ENGINEERING TRANSACTIONS e Engng. Trans. ¢ 51, 1, 63-85, 2003
Polish Academy of Sciences e Institute of Fundamental Technological Research
10.24423/engtrans.501.2003

NUMERICAL SIMULATION OF FINITE DEFORMATIONS OF
A DYNAMICALLY LOADED ELASTO-VISCOPLASTIC
CIRCULAR MEMBRANE

W. Dornowski

Institute of Fundamental Technological Research,
Polish Academy of Sciences

21 Swietokrzyska Str., 00-049 Warsaw, Poland

The present paper deals with theoretical modeling and numerical simulation of a thin cir-
cular plate subjected to impulsive loading. To this end, the convective description is applied.
The kinematical hypothesis used for theoretical description of the transient response includes
membrane deformations only. This assumption is valid in the range of large deformations. The
dynamical response of the material is described by Perzyna’s elasto-viscoplastic constitutive
relations. The theory is completed by an algorithm of the explicit finite difference method.
With respect to the conditional stability of that method, the stability criterion is given. Basing
on experimental data, an identification of material parameters is carried out. Some compar-
isons with the corresponding theoretical and experimental results are presented. Satisfactory
agreement of the results has been found. Finally, an example of the plastic strain localization
in a membrane is presented.

1. INTRODUCTION

The behavior of structures subjected to dynamic loads within the range of
large inelastic strains is important for a broad class of engineering problems.
In earlier works on the dynamical behavior of inelastic plates and membranes,
some approximate methods were developed. These were initiated by the mode
approximation solutions introduced by MARTIN and SYMONDS [19]. The ap-
proximation methods were developed for the case of small deflections, but when
considering the effects of intense loading, the non-linearities due to large deflec-
tions must be taken into account. CHON and SYMONDS [4] proposed an extension
of the original mode approximation solutions in order to account for finite de-
flections. SYMONDS and WIERZBICKI [26], GUEDES SOARES [12], PERRONE and
BHADRA [22], LIPPMAN [17], BAKER [3] and NURICK et al. [21] used the mode
approximation solutions in which the velocity field was assumed to be station-
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ary. In this way they have solved a wide class of dynamic problems for inelastic,
circular and rectangular plates and membranes.

The approximate methods presented in the mentioned papers account only
for the basic effects of a deformation process such as the response duration and
permanent transverse deflections. The simplicity and generality of these solutions
are achieved by assumptions simplifying the analysis. Usually only the transverse
motion of a membrane and the geometrical effects due to large rotations out of
the middle surface are considered. As a result, the description of deformation
corresponds to the geometrically linear theory.

However, the numerical approaches such as the finite element or finite differ-
ence methods allow for a more precise description of the deformation process.
Solutions obtained in this way, though not so general as the analytical ones,
can be based on more detailed theoretical formulations. Theory and problems
of application of numerical methods in the nonlinear analysis of structures were
presented by KLEIBER and WOZNIAK [14], ARGYRIS et al. [1] and LEECH et al.
[16]. The finite difference method for space and time presented by WiTMER [28]
should be admitted as very effective in numerical simulations of the inelastic, dy-
namical response of simple structural elements. The mixed analytical-numerical
approach presented by BAK and DORNOWSKI in [2] and [5] can be very useful in
problems of moderately large deflections of elastic-viscoplastic plates. The dy-
namical elasto-viscoplastic response of plates and shells was examined recently
by KLOSOWSKI et al. [15] and STOFFEL et al. [25]. In these papers, the material
modeling accounts for elasto-plastic behavior, isotropic and kinematical hard-
ening and strain-rate sensitivity. The numerical simulation of transient inelastic
vibrations is performed using isoparametric finite elements.

In this paper, the analytical description of the finite deformations of a circu-
lar membrane is carried out in the convective coordinate system. The notion of
the convective coordinate system is not new and it was used in several papers
concerning the mechanics of continuum [9, 11, 13, 20]. In the convective descrip-
tion, the objective Lie derivative [18] of a spatial tensor field is represented by
partial derivatives (with respect to time) of components of this tensor field 6, 8].
This property leads directly to the objective incremental formulations used in
numerical algorithms.

