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OPTIMISATION REGARDING LOCAL STABILITY AND STRENGTH OF
LONG MULTILAYERED PLATES SUBJECTED TO COMPRESSION

M. Kré6lak, K. Kowal-Michalska, J. Swiniarski

Department of Strength of Materials and Structures,
Technical University of L.6dz, Poland,

In this paper the method of optimal selection of orthotropic layers thickness is presented.
The considerations concern long rectangular plates subjected to uniform compression in the di-
rection of longer edges. Such plates (or cylindrical panels) of increased local buckling resistance
could be applied as components of thin-walled columns of closed cross-sections.

1. INTRODUCTION

In many modern structures their light weight together with high carrying
capacity is one of the fundamental demands. The designers know that this is
the feature of thin-walled structures, in which the high strength properties of a
material can be better exploited. However, safe work of these structures could be
threatened by the possibility of buckling, often at small effective stress. Particu-
larly, this concerns a thin element such as plate or shell subjected to compression.

In long thin-walled columns, many different buckling modes can occur, such
as global flexural buckling, torsional or flexural-torsional one, local buckling,
lateral buckling. As the effect of interaction of two (or more) buckling modes
mentioned above, the interactive buckling can also appear [5, 6]. Therefore, di-
mensioning of sub-components in thin-walled structures should be determined
by stability constraints in addition to strength and stiffness constraints. The de-
signers should look for such thin-walled structures, which - at the same weight
— will exhibit greater buckling resistance.

Nowadays, with progress in the materials technology, these plates (or pan-
els) can be manufactured as solid composite or multi-layered (sandwich and
laminated) ones. Many works has been devoted to the problem of reducing the
structural weight of sandwich members (e.g. [4, 10]). Despite the gradual growth
of interest in the optimisation of composite structures, the number of available
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investigations is small in comparison with the literature concerning the optimi-
sation of isotropic structures. The problem of maximising the failure loads for
composite rectangular plates and cylindrical shells subjected to compression was
investigated in papers [8, 9].

In long compressed elements (multi-layered plates or cylindrical panels) made
of orthotropic (composite) materials of high orthotropy ratio, there are also
possibilities of increasing the buckling resistance at a constant weight (constant
plate thickness). As it is known, the high orthotropy ratio is characteristic for
fibrous composites stiffened in one direction with glass, kevlar, spectra or thornel
fibres. Extensive review of mechanical properties, thermal expansion coefficients,
fracture and strength data for advanced composite materials can be found in
1, 2].

The local buckling stress of long rectangular orthotropic plates (single-layered)
with principal axes of orthotropy parallel to the plates edges, subjected to com-
pression in the direction of longer edges, depends in a significant way ([3, 11])
on the square root of the product of plate bending stiffness in the principal
directions of orthotropy (/D - D). The increase of /D; - Dy value in the
single-layered plate, made of the orthotropic material of given elastic proper-
ties (E1, Ea,V12,V21), is only possible when the plate thickness increases, and so
does the weight.

In case of multilayered plates, made of the same material and of the same
thickness as a single-layered plate, the possibility of increasing the \/D; - Dy
value (thus the buckling stress value) exists, if the thickness of each layer and
the arrangement of layers (e.g. the principal axes of orthotropy in neighbouring
layers are inclined by 0 and 90 degrees to the plate axes) are properly selected.

In this work the method of optimal selection of arrangement and of thick-
ness of orthotropic layers in a long rectangular plate, sub jected to compression,
is presented. This optimal selection is conducted regarding local stability and
strength of a multilayered plate.

2. FORMULATION OF THE PROBLEM

Let us consider a rectangular multilayered plate of a length [ much greater
than its width b (I >> b). The plate of a total thickness ¢ consists of an odd
number of layers arranged symmetrically towards the plate thickness. Principally,
in the analysed plates, all layers are made of the same orthotropic material, of
high orthotropy ratio. Only the three-layered plate is treated more generally.

The principal axes of orthotropy of layer material are parallel to the plate
edges. Under such assumption the principal directions of orthotropy in neigh-
bouring layers have to be alternated at 90 degrees. The middle layer may be
manufactured from the same material as the remaining ones or from the isotropic
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material. It should be mentioned that the application of isotropic layer makes
sense only in a plate of 5 layers at least. In this case it can be the thin layer
of a large value of tensile stiffness (K33 = Kpg) or the slightly thicker layer,
increasing plate bending stiffness, made of light material.

