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This work deals with the analysis of influence of some geometrical and material parameters
of layers on the mass, critical stress and ultimate load of three-layered plates. The plates are
built of metal outer layers and a composite core. To obtain the maximum load value, the
analysis is carried out in the elasto-plastic range basing on the Tsai-Wu criterion and Prandtl-
Reuss equations. The solution is obtained by an analytical-numerical method.
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1. INTRODUCTION

Three-layered plates and shells have been investigated for many years and
viewed as advantageous ones because they can easily be shaped according to the
requirements of lightweight as well as high strength. Nowadays such structures
are widely used not only in the aircraft industry but also in civil engineering,
automobile industry, etc.

A typical three-layered structure consists of two outer layers (faces) of high
strength properties with a filling layer (core) inbetween, which provides the ap-
propriate stiffness of a structure. The inner layer is usually made of a material
much lighter than the material of faces but also of lower mechanical properties.

Referring to the properties of the core, one can divide the three-layered struc-
tures into two categories:
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e “sandwich” structures with light core carrying only the transverse shear
loads [15],

e composite laminate structures in which the core is able to take part in

carrying the in-plane loading.

In the latter case the three-layered structures are analysed on the ground
of the laminate theory (see [10]), which means that the assumption of linear
distribution of stresses across the thickness of a cross-section is adopted.

The amount of literature concerning the behaviour of laminated plates under
in-plane loadings is substantial. In most works the analysis has been restricted
to the buckling problem (e.g.[4, 12, 13, 14, 17, 25, 26]). The papers [2, 19, 20, 21]
are devoted to the elastic nonlinear analysis. There are few works dealing with
the plastic buckling state (e.g. [22]).

Considering the material characteristics of composites it can be noticed that
many of them behave as brittle ones, but there exist composites of characteristics
showing the possibility of working in the plastic range. Therefore it is possible to
conduct the analysis of strains and stresses in the elastic and elasto-plastic range
and to draw a load-displacement curve for the laminated composite plate. This
curve describes the pre-buckling state until a critical stress is reached, next the
elastic and elasto-plastic state until maximum (ultimate) load is attained and
finally, when the phase of failure occurs (Fig. 1). The following quantities can
be determined: the buckling stress, the post-buckling stiffness of a structure, the
ultimate load and the energy absorbed by the structure during loading (the area
under the curve). The character of the curve in the phase of failure indicates
whether the structure is ductile or brittle.

elasto-plastic

Load range
failure
elastic plastic range
range \
postbuckling
state
prebuckling state _
shortening

Fi1c. 1. Typical load-shortening curve for a plate structure.
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When the analysis of post-buckling state is carried out in the elasto-plastic re-
gion the complexity of a problem (due to geometrical and physical non-linearity)
is so great that a purely analytical solution is out of question. Undoubtedly the
numerical methods (e.g. FEM) are the most powerful instruments but they are
expensive and time-consuming. The analytical-numerical methods in which the
elastic post-buckling state is described analytically and next the elasto-plastic
state is dealt with on the basis of the theory of plasticity and predicted by iter-
ative numerical procedure, are less general but they give quick and sufficiently
accurate results.

In the present work the three-layered plates built of two metal layers with
a middle layer of a composite (MCM plates — see [1]) are investigated. The
plates are subjected to compression in one direction but the unloaded edges
are restrained from pulling in, which implies bi-directional compression. The
variations of some properties that may be interesting for designers such as: mass,
bending stiffness, critical stress and ultimate load with respect to the g/h ratio
(see Fig. 2) are determined for the assumed material and geometrical properties
of the layers and of the plate as a whole.
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F1G. 2. Geometry and loading of a plate.

It should be underlined that for appropriate prediction of the behaviour of
thin-walled columns built of rectangular multi-layered plates, it is crucial to
determine the behaviour of the individual element (wall) because on this ground
it is possible to estimate (approximately as a lower bound) the ultimate load of
the whole structure.

2. FORMULATION OF THE PROBLEM

Thin three-layered plates subjected to compression are considered. The load-
ing is applied in such a way that during the analysis, the response of the plate
to the increment of displacements of corners (Fig. 2) is traced.
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The plates are initially flat and stress free. It is assumed that the plate
edges are simply supported and remain straight during loading. Additionally the
unloaded edges are restrained from pulling in.

