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This paper proposes a new asymptotic approach to search for the periodic solutions of
a kind of nonlinear oscillations. In this method the iteration technique is coupled with the
traditional perturbation techniques, yielding a powerful mathematical tool for solving strongly
nonlinear equations. Some examples are given to illustrate its effectiveness, convenience and
accuracy. Generally, the first iteration leads to a highly accurate approximate solution which
is uniformly valid for the whole solution domain. The new asymptotic approach is named the
iteration-perturbation method.

1. INTRODUCTION

The past three decades have witnessed an explosive growth of numerical sim-
ulation for nonlinear problems by finite element methods and meshfree particle
methods [1]. Notwithstanding this fierce competition, approximate analytical
methods are still continued to develop, catching much more attention of both
the scientists and engineers. Many researchers feel that the introduction of some
mathematical tools (such as variational theory, homotopy technique, numerical
technique) in classic perturbation methods will certainly provide a more advan-
tageous method in the future. The recent developments of the homotopy pertur-
bation method [2], variational iteration method [3], and linearized perturbation
method [4] are some excellent examples.

In the present paper, we will apply the basic idea of iteration technique,
which is widely applied in numerical simulation, to the perturbation method,
and call the new asymptotic approach the iteration-perturbation method [5].
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2. OUTLINE OF THE ITERATION-PERTURBATION METHOD
In this paper, we consider the following nonlinear oscillations with odd non-
linearity:
d*u
(2.1) —(—i-t?+eu"=0,n=---,—3,-—1,3,5,7,---,

with initial conditions u(0) = A and u/(0) = 0. We rewrite Eq. (2.1) in the
following form:

(2.2); % +eu?™u =0, (mis an integer),
or

d?
(2.2)9 th_g = —eut™y,

[acceleration — restoring force]

so Eq. (2.2); describes an oscillation: when the displacement u is positive, the
acceleration u” is negative; and conversely, when u is negative, the acceleration
is positive. This just resembles a simple pendulum, showing the opposite signs
of the displacement u and acceleration u” throughout the motion. So Eq. (2.1)
has a periodic solution.

It is obvious that the traditional perturbation methods can not be applied
to this problem, since the unperturbed equation becomes

&
dt?

which can not lead to a periodic solution.
We approximate Eq. (2.1) by [5]

(2.3) =0,

d?
(2.4) E;‘ +eully =0,

where ug is an initial approximate solution, and we often start with ug = A cos wt,
where w is the angular frequency of oscillation.

2.1. Ezample 1

Consider the motion of a ball-bearing oscillating in a glass tube which is
bent into a curve such that the restoring force depends upon the cube of the
displacement u (Fig. 1).
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Fic. 1. A ball-bearing oscillating in a smooth tube bent to produce a restoring force
proportional to the cube of displacement

The governing equation, ignoring frictional losses, is [6, 7]
2

d“u 3
(2.5) _(_i—t? +eu” = 0,

In our study, the parameter ¢ is not necessarily small, i.e. it satisfies the
inequlity 0 < € < +00. Eq. (2.5) can be approximated by

d2
(2.6); Eg + eA%ucos? wt =0,
or
o s vk ke Ll
(2.6)2 pry + §6A U+ §6A u cos 2wt = 0,

which is of the Mathieu type.
We can apply the perturbation techniques to find the approximate solution
of Eq. (2.6)2. In Ref. [5], we assume that

(27) U=U0+EU1+€2’U2+---,

1
(2.8) §sA2 =W+ EC1 .4 0 Fpit -

When we are studying the system where the parameter ¢ might tend to
infinite, i.e. € — oo, we feel that it would be more reasonable not to use the
parameter € as an expansion parameter. To this end, we introduce an artificial
parameter [4] in (2.6)2 , and we obtain

d*u

1 1
(2.9) P o §EA2u 4 §p£A2u o2t =0, p=1.
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It is obvious that when p = 0, Eq. (2.9) becomes a linear equation; when
p = 1, it becomes the nonlinear equation, Eq. (2.6); . The embedding pa-
rameter p monotonically increases from zero to unity as the initial solution
u(t) = Acoswgt L(v) — L(ug) = 0, where wy = 1/eA2/2, continuously de-
formed to the exact solution of Eq. (2.6)2. Due to the fact that 0 < p < 1, it is
more reasonable to use the embedding parameter as an expansion parameter, so
we can assume that [8]

(2.10) u=uo+pu1+p2uz+--- .

1
55A2=w2+pc1+p2C2+--- .