The arrangement of layers in the plate is shown in Fig.1.
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For symmetrically laminated plates (the term “symmetrically laminated”
refers to plates in which every lamina above the plate midplane has a corre-
sponding lamina located at the same distance below the plate midplane, with
the same thickness and material properties [3]), the stiffness coefficients Kj; are
determined by the relationships resulting from the formulae given in the work
of Jones [3]:

7S}
Kyj=2- 2 (‘1—_‘_% AZk-1 — Z}),
g
Kiy = Ko =2-; %-(Ek—l—%)
Nt1

2

Vige Byt "
=2 Zk—1— 2k),
221 1—vi2-va1), S )

N+1

2
Syl b o &
Koy =2 § 13, §
% (1—-‘V12 ’Vm)k (Zk ¥ Zk),



50 M. KROLAK, K. KOWAL-MICHALSKA, J. SWINIARSKI

=
K3z =2 Gp-t-(Zk-1— %),
k=1
N1 X
2 N R I =3
Ky == “(Zhl1 —Z%),
44 3 s (1 wiais v?l)k (k 1 k)
), ;
2 Voik - Bk - t _3 _3
Kys = Kgy = = - P vl - Bt
LA v va; (Fe-1 =)
5 v 3
2 Vigk - Eog - t = =3
== — . (Zp_,—7}),
3 = (l-via-var)y (Bt =)
N1 :
2 aronilih ¥ clsie pug =5
Kss = - - (Zp_1 — Zk),
55 3 kl(l_,vlz v21k (kl k)
(2.1)
N1

2 < i
Koo =3 > Gt (B - 7),
where: N — number of plate layers,

Ehi — elastic modulus of k-th layer in the direction of compression (along the
longer edge of a plate),

Esj, — elastic modulus of k-th layer in the direction perpendicular to the direc-
tion of compressive force,

Vigk, V21 — corresponding Poisson’s ratios of k-th layer,
%= % — dimensionless co-ordinate of k-th layer (see Fig.1),
7 Ny = 0 (co-ordinate of a midplane).

For each orthotropic layer the following relation is fulfilled:
(2.2) Erg - vo1k = Epk - Vazk-

For a single-layered plate we have:

E; -t
K44 = D1 = ) )
12 - (1 — V12 -‘Vzl)
(2.3) g
Ks5 = Dy = 2

125 (1 FV1D -’V21).
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If the neighbouring layers k and k+ 1 of a plate are made of the same orthotropic
material and are inclined by 90 degrees, the relations between elastic moduli and
Poisson’s ratios, for these layers, are as follows:

(2.4) B = Egky1, Eor = Ergt1, Vizk = Vaik+1, V21k = V12k+1-

For a long orthotropic plate (single-layered) subjected to compression in the
direction of longer edges, the local buckling stress is given by the formula (see
[7, 11]):

2'7!'2- Dl'D2 D3
(2.5) Oex = s . Sl
bt VD1 - Dy
where:
; .43
(2.6) B Dy v Bt Rl L L e

12'(1—-'V12-‘V21) 6
The torsional stiffness D3 of a multilayered plate is denoted by Kgg.

In the subsequent part of the work the method of optimal selection of layers
thickness regarding local stability, and more advisable arrangement of layers
regarding strength, is presented in the case of long symmetrically laminated
plate subjected to compression in the direction of longer edges.

3. SOLUTION OF THE PROBLEM FOR SYMMETRICALLY LAMINATED PLATE

The bending stiffness coefficients K44, K55 for multilayered plates of sym-
metric arrangement of orthotropic layers are given by formulae (2.1). In order
to obtain - for considered plates - the largest value of local buckling stress (2.5),
the parameters Zj of a plate (0 < Zx < 0,5) should be selected in such a way
that the value v/ K44 - K55 reaches the maximum. The detailed analysis of multi-
layered plates made of the same orthotropic material shows that the maximum
value of \/Ky4 - K55 is reached when plates are “isotropic” in bending, it means
when

(3.1) Ky = Kss.
From the above condition the following relation is obtained:
o0t
(B — E
(3.2) 1k — o) (zﬁ’; ~73) =0,