The plates consist of two identical isotropic layers (faces) that cover the
middle layer (a core) made of different material. When mechanical properties of
all layers are of the same range, Kirchhoff’s hypothesis can be applied for the
entire cross-section.

The material of the middle layer is treated here as orthotropic, with principal
axes of orthotropy parallel to the plate edges. Therefore in this case neither shear
nor twist coupling nor bending-extension coupling exists [10, 13].

The elastic material properties are determined by the following independent
constants:

o for the outer layers: E, v;

e for the middle layer (orthotropic) — Ey, Ey, vyg, Gay.
The pre-buckling displacement and stress fields of a plate are described by:
e its displacements in the z and y directions

(2.1) 3t UCE; poE
a
e and additionally:

(2.2) oz = const, oy = const, 7, =0.

In the elastic range the solution of buckling problem and post-buckling be-
haviour has been obtained on the ground of the classical theory of thin laminated
plates [10, 11].

To obtain the approximate solution of the problem, the expressions repre-
senting displacement fields in the elastic range have been determined (a detailed
description of the method is given in [8, 16]). The results are reported below.

The deflection function w assumes the form:

B o ik )
2.3 = fsin — sin —,
(2.3) w = fsin e
where f denotes a free parameter.
The in-plane displacements uand v have been obtained in the following forms:

2 2 2
(2.4) u=uh sk f* (01 Rl + By sin—? cos —%y—> :
a

2 2 2
(2.5) 9= 04 7 (C’z sin% + Bs sin—% cos ~Z—x> :
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where C;, Cg, By, By are constants depending on the material and geometrical
properties of the layers.

CI=L<A_12./\2_1>, C2=E<A121 1>’

16a \ A1y 16a \ A A2
eb—7cd b -

Bl == S BQ = = ,\2 )
ad—b ad—b

—~

Linio A
Fogh ;(Au + A3\, b = (412 + A3) —,

s 16a 3 [—Au + (A12 + 2433) X7]
- 1 2 ~ =T
d = (1,_2- (A22/\ +A33)7 e = T6a b [ A22)\ i (Alg +2A33)]
Here A = a/b.
3 ¥ ;
Ek E
A= —E —(2k — 2k_1), Ao = lo-sadhigumitng Lz 1),
11 ; Toe (szl/ym)k( k= Zk—1) 22 ; T (nyyyz)k( k — Zk-1)
2 vk Ek e
Vyz Ly & e o .
Zl (Vagtin)® (zk — 2—1), Assz ZGzy(zk 220)
s k=1

The solution of the buckling problem of a three-layered metal-composite-
metal plate under specific case of compression can be found on the basis of the
solution of isotropic single-layered plate reported by TIMOSHENKO and GERE

[23]. Applying the energy method to the considered three-layered plate, after
some transformations, we have:

WUe)er _ ™ A% Ly + LyA* + 2L3)? e Sl oh
o R TR LR kT e T T fee s

(20) .5 800 5

where
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1
Ly=1-(l-a +"yz)2 Ly=1-(1-an)d,
h’ h
igtef E,/E oy E,/E
LT = o) [ = ) 27 (0= vayglya) /(1 = 12)

a3z = Vyg1 + W
Once displacements u, v, w are given the elastic stresses can be determined in
any point of a three-layered plate (using the geometrical relations between strains
and displacements and Hooke’s law for orthotropic and/or isotropic material).
To determine the ultimate load, the analysis of the post-buckling state has
to be carried out in the elasto-plastic range. In the plastic range the following
assumptions are made:
e the material properties of layers are independent and known in the whole
range of loading up to and beyond the yield limit,
e the appropriate yield criterion is applied according to the characteristic of
the considered materials,

e all assumptions of the nonlinear von Kérmén plate theory still hold,

e the forms of displacement functions are the same in the elastic and elasto-
plastic ranges but their amplitude “f” can vary arbitrarily,

e according to the plastic flow theory, the increments of plastic strains are
described by Prandtl-Reuss equations.

In the present work it has been assumed that the material characteristics
of isotropic and orthotropic layers are elastic-perfectly plastic. Therefore the
following material properties in the plastic range have to be known:

e for isotropic material (faces) — oy — yield limit;

e for orthotropic material (a core) — 71, Cy, Ty, Cs — yield limit in tensile and
compression tests in = and y direction, respectively. S represents the yield
stress in pure shear.