In Sec. 2 a formulation of the problem is presented. In the framework of mem-
brane theory used in considerations, no restrictions on the values of membrane
strains are introduced. The equations of motion are derived in the deformed con-
figuration. The relationships allowed to transform these equations to the initial
configuration. The dynamical response of the membrane material is described by
Perzyna’s elasto-viscoplastic constitutive relations. The Huber-Mises yield con-
dition and the associated viscoplastic flow rule are taken into account and the
power overstress function is assumed.
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The theory is completed by an algorithm of the explicit finite difference
method, which is given in Sec. 3. An approach to the problem of discretization
in space and time is presented. A numerical procedure of solution is developed
in detail. With respect to the conditional stability of the proposed procedure,
the stability criterion is given.

The subject of the numerical simulation present;ed in Sec. 4 is the circular
membrane, which is made of the cold-rolled steel. Basing on the experimental
data for this steel, an identification of material parameters is carried out. In the
numerical way the solution convergence is proved. Some comparisons with the
corresponding theoretical and experimental results are presented. Satisfactory
agreement of the results is found. At the end of Sec. 4, an example of the plastic
strain localization in the membrane is presented. Final comments and conclusions
are given in Sec. 5.

2. FORMULATION OF THE PROBLEM

2.1. Geometrical relations

To analyze the finite deformation of a circular membrane, we assume the con-
vective coordinate system {R, ®, Z}. At the initial time instant of motion, this
coordinate system is cylindrical. Convective coordinates R and & are measured
at the actual middle surface. The Z direction is assumed to be normal to the
middle surface during the deformation.

The theoretical foundations on which the description of deformation in this
note rests are as follows [6, 29]:

e The strain states of all material surfaces parallel to the middle surface are
assumed to be identical (homogenous strain state).

e One of principal directions of the strain at every point of the membrane
remains orthogonal to the middle surface during the deformation.

These assumptions imply that only membrane deformations can develop, while
the bending and shear effects are neglected. It should be stressed that the above
foundations do not impose any limitations on the magnitude of strains induced
in the membrane. On the contrary, they have much wider use in the framework of
the finite deformation theory. In the thin plate subjected to large deformations,
the membrane states dominate while the bending states have a meaning only at
the beginning of the deformation process.

Thus the deformation of the membrane can be defined by the first and second
metric tensors of the middle surface. In the technically important problem of the
axisymmetric deformation, these tensors can be written in the following matrix
form:
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where r and z denote the components of the position vector of the midsurface
in the initial configuration. Comma denotes partial differentiation with respect
to the spatial, convective coordinates. The metric tensors for the undeformed,
initially flat membrane are given by

00
rotic e :
00

The strain state in the thin membrane can be described by the Almansi tensor
as follows:

g

2.2 G =
(2:2) g

(7‘,2 +Z,2 _1)/2 0
(23) e=%(g—G)= o }

0 (r? — R?)/2

The radial and circumferential strains are respectively determined by the non-
zero components of the tensor (2.3).

2.2. Equations of motion

The tensor of membrane forces is

0
(2.4) n=h[ 0 o‘”]’

where h denotes the thickness of the deformed membrane, oF and o?? de-
note the radial and circumferential components of the Cauchy stress tensor, re-
spectively. Motion of the circular membrane exposed to the transverse pressure
p(R,t) is described by the following equations:

(2.5) pal = nRR g +(29Fp + 18)nFR + 45,0 ??
pra® = brpnfR + bgen?? +p .

Here, except the quantities prescribed before, we have components of the ac-
celeration vector denoted by af and a%, \ = h/H denotes the actual, initial
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thickness ratio, 4 = ph is the mass density per unit area of the deformed middle
surface. Christoffel’s symbols are given by the relations

(2 6) 7R _ ""RT,RR +2,R %,RR 'YR 5 TR ¢ _ TR
5 R ) QP =" ’ .
r,% +z,?{ r,% +z,fQ r

The equations of motion (2.5) are prescribed in the actual configuration metrics.
They can be transformed to the initial configuration as follows

#=rpal —a?z,p [(rh +2,%)?,
(2.7)

Z—Z’Ra +/\a' "‘)R/( ’R+21R)1/2

Thus # and Z denote the radial and normal components of the acceleration
vector with respect to the initial membrane configuration. Dot denotes partial
differentiation with respect to the time coordinate.