1 —viok - Vork

,_n

where: Zp = “z‘ﬂéﬂ =],
It can be noticed that for plates of large number of layers, the analysis be-
comes impossible (there is only one equation). Thus, further considerations are

limited to plates of three, five, and seven layers.

l\Jl'—‘
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3.1. Three-layered plate

In this case the analysis is simple because the layers thickness is determined
z
by one parameter z; = ?1, only. The plate is symmetrically laminated, so we
have: By = Ey3, Eg1 = Ep3, Va11 = Va13, V121 = V123, G1 = G3.
Let us assume that the middle layer (k=2) and the exterior layers (k=1 and
k=3) are made of different materials of orthotropy ratios:

_Ean Eqp

33 a:a___, ) = —,
(3.3) 1 =98 S, v

The parameters 3 and ~, shortening the notation, are introduced

Ey 1—vi21 - von1
3.4 o DL S L
o By’ 18 Vi22 - V12’

which characterise the ratios of material properties of the middle layer to those
of exterior layers. Usually, the parameter v is close to unity.
From the condition K44 = K55 we have:

=
55 fe (o ma)

If the considered plate consists of layers made of the same material (principal
axes of orthotropy of the middle layer are inclined by 90 degrees to the exterior
layer axes), the formula (3.5) takes a form:

(3.6) 4l (2- \‘75) 4.

Therefore the optimal plate, regarding its stability, consists of layers of thick-
ness:
exterior layers t; = t3 ~ 0.1¢, middle layer t; = 22; ~ 0, 8t.

The buckling stress for a 3-layered plate, found from the relation (2.5), cor-
responds to the average stress uniformly distributed throughout the plate thick-
ness, so the sectional critical force equals:

(3.7) Neg =02 - t.

The critical sectional force can be expressed by the dimensionless critical
strain €., and by equivalent elastic modulus E, of a three-layered plate, in the
direction of compression:

(3.8) Ng=E, - €q - t.
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The critical force N, is carried out by all layers at the same strain ec;.
From the condition of equilibrium of sectional forces, the following relation
is obtained:

(3.9&) 2-BEy1-eqti+Eip€qx-tg=E; €t
or
(3.9b) Fi 'Ecr'(t—2'21)+E12'Ecr'2-Z1 = B, By 1.

Using the expressions (3.9b) and (3.5), the formula for modulus E, of a three-
layered plate is found:

l—oy-B
1t =S ol

When a; = as = ,3 =1 and =1, then:
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2 Ell.
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one can determine the stresses in particular layer as:

En
o1=03=FEj €= F"Ucry
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(3.13)
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cr Ez cre

It follows from the above expressions, that the stresses in layers are inversely
proportional to the equivalent modulus E,, so the smallest stress corresponds to
the largest value of E,.

For a three-layered plate made of the same material (v = a2 = o, 8 = 1,
v = 1and G; = Gy = G), the equivalent modulus (3.11) increases together
with parameter a. Thus, the layers should be arranged in such a way that the
parameter a > 1, so:

E E
a=2"2>1= En>En, a=—=>1= Ej3>Ep,
En 120
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what means that in the exterior layers the elastic modulus in the direction per-
pendicular to the direction of compression should be larger than the elastic
modulus in the direction of compression. In the thick middle layer (t; = 0.8t),
the situation is opposite.

For a three-layered plate, in which the properties of layers are characterised
by the following parameters: a; = a3 = o,y = 1,8 = na, the modulus E, is
described as:

(3.14)

dE
The modulus F, reaches the extreme values when d—az = 0. From this con-
dition the quadratic equation is obtained:

(3.15) 6-n—1)-n-a®+6-n-a+1=0,
the solution of which has the form:
o 3+4/3+1

' e IE T R

1
The parameter a has a physical meaning if 0 < n < =.

The results of calculations of plate parameters, for 0.01< n <0.12, are given
in Table 1.

Table 1.