For orthotropic materials TSAI and WU [24] proposed the yield (failure) cri-
terion that takes into account the difference in strengths due to positive and
negative stresses. In case of a plane stress state, the Tsai-Wu crlterlon is formu-
lated as follows:

(27) F =kio; + kzO'y = kgsz - k‘no‘i + kgzoz r klzdmO'y -+ 3k337’3y =1,
where parameters k1, ko, k3 and k11, ko, k19, k33 are determined by tensile, com-
pressive and shear tests as given below:
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panpdihg ok fousil
1_T1 Cl, ll“TC)
1 1; 1
2.8 ko= —— — koo =
( ) 2 T 027 22 T2027
k3 =0 k e
3.5 M 33—332-

The last unknown parameter k12 in (2.7) is related to the interaction of two
stress components o, and oy. This parameter can be determined in many ways:
by an infinite number of combined stresses or by simplified assumptions. In this
paper it is assumed that the magnitude of interaction term kjo results from the
following inequality [24]:

1
(2.9) ki1kaa — Zkfz >0,
so the parameter k12 can be expressed as:
1 1
2.10 kig = £2 —_—
or (see Ref. [27]):
2
21T kig " ——————.
( ) Ve ThYTy + C1Cy

It is easy to notice that both the Hill yield criterion and Huber—Mises criterion
can be obtained from the Eq. (2.7). The associated flow rule for a given yield
criterion can be expressed by the Prandtl-Reuss equations [9] as follows:

(2.12) dep; = ASyj, t =125
where | OF

= —— i -9932

Szy 330‘1']', %7 12,3

In the analysis of elasto-plastic plates undergoing large deformations, the
infinitesimal increments in (2.10) have to be replaced by the finite ones (de-
noted by A). Then the relations between stress and strain increments in the
elasto-plastic range are described by the Prandtl-Reuss equations in a form:

E
S i e e~ 5
E
(213) Ao‘y i Y [Aé:y + VyzAEx A(Syy + Vya:Sxm)]a
(1 = VpyViys)

ATzy = Gey(Avzy — ASgy),



452 R. GRADZKI, K. KOWAL-MICHALSKA

where Sy, Syy, Sgy are defined as:

TC
Sex = T(kl + 2k110, — klZUy)a
e
(2'14) Syy - —3—(k2 == 2k220'y = klzo'x),

T and C' denote the values of yield (failure) stress in tension and compression,
respectively, selected as the reference quantities (see [18]).

For an orthotropic material with the elastic-perfectly plastic characteristics
the parameter A (which is a scalar, positive definite) is [18]:

A (Sez + vyanSyy) Aex + 1(Syy + VyeSez) Agy + G* SzyAyzy

215 )
19 52y + 2nVysSyySus + nSgy +G*S2,

where: B
S N A e )
1

3. METHOD OF SOLUTION

The Rayleigh-Ritz variational method is applied to the elasto-plastic prob-
lem. It has been proved by GRAVES-SMITH [5] that it is possible to apply the
variational method to the plates undergoing finite deflections (see also [6-8]).

The potential energy at any point of a plate is a sum of elastic and plastic
components. The plastic strain energy existing prior to the current strain incre-
ment bears no direct relation to the current state of stresses. For the purposes
of minimization, this energy may arbitrarily be assumed to be zero and only
further changes of the strain energy have been taken into account.

(3.1) AW = / [(az + %Aax) Aeg + (ay -+ %A@) Agy
1%

1
+ (sz + —2-Arzy> A%y] dzdydz,

where V' is the volume of the plate, Oz, 0y, Tzy denote the stresses before the
loading increment is applied and Aoy, Aoy, ATgy, Aeg, Aey, Avyyy denote the
stress and strain increments produced by the increment of shortening AU..
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In the elasto-plastic range the current state of stresses depends on the path of
loading, so the solution of the problem can only be reached numerically. Therefore
the numerical solution starts from the evaluation of the energy increment (3.1).
In order to accomplish this, every layer is divided equally into i x j x k appropriate
3D elements. The energy values calculated in each of elements are summed for
a whole structure.