2.8. Constitutive relations

The constitutive relations create the remaining relations describing the con-
sidered problem. The rate-type, elasto-viscoplastic constitutive relations formu-
lated by Perzyna in [23] are used. The considerations are limited to the isotropic
materials without plastic hardening. Because the problems of failure are not
considered, the nucleation and microcrack growth are neglected.

The formulation of the material law starts with the assumption that the
strain rates can be additively decomposed into elastic and plastic parts,

(2.8) €RR =€Rp +ERp,  €os = €55+ €5y

For the isotropic, linear elastic behavior and for the plane stress conditions, the
elastic strain rates can be derived from the relations

. .
08 = g [hr (6™F) + wéGa9 ™9 "],
(2.9)
: B
0% = 75 [€30(9%%)" + véRrg™g®?].
where gf'F and ¢g%? denote the contravariant components of the first metric

tensor of the deformed middle surface, E denotes Young’s modulus and v is
Poisson’s ratio.
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The viscoplastic flow process starts when the stress state attains the initial
yield surface described by the equation

(2.10) p=flop—1=0

where oo denotes the uniaxial yield stress, and the Huber-Mises plastic potential
function is

(2.11) f=1(c"™grr)? + (%%944)* — o®R0??grpgss) /2.

The normality rule for plastic flow, which describes inelastic material properties,
is defined by

(2.12) érr = A[207%(9rR)* — 0*®grRY0s),
. €%

&= A[20M(g¢¢)2 - URRQRRQM]-

The scalar multiplier A is determined by the expression

(2.13) o 7_37—“- <<p"> .

where constant vy denotes the viscosity parameter and @° is the assumed over-
stress function, such that

TR 'Y
219 <<P>_{<p5 for ¢ >0.

The function &, which controls the plastic flow process [23], is assumed in the
form

(2.15) ¢=(VR/VE-1)

where

(216)  Ir = [(érrg™")? + (E009®?)? + 4 nh a9 Rg?? + 2] /2

is the second invariant of the entire deformation rate. In Eq. (2.16) the assump-
tion of plastic incompressibility is included, however, the insignificant influence
of the component €5, = N2[é}, R + €5,9%% — v(6*Rgrp + 6%%g44)/E] has
been neglected. For example, it is shown in Fig. 5 how the component €, in-
fluences the evolution of the midpoint deflection. The second invariant of the
plastic deformation rate can be written as

(2.17) I} = éhp, (ERpg™ g™ + €4p9™"g%?) + (é%dsgw)z'
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By I5 we have denoted such a value of the invariant (2.16) for which the rate
effects are small (statical case). The control function (2.15) has the following
features:

(2.18) £0)=0 and £()=0 for L<If.

The change of the plastic yield surface in the stress space is determined by
the dynamical yield condition

1/6
(2.19) 6 =f—oap 1+<@) =0.

It is noteworthy that the constitutive relations considered above take into ac-
count changes of the membrane geometry due to the whole deformation. If we
assume in all the constitutive relations that
(2.20) grr = Gag,,, goe =Cady g iaG, ¢7%=c%,
we will obtain the constitutive relations that are mainly used in the problems
of infinitesimal elasto-viscoplastic strains. Such an assumption is equivalent to
neglecting the geometrical non-linearities.

Making use of the property of plastic incompressibility, we can calculate the
membrane actual thickness as follows:

(2.21) h = HR[(2e} + 1)(2¢54 + R2)] /.

2.4. Initial-boundary conditions

To formulate completely the problem of inelastic membrane dynamics posed
in this way, we have to prescribe suitable boundary and initial conditions. For
the considered membrane, the boundary conditions express the fact that all
displacements vanish at the membrane boundary. The form of initial conditions
depends on the type of the assumed external loading. For the initial velocity
impulse Vj, which is assumed in our numerical example, the equations of motion
are homogeneous (p = 0), and the initial conditions are given by

(222) r(R,0)=R, z(R,00=0, #R,0)=0, 2(R,0)="Vp.