Eo by |5 B, ataby. 24

= _En a A a.ﬁ_En _En i

1 0.01 13.998 0.1399 1.9567 1.9158 0.4786
2 0.02 11.682 0.2336 2.7293 2.6125 0.4662
3 0.03 11.009 0.3303 3.6362 3.4877 0.4546
4 0.04 10.910 0.4364 4.7610 4.3333 0.4431
) 0.05 11137 0.5568 6.2015 5.4880 0.4314
6 0.06 11.617 0.6970 8.0969 6.9499 0.4192
T 0.07 12.341 0.8638 10.6605 8.8499 0.4063
8 0.0769 13.000 1.0000 13.0000 10.5244 0.3969
9 0.08 13.340 1.0672 14.2373 11.3913 0.3925
10 | 0.09 14.688 1.3219 19.4163 14.9077 0.3776
J....0.10 16.514 1.6514 27.2708 19.9808 0.3613
12 1500k 19.051 2.0956 39.9217 27.7062 0.3431
13+ | 20,12 22.738 2.7285 62.0393 40.3639 0.3224

The optimal material parameters and the optimal thickness of layers for
the considered plates are given in 8-th row of Table 1 (n = 0.0769,8=1). It
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shows that the optimal orthotropy ratio o equals 13, and the equivalent modulus
E, ~ 10.5FE;; at Ey; = 13F7;. When the layers are properly arranged, the
stresses in particular layers are contained in the intervals:

0.0248 - 02 < 07 < 0.524 - 0%,
1.021 - 0% < 09 < 1.537 - 0.

In case of a three-layered plate with an isotropic middle layer, the condition
K44 = K55 can be only fulfilled when the exterior layers are also isotropic.

3.2. Five-layered plate

In case of a 5-layered plate, two parameters Z; and Z2 have to be known in
order to determine the layers thickness. The relation connecting these parameters
can be obtained from the condition K44 = Kss. For a plate in which all layers
are made of the same orthotropic material (the second and the fourth layer are
inclined by 90 degrees to the axes of remaining layers), the relation between
parameters Z; and Z has the following form:

1
3.17 B -{/1+16-73.
( ) 1 9. \3/5 2
The optimal thickness of layers “1” and “2”, for a given value of middle layer
thickness found from the formula (3.17), are presented in Fig. 2.
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F1c. 2. Optimal thickness of layers — five-layered plate.
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F1G. 3. Relation between parameters Z1 and Z; described by Eq. (3.17) and Eq. (3.18).

When the middle layer of a 5-layered plate is isotropic, and the remaining
layers are made of the same orthotropic material, the Eq. (3.17) becomes:

et bia (3 T
(3.18) 1= 2.\3/5-\/1+8-z2.

The diagrams of functions (3.17) and (3.18) are shown in Fig. 3.

3.8. Seven-layered plate

For practical reasons (see numerical examples), the optimisation regarding
local stability is more rational for a 7-layered plate with isotropic middle layer
(the layer “4”), and with remaining layers made of the same orthotropic material.
In this case, from the condition Ky = K55 (Eq. 3.2), the following expression
connecting parameters Z1, Z2 and Z3 of the considered plate can be obtained:

(3.19) 1-16- (73 -23) - 8-z} = 0.

The parameter z3 = Z3t corresponds to a half of the middle layer thickness, thus
t4 =223-—=:2zqt.

In Fig. 4 the diagrams of z; = Z(22) are shown for three assumed values
of the parameter Z3=0.125, 0.25, and 0.375. Reading the diagrams, one should
remember that Z; > Z; and Z > 73.
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F1G. 4. Diagrams of zZ; = Z1(Z2).

8.4. Numerical examples

The calculations were conducted for plates built of 1, 3, 5 and 7 layers. The
geometrical parameters were taken as follows: [=1500 mm, =150 mm, t=2 mm
and t=3 mm. It was assumed that the layers are made of epoxy composite with
carbon fibres of the following elastic constants: £y = 129.1 GPa, E; = 9.43 GPa,
G = 5.39 GPa, vz = 0.288,v2;=0.021 (see [12]).

Let us consider first the 1- and 3-layered plates of =2 mm.

For a single-layered plate (t=2 mm) we have:

(3.20) 0 =142 MPa, N, = 28.4 %N

For “optimal” three-layered plate (=2 mm) of material properties as given
below:

Ey1 = E13 = By =943 GPa, E = Eo3 = E15 =129.1 GPa,
G1=G2=G3 =539 GPa, V311 =Vg13 =V = 0.288,
V121 = V123 = V12 = 0.021,

the following results were obtained:

Kk
0% =23.96 MPa, Ne = 47.92 "an\I
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E, =104.4 GPa, o1 =03 =2.16 MPa, o9 = 29.6 MPa.