Substituting (2.10) and (2.11) into (2.6)2, and equating the coefficients of the
same powers of p, we have the following two differential equations for u;:

(2.11)

1
(2.12) o +w?uy + crug + §A2 cos 2wtug =0, u1(0) =0, wuj(0)=0,

where ug = A coswt. Substituting ug into Eq.(2.12), the differential equation for
u; becomes

(2.13) uf + w?u; + Aep + 25A2) coswt + 211-€A3 cos 3wt = 0.

The requirement of no secular term requires that

1
(2.14) ¢St —ZeAz.

Solving Eq. (2.13), subject to the initial conditions u;(0) = 0 and u/(0) =0,
yields the result:

(2.15) Uy £A3(cos 3wt — cos wt).

= 3202
We, therefore, obtain its first-order approximate solution by setting p=1,

which reads

3

(2.16)  u(t) = uo(t) + u1(t) = Acoswt + %(cos 3wt — coswt),

where the angular frequency is determined from the relations (2.11) and (2.14);
we obtain

(2.17) w= —‘2[-?151/2A.
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Its period, therefore, can be written as

_in

(2.18) T 35‘1/2A“1 = 7255712 AL,

Its exact value can be readily obtained [6]:
(2.19) Toy = 7.4164c /2471,

The maximal relative error is less than 2.2% for all € > 0 !

We can obtain the same results if we begin with the assumptions of Egs. (2.7)
and (2.8). As pointed out in Ref. [5], we always stop at the first-order approxima-
tion, since high-order approximations of Eq. (2.6)2 will not lead to high accurate
solutions for the original one. For example, the second-order period of Eq. (2.6)
is T = 7.6867¢~1/2A~1, which is not more accurate than the first-order one. To
obtain approximate solutions with higher accuracy, we replace initial approxi-
mate solution by the following one

(2.20) ug = Acoswt + %(cos 3wt — coswt).

So the original equation (2.1) can be approximated by the linear equation

(2.21) @ +e|Acoswt + ﬁ(cos 3wt — cos wt) 2u &)
‘ dt? 24 R

In the same manner, we can identify the angular frequency w = 0.8475¢1/2 4,
and we obtain the approximate period T' = 7.413¢~1/24~1. The relative error is
about 0.05% !

2.2 Example 2

A problem of some importance in plasma physics concerns an electron beam
injected into a plasma tube where the magnetic field is cylindrical and increases
towards the axis in inverse proportion to the radius. The beam is injected parallel
to the axis, but the magnetic field bends the path towards the axis.

The governing equation for the path u(z) of the electrons is [6]

d2U c
(2.22) = +o=0.

We approximate the above equation by

d?u G
2.2 —_—t ———u =
(2% dt? " A2 costwt - %
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or
2
(2.23), u’ + A—cgu + 4" cos 2wt = 0.
We can also introduce an artificial parameter in Eq. (2.23),:
2
(2.24) w4+ =S+ pu” cos 2wt = 0

A2

and assume that the solution of Eq. (2.24) and the coefficient of u can be ex-
pressed as a series of the artificial parameter p. Of course, this will lead to an ideal
result [5]. In this example, we apply another heuristic approach to Eq. (2.24).
Rewrite Eq. (2.24) in the for

2
(2.25) u” + —A%u + 1" cos 2wt = 0,

and suppose that the solution and the coefficients 2¢/A4 and 1 in Eq. (2.25) can
be also expressed by a series of the artificial parameter p,which does not appear
in Eq. (2.25):

(2.26) u = ug + puy + pPug + - .
2c

(2.27) A 5 w? +pey +pler+ -,

(228) 1= pai +p2a2 + -

By a similar operation, we obtain the differential equation for u;:
(2.29) uf + w?uy + crug + ayuf cos 2wt = 0,

where ug = A coswt. Substitution of ug into Eq. (2.29) leads to

(2.30) uf + w?u; = —Acy coswt + a3 Aw? cos wt cos 2wt
2 2

A A
it )coswt+a1 oo

Jwt.
5 cos 3w

= (—Ac1 -+

The requirement of no secular term requires

a1w2

31 —
(2.31) ¢l 5
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As we mentioned above, we always stop at the first-order approximation for
Eq. (2.25), so from Egs. (2.27) and (2.28), omitting the higher-order terms, and
setting p = 1, we obtain
£oun w2 + alw2

A? 2

Therefore, we obtain the approximate value of frequency, which reads

and a) =)

4c
342

The approximate value of the period can be written as

(2.32) w =

V3rA  5.44A
(2.33) T= =2

ACTON and SQUIRE[6], using the method of weighted residuals, obtained the
following result:

(2.34) T =

CONCLUSION

In conclusion of this paper, we can write an iteration-perturbation equation
for Eq. (2.1):

d? Uk+1
dt?

where uy, is the obtained k-th approximate solution, and uk.; can be solved by
various new perturbation techniques.

(2.35) + euplugyy =0,
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