These conditions concern the membrane assumed to be initially flat.
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3. METHOD OF SOLUTION

3.1. Discretization in space and time

For solving that initial-boundary value problem, the explicit difference method
is used including both the time and membrane discretizations. The whole system
of equations containing the geometrical relations, equations of motion, constitu-
tive relations and the evolution equation for the membrane thickness has been
analyzed numerically.

Using the axial symmetry of the problem, we begin by subdividing the mem-
brane region into N ring segments of identical widths AR (Fig. 1).

axis of symmetry

VZ

Fi1G. 1. Subdivision of the membrane region into N ring segments.

As a result of this subdivision, we obtain the collection of nodal circles (7).
Furthermore, we introduce the collection of indirect circles (k) at the same dis-
tance from the nodal circles. It is very important to notice that in the preferred
convective description, the discretization parameter AR has a constant value
during the whole motion, while the material line element, which has the initial
length AS = AR, is subjected to deformation. The first metric tensor (2.1); of
the deformed membrane is a measure of this deformation. Next, we replace time
by the discrete set of time instants t",n = 1,2, 3, ..., assuming the constant time
step At =" — "1,

3.2. Numerical procedure of solution

In order to start the cyclic procedure it is assumed that at the actual time
instant ", the membrane configuration is given by the position vector of nodal
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circles (7). To determine the strain state (2.3), the knowledge of gradients r,g
and r,z is required. These gradients are calculated for the indirect nodal circles
(k) by using the following finite difference formulas:

n
rnr| =} —7)/AR,

k

(3.1) 2
zr| = (2 — zM)/AR.

k

The strain increments between time instants t*~! and t" are also calculated for
the indirect nodal circles (k), according to these differences

n,n—1 n n—1
Aegr =eRrr| —€rr|
k k k
(32) n,n—1 n n—1
Aega =€9p| — €oo
k k k

From the strain increments, the stress increments, are determined by using suit-
able constitutive relations, and they are added to the already existing stresses
as follows:

n n—1 n,n—1
O.RR L O.RR & AGRR ;
k k k
(3'3) n—1 n,n—1
0.4545 =2 0.45«15 i A0.¢¢
k k k

n,n—1 n,n—1

The stress increments AURR.k and Ao”\k are calculated from the
incremental form of (2.9) where increments of total strains (3.2) are treated
as elastic. The correctness of such a procedure is assured if go|Z < 0. If this
inequality is satisfied, it means that the elastic strain process is realized at the
considered ring segment. It may be the loading or unloading process proceeding
in the purely or secondarily elastic region. In the case when ‘PIZ > 0, the stresses
calculated according to Eq. (3.3) should be treated as so-called trial stresses
denoted by 7% and 5%¢.

By applying the additive structure of that incremental constitutive relations
we obtain the relationships between stresses suitable for the elasto-plastic state
and the trial stresses,
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This system of algebraic equations will be appointed with respect to the scalar
multiplier if we will add to it the dynamical yield condition

(3.5) (M) =

With respect to the non-linearity of this condition, the scalar multiplier 4 has to
be determined by one of the iterative methods, e.g. Newton’s method for which
the following iterative procedure holds:

n-1
96(Ae) 2
(3.6) A(r+l>=/1<r>—[m§—:;~'i] OF(d)r T=0,12,..

This procedure starts at the initial value A(p) = 0 and it stops when the following
condition is satisfied

(3.7) |4¢r41) — Amy| <&,

where ¢ denotes a preset convergence tolerance of A. Once the iterative proce-

dure is finished, we obtain the stresses as well as the plastic and elastlc strain
increments at the indirect node circles (k).
Plastic strains

n n—1 n,n—1 P n ? n—1 n,n—1
(38) e%R,k = €hp ; + Aehp ad Blliodt8g T Soely +Aey bt
cause a change of the membrane thickness
~1/2

(3.9) h[. = HE[(2ehg| +1)26%,| + RY)]
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Knowing the stress state as well as the actual membrane thickness, we can
calculate the membrane forces according to (2.4).