As it can be easily noticed, the three-layered plate with optimally selected
thickness of layers, made of the same material as a single-layered one, carries
out the critical force 1.687 times greater than the single-layered plate of the
same thickness. The increase of critical force, at the assumed arrangement of
layers causes the increase of stresses in the middle layer (of 23.6% with regard
to average critical stress) and the decrease of stresses in the exterior layers of
almost 90% .

In Fig. 5 the diagram of critical force N, versus parameter Z; is presented for
the analysed three-layered plate. Points A and C correspond to the orthotropic
single-layered plate, and point B corresponds to the three-layered plate with
optimally selected thickness of layers (z; = 0.4,¢; = t3=0.2 mm, ¢t =1.6 mm).
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Fi1G. 5. Critical force N versus parameter Z; for the analysed three-layered plate.

Let us assume that in the analysed, optimal (regarding local stability), three-
layered plate the axes of orthotropy in all layers have been inclined by 90 degrees.
Then the value of critical force remains unchanged but the value of equivalent
elastic modulus E, and values of layer stresses are not the same. This results in
very unfavourable (regarding strength) increase of compressive stress in exterior
layers — up to 378% of the average critical stress.

The values of average critical stress for five-layered plates of total thickness
t=3 mm are shown in Fig. 6. The material properties of layers were taken as
follows:
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Ey) = Eqy5 = B3 = E9g = Eoq = 129.1 GPa,
Es = Eo5 = FEo3 = FE19 = E14 = 9.43 GPa,
G = Gs=0G3'= G = Gg'=5.39 GPa,
Vi21 = V123 = V125 = Va2 = Va14 = 0.021,

V211 = V213Va15 = V122 = V124 = 0.288.

to(mm)

F1G. 6. Average critical stress for 5-layered plate of different thicknesses of layers
(t1 = ts, t2 = t4).

The maximum value of critical average stress equals o& = 54.73 MPa. For
the assumed arrangement of layers the stresses in particular layers are:

01 =03 = 05 = 78.88 MPa, 09 = 04 = 5.76 MPa.

The inclination of orthotropy axes (in all layers) by 90 degrees to the previous
configuration gives the results:

01 =03 = 05 = 10.42 MPa, 03 = 04 = 142.65 MPa.

For a three-layered plate (=3 mm), designed as optimal (z; = 0.4, t; =
t3=0.3 mm, ¢, =2.4 mm), the average critical stress also equals 02 = 54.73 MPa,
but the stresses in layers are:

o1 =03 = 4.9 MPa, o9 = 66.93 MPa.
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During the analysis of five- and seven-layered plates, made of the same or-
thotropic material, it is seen that the optimal plate regarding local stability is
the three-layered one. Therefore in the analysis of 5- and 7-layered plates, the
isotropic middle layer was taken into account, which can be treated as a spacer
for exterior layers of large strength.

4. CONCLUSIONS

The described method of optimal selection, regarding local stability, of thick-
ness of orthotropic layers in long rectangular plates subjected to compression in
the direction of longer edges, can be easily applied to the symmetrically lami-
nated plates of 3 and 5 layers. As it was shown in the numerical examples, the
optimal selection of layers thickness in three-layered plate results in the signif-
icant increase of critical force at the same total thickness of a plate and at the
same weight (plates of one and three layers are made of the same material).

In plates of a greater number of layers, many solutions may exist, giving
similar effects. Therefore some quantities should be assumed earlier, leaving two
or three parameters to optimise. It should be noted that the increase of buckling
stress involves the increase of stresses in some layers. In order to keep this increase
as small as possible, the arrangement of layers should be selected in such a way
that the equivalent elastic modulus E, in the direction of compression takes
the greatest possible value. Taking into account the fact that the local buckling
of compressed plates (column walls) often occurs at low values of stresses, a
slight increase of stresses in some layers should not be dangerous for a whole
structure. The safefy of a structure needs checking its stability and strength.
In multilayered structures the condition of strength should be fulfilled by each
layer, and the condition of stability (if delamination does not occur) — by the
whole structure (plate, wall, thin-walled strut, shell, etc.).
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