYS option ‘Composites’. This option can be utilized also to study the effect
of a composite pipe and coupling layers orientation on damage of the compos-
ite pipe joint. Another problem that needs further investigation is the effect
of the rate-dependent material non-linearity, such as creep effects, on the life
span of the composite pipe joint. As a consequence, it might be also necessary
to account for large deformations effects. The assumption of the linear elastic
material behavior can be a reason of non-realistic short life span of the joint.
Another reason could be the damage localization connected with only two pos-
sible finite element damage status: damaged or undamaged — usage of non-local
and gradient-enhanced damage mechanics formulations [14] can considerably im-
prove the damage model. Next, the problem can be extended to the numerical
analysis of a damage evolution under random material parameters and imple-
mented in the framework of the Probabilistic Design System of ANSYS. For this
purpose, the detailed sensitivity analysis [15] of the results to design variables,
i.e. material parameters, should be carried out.
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