Components of the acceleration field connected with the actual configuration
are calculated for the set of nodal circles (¢) according to the equations of motion
(2.5). Spatial derivatives included in these equations are replaced by the following
difference quotients:

7 s e

nfE p (nRR

" _nRR" VAR Kogn g% s bamn
n )/ yi thhR _‘(r1+1 Tz-—l)/ /a

In
i k k-1 i

n n
(3.10) ZaR\ = (2i41 — #-1)/AR/2, 7,RR ‘ = (rfy = 2r] +1}41)/AR?,
(A

i
n
nr | = (o = 220 + ) /AR,
Using the transforming formulas (2.7) we can calculate the acceleration field
components 7;' and Z7 in the initial configuration. To determine the membrane

configuration at the next time instant of motion, the centered difference quotients
is used as follows

(3.11) ret = AP 4+ 2rf — P, 2P = AR 4 257 — P

An advantage of the proposed method of solution is the recursive character
of calculations; therefore, there is no problem of time-consuming solution of
the set of nonlinear algebraic equations at every time step. This problem has
to be solved in the case of implicit formulations. Instead, here the conditional
stability is the basic difficulty. The time step assuring stability should be smaller
than certain critical time step At.., which depends on properties of the whole
discretized system. The harmonic analysis of Eqgs. (3.11) leads to a conclusion
that to assure the absolute stability, it has to be

(3.12) At < Ater = 2/w,

where w denotes the highest frequency of the natural vibration of a discretized
structure. In the considered, generally nonlinear problem, this frequency depends
on deformation. Thus, the critical value (3.12) is changing during the deformation
process, but it is possible to estimate the constant value of At by analyzing
the suitable linear problem.

To start the calculations, a special starting procedure must be used. For the
homogeneous transverse initial velocity V we obtain

(3.13) zi = WhAt.

This may be interpreted as the difference form of initial conditions for this case
of loading.
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4. NUMERICAL EXAMPLE

4.1. Identification of material parameters

The subject of this numerical simulation is the circular membrane of dimen-
sions:

A =50 mm - radius,

H = 1.6 mm - thickness.

The membrane is made from the cold-rolled mild steel. Some thin steel plates
of such dimensions were investigated theoretically and experimentally in [27].
The Metabel sheet explosive used was arranged using a two ring configuration
interconnected by a cross leader, and was placed on a polystyrene pad in order to
provide a uniform impulse and prevent spallation of the specimen. It is reported
that as the impulse was increased, three distinctly different damage modes were
noted:

mode I : large inelastic deformation,
mode II : tearing (tensile failure) in outer fibres, at or over the support,
mode III: transverse shear failure at the support.

Some comparisons presented below with the corresponding theoretical and
experimental results relate to the first damage mode (large inelastic deforma-
tion). The plates tested in [27] were cut from two cold-rolled mild steel sheets
and were clamped to the pendulum in such a way as to allow the impulsive load
to be distributed over a circular area having a radius of 50 mm. From these
sheets, the two groups of specimens were also prepared, and next they were sub-
jected to tensile tests. Three different strain rates were used. The values of the
upper yield stress o, associated with applied strain rates are listed in Table 1.

Table 1. Experimental data of mild steel tensile tests.

sheet I, o9 = 264MPa sheet II, og = 277MPa
é[s™!] ou[MPa] é[s™] ou[MPa]
3.33-.10~4 266 3.33.1074 284
1.3310-° 288 1.33-1073 320
6.67-10~° | 300 6.67-10~° | 350

The data listed in Table 1, at least strongly limited, are used in the identifica-
tion procedure of the assumed constitutive model. The dynamic yield condition
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(2.19) is assumed to be a basis for this identification. For the uniaxial case it has
the form

1/6

6 0% 8

(4.1) oa=n"200 {1+ 2% (f._l) :
Yo \Es

where 7 denotes the specimen extension, i.e. the initial-actual gauge length ratio.
The upper yield stress is already attained at the extension n = 1.002; thus the
influence of can be neglected in Eq. (4.1). In such a case the Cauchy stress can
be identified with the nominal stress, while the deformation rate corresponds to
the engineering strain rate. Both these measures are used for representing the
results of the tensile tests.