Next, the numerical minimisation of the energy functional with respect to
the independent parameter f is performed. The average stresses corresponding
directly to the load applied to a considered structure are subsequently computed.

In each step of calculations the active, passive and neutral processes and also
the reduction of stress to the yield surface are taken into account.

4. CASE STUDIES

We consider square plates (A = 1) built of two identical metal layers with a
middle layer of a light material. For different material properties of the layers,
the variation of mass, critical stress and ultimate load has to be determined as
a function of ratio g/h (thickness of a core related to the total plate thickness).

Two metal outer layers are considered: steel (Figs. 3-6) and aluminium
(Figs. 7, 8) and also two composite (but isotropic) cores: composite denoted
by CFS003/LTM25 [3] (Figs. 3, 4) and epoxy resin (Figs. 5-8).

Metal - stainless steel Composite
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F1G. 3. Load-shortening curves for plates of a/h = 100.
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F1G. 4. Variation of dimensionless mass, critical stress and ultimate load for plates
of a/h = 100 (material parameters given in Fig. 3).
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F1G. 5. L-S curves for square plates of a/h = 80 (steel faces).
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F1G. 6. Variation of dimensionless mass, critical stress and ultimate load for plates
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F16. 7. L-S curves for square plates of a/h = 80 (aluminium faces).
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Fi1c. 8. Variation of dimensionless mass, critical stress and ultimate load for plates
of a/h = 80 - aluminium faces (material parameters given in Fig. 7).

The results are presented in diagrams in non-dimensional form. Load-shorte-
ning curves are drawn as a relation between o*=0,, /0y (average stress corre-
sponding directly to the applied load referred to the yield stress of metal face)
and U* = (U./a)/(oy/E). The values of mass m, bending stiffness D, critical
stress CR, ultimate load LCC of the considered three-layered plate are referred
to the corresponding values calculated for isotropic metal plate of thickness h

(for example: m* = 1 — (1 - %ﬁ?) %, where p denotes the mass density).

It can be easily proved that dimensionless mass m*, bending stiffness D* and
critical stress CR* do not depend on the a/h ratio. This does not apply to the
non-dimensional value of the ultimate load LCC*.

In Figs. 3, 5, 7 the curves of load versus shortening are presented for MCM
plates for selected g/h ratios. It should be stressed that although the calculations
have been performed for g/h varying from 0, 0.1, 0.2,... to 1, for purpose of
readability not all L—S curves have been drawn in diagrams.

The L-S curves enable one to determine the values of critical stress and
ultimate load for a plate under consideration. On the other hand, the values of
buckling stress have been calculated from the analytical relations (2.6). It is seen
that a sufficiently good agreement between these two values has been achieved
(differences up to 10%).

It follows from the relations shown in Figs. 6 and 8 that if Poisson’s ratios of
the metal and composite layers are the same, the D* and CR* curves coincide.
It means that in this case the three-layered plate behaves as an isotropic plate.
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This is not true if vy, # v, (Fig. 4). The critical stress for plates of ratio g/h
varying in the range 0-0.4 is almost constant and even for g/h = 0.3 it is greater
than that for metal plate of thickness h.

It can be seen that some kind of regularity is observed (Figs. 4, 6, 8) —
although the critical stress decreases slowly with the increase of the middle layer
thickness, the decrease of ultimate load is almost linear and rather rapid.

The influence of material properties of the faces (the material of a core is the
same) for plates of a/h = 80 can be investigated by comparing the corresponding
curves in Fig. 6 and 8.

5. FINAL COMMENTS

The results of numerical calculations presented in this work are the mere
beginning of the investigations aiming at the rational designing of three-layered
(metal-composite-metal) plate structures. However, they can provide some prac-
tical advices for the design, enabling the selection of material and geometrical
parameters (particularly the selection of the core thickness) in dependence of the
required weight and strength properties.

It should be also noted that on the basis of results obtained for the individual
plate, the ultimate load of a thin-walled box-column subjected to compression
can be estimated (when local buckling occurs). It is evident that this estimation
can be treated only as a lower bound value because the cooperation of walls has
not been taken into account.

Last but not least, it should not be forgotten that in metal-composite-metal
panels such phenomena as delamination and cracking may occur that can result
in prior destruction of a plate.
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