To identify the material parameters v, 3 and é the best curve fitting of the

upper yield stress-strain rate relation is carried out (see Fig. 2). The obtained
results are listed in Table 2.

400

ok e e BT

E ________ -
=3
8 |
; W =
) K tension test, sheet |
® tension test, sheet Il
curve fitting, sheet |
------------ curve fitting, sheet Il
240 T T T T
0 0.004 0.008 0.012 0.016 0.02

Strainrate[1/5]

F1G. 2. Variation of the upper yield stress with strain rate for the mild steel specimen.

4.2. Stability and convergence

As it has been described, the time step assuring the stability should be smaller
than certain critical time step At.., which depends on deformation. To estimate
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Table 2. Material parameters for the mild steel.

W. DORNOWSKI

parameters sheet I sheet 11
0o 264 MPa 277 MPa
és 1079 1 107% g1
Yo 12" 128"

) 5.0 4.0

I} 0.51 0.05

the constant, protected value of At the suitable linear problem is analyzed and
the following value is obtained

(4.2) hit o AR\/p(l—;fl.

In all the numerical calculations, for an additional safety, it is assumed that
Ok =:0.708..

Carrying on some calculations for different number of ring segments N (dis-
cretization parameter) we can conclude on the solution convergence rate. Fig. 3
shows numerical results for the midpoint deflection-thickness ratio versus time,
which are obtained for six different discretization parameters. The membrane
is subjected to a total impulse I = prA2HV, = 30Ns, where V; is an impulse
transverse velocity distributed uniformly over the entire surface. It can be seen
that the differences between the following maximal deflections strongly decrease
as the number N is increased. The midpoint deflection decreases after its peak.
This is due to the fact that in the theoretical model of a membrane the bending
stiffness is neglected. The effect of convergence is more visible in Fig. 4, where
a variation of the maximal deflection with the discretization parameter N is
separated. It is evident from Fig. 4 that the numerical solution is convergent
asymptotically. There it is also shown how the critical time step At.. depends
on the parameter V.

These results show that if the stability criterion is preserved, the numerical
solution remains convergent. It indicates that the considered initial-boundary
value problem is approximated by the scheme (3.11) and it is well posed. There-
fore, these results may be treated as a numerical proof of the Lax-Richtmyer
equivalence theorem [24]. If the stability criterion is not preserved the unre-
stricted growth of amplitudes of considered functions takes place already for
first several time increments.

In Fig. 5 the influence of the normal component é¢, of elastic strain rate on
the midpoint deflection is shown. One can be noticed that this influence on the
maximal midpoint deflection is very slight and can be neglected in the considered
case. Some differences are visible in the elastic unloading range.
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FiG. 4. Variation of the maximal deflection with the discretization parameter N as an

illustration of the solution convergence.
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F1c. 5. Influence of the component é¢, on the midpoint deflection.

4.8. Numerical results versus experimental data

In the experiments reported in [27] the final midpoint deflection and a shape
of the plastic deformed plate have been measured. The total impulse I was
changed in the range 4.76Ns < I < 52.05Ns. For impulses greater than 30 Ns,
the partial or complete plate damage was observed. With respect to the mode-I
analysis, the comparisons may be made with the corresponding numerical and
experimental results in the range 5.0Ns < I < 30.0Ns. Figure 6 shows numerical
results for the midpoint deflection versus time. The material constants for the
sheet I are used (Table 2) and the discretization parameter N = 150 is applied.
The disregard of the bending stiffness implies the visible monotonic decrease of
the midpoint deflection during unloading. There may be a certain difficulty in
estimation of the permanent deflections. Finally, the average value of the second
and third deflection extreme is used as a correct estimation of the permanent
deflection. The results of such a procedure and the experimental results taken
from [27] are shown in Fig. 7, where the solid line marks the solution obtained for
the sheet-I material parameters while the dashed line marks that obtained for the
sheet-IT material parameters. It is evident that the agreement of both solutions
with the experimental results is quite correct for deflections greater than the
tenfold thickness of the plate. For deflections less than the tenfold thickness of
the plate, all experimental points lie below these theoretical lines. It means that
in the deflection range to the tenfold thickness the bending effects, which have
been omitted in the theoretical formulation, play an important role.
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Fi1G. 6. Midpoint deflection-thickness ratio versus time.
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The predicted membrane deflection shapes for I = 24.56Ns are shown in
Fig. 8, where comparison is made for two different sets of material parameters.
For both cases, it can be seen that the predicted shape does not correspond very
well to the experimental shape. It appears that this visible disagreement between
the theoretical shapes and the shape measured experimentally, results directly
from the membrane formulation in which the bending forces are neglected. The
analysis of a deformation process for plates loaded impulsively presented in [7]
shows that the initial phase of motion is dominated by the strong bending effects.
At last these effects have to influence the final shape of the plate. However, such
a deformed shape reminding the cone motivates the approximate membrane
solution in which the linear shape function is used, see Duffey [10].

The dynamic, elasto-viscoplastic response of the membrane can be character-
ized also by the history of the membrane force. Such a history for the membrane
force-yield force ratio at the midpoint is shown in Fig. 9. The value of the first
amplitude of the membrane force exceeding the corresponding value Ny = ogH
gives evidence on the hardening degree due to the viscoplastic effects. After a long
period (more or less 100 ps) of the fixed viscoplastic flow we can observe a fast
unloading of the central cross-section, and next the irregular, elasto-viscoplastic
vibrations with the decreasing amplitude.
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F1c. 8. Comparison between experimental and predicted membrane deflection shapes.
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The permanent distribution of the actual-initial thickness ratio along the
radial cross-section of the same membrane is shown in Fig. 10. There is the
largest decrease (about 35 % of the initial value) of the thickness in the area
around the membrane center.
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06 . : . . :
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Distribution of the actual-initial thickness ratio along the radial cross-section.
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4.4. A membrane loaded by pressure pulse

At the end of the discussion of the numerical results, we present an exam-
ple of the membrane loaded by an internal pressure, which remains normal to
the deforming surface. The material constants are assumed for the sheet I and
N = 250. Figure 11 shows the trajectories of the membrane particles in a time
interval of 350 us. It is interesting to observe that in-plane displacements are of
the same order as the transverse displacements. Therefore, in problems of this
type, the in-plane displacements should not be neglected. Such a simplification
is customarily made in theoretical analysis of the dynamic plastic response of
plates and membranes.

e effect of localization (blow out)

Kproﬁle at time of 350 s

p =550 MPa

Normd drection [mm]

I T Y

20 30 40 50
Radial drection [mm]

Fic. 11. Trajectories of the membrane particles.

It can also be seen that the proposed theory makes possible the investigation
of plastic strain localization in membranes. In the considered case this very
interesting phenomenon occurs in the vicinity of the midpoint (Fig. 11). The
strain localization phenomenon is very important for problems in which the
fracture of structural elements is considered, because it directly precedes the
fracture of an element. The strain localization in a membrane will be investigated
more exactly in other publication. The results presented here should be treated
as introductory.
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5. CONCLUSIONS

In the present paper the finite deformations of the elasto-viscoplastic circu-
lar membrane under dynamic loading was studied numerically. In the theoretical
formulation the convective approach was applied, therefore the objectivity with
respect to the entire motion was preserved. Calculations were carried out by
means of the explicit finite difference method. With respect to the conditional
stability of this method, the stability criterion was given. In the convective ap-
proach to the finite difference discretization it is important and very useful that
the space discretization parameter should remain constant during the whole de-
formation. Therefore, there is no necessity of updating this parameter during
calculations as in the classical Eulerian approach. In the numerical way the Lax-
Richtmyer equivalence theorem was proved.

Parameter identifications by means of the results of uniaxial tension tests
were performed for the Perzyna viscoplastic constitutive law. Based on these
identifications, a good correlation of the predicted and experimental permanent
deflections was achieved over the range of the midpoint deflection-thickness ra-
tio up to 20. The impulse transverse velocity distributed uniformly over the
entire surface was considered. It was found that certain disagreement between
the membrane shape determined numerically and that measured experimentally
results directly from the membrane formulation in which the bending effects are
neglected. In the considerations, the thickness change during the deformation
was taken into account. It was also shown that the proposed theory enables the
investigation of plastic localization in thin plates.
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