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In this paper, the linear and nonlinear Mathieu equations without a small parameter are
considered, which cannot be solved by the perturbation techniques. However, using the varia-
tional iteration method, their periodic solutions can be readily obtained with high accuracy. In
addition, some special cases have been discussed, where the perturbation solutions are mean-
ingless even when there exists a small parameter.

1. INTRODUCTION

In this paper we will use the variational iteration method [1-5] to study the
following linear Mathieu equation [6, 7]

(L1) % + (w? + g(t))u =0,

u(0) = A, 4'(0) =0,

and the nonlinear Mathieu equation with cubic nonlinearity

2

(1.2) (;—tg‘ + (w? + g(t))u + Bu® = 0,

u(0) = 4,  u'(0) =0,

where g(t) is a periodic function.

The above equations play an important role in astrophysics, radio-engineering
and automatic control, and their stability periodic solution interests not only
engineers, but also mathematicians. Various perturbation techniques can be
applied to the linear Mathieu equation with a small parameter, resulting, of
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course, in limited accuracy and applicability of the solution. In the case when
w=1,2,3,---, the perturbation methods will lose its power to find its approx-
imate solution. It is even more difficult to study the nonlinear Mathieu equa-
tion (1.2) by perturbation techniques. In this paper, the variational iteration
method proposed by the present author will be applied to the above mentioned
problems, the results reveal that even its first approximations exhibit high ac-
curacy.

2. LINEAR MATHIEU EQUATION AND ITS APPROXIMATION

The basic idea of the variational iteration method is to construct a correction
functional. For linear Mathieu equation (1.1), the correction functional can be
expressed as follows:

dun

(2.1)  ung1(t) = ua(t) +/t)\[ +w 2un (1) + g(7)in (7 )]dT,
0

where X is a general Lagrange multiplier [8], @, is considered as a restricted
variable [9], i.e. d1,=0.
Making the correction functional (2.1) stationary with respect to uy,

dun)

Suim1(t) = Sun(t) 4—51/ B +un(r) 4 9(rYin() |

t
= Sun(t) + A(7)dup(7)|,_, = X' (1)dun(7) = + / (A" + w?X)dundr =0
0

yields the following stationary conditions
M (1) + wiA(7) =0,
(2:2) ATl =0,
1= N(r)lyey = 0
The multiplier, therefore, can be determined as follows:
(2.3) A= Z—)sinw(r —t).

Substitution of (2.3) in (2.1) results in

€l

t

2
(24)  upp1(t) = un(t)+ /sinw(T — t)[d dr( 7) + Wy (7) + g(T)u, ()| dr.
0
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To compare it with the perturbation solution [6,7], we also set
(2.5) g(t) = 2¢ cos 2t.

Suppose that its initial approximation has the form:
(2.6) ug(t) = Acosat,

where a=a(¢) is an unknown function of € with a(0) = w.
Substituting (2.6) into (1.1) results in the following residual

(2.7) R(t) = A(—a? + w?) cos ot + 2e A cos 2t cos ot

The unknown « can be determined by the methods of weighted residuals,
for example, the least squares method, the Galerkin method and the collocation
method. Hereby the collocation method will be applied by setting

(2.8) R(0) = A(—a® + w?) +2¢A =0,
which leads to the result:

(2.9) a=Vw?+2 or w=+Va%-2e.

By the iteration formula (2.4), we have

(2.10) wuy(t) = Acosat
t

1
+ ;/ sinw(r — t)[A(—a? + w?) cos ar + 2¢A cos 27 cos aT|dT
0

t
= Acosat + é/sinw('r — t)[A(—a? + w?) cos ar]dr
0

t
+E—wé/ sinw(r — t)[cos(2 + a)7 + cos(2 — a)7|dT
0

= A cos at— A(cos at—cos wt)-}—u)?__—'(g;_i_a?[cos wt — cos(2 + a)t]
+#A_a)2[cos wt — cos(2 — a)t]

= Acoswt + T f2 T o) [cos wt — cos(2 + a)t]
+#A_Q)2[COS wt — cos(2 — a)t],

with a defined by (2.9).
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In Ref. [6], the following case has been systematically studied:
(2.11) wr=n?+ed +e%0+---(n=123,...).
To compare with the perturbation solution, we will also study the following

cases:
In case n=1, setting w = /1 — 2¢ and o = 1, we have

(2.12) wuy(t) = Acos(v/1 —2¢)t — 5 eA

% [cos(V1 — 2€)t — cos 3]

_ % [cos(@)t — cos t].

For small ¢, we have
(2.13) up(t) = Acost — —E—g}(cost — cos 3t),

which can be also obtained by the perturbation methods.

It should be specially pointed out that the perturbation solution (2.13) is
valid only for small £, while (2.12) is valid not only for small ¢, but also for very
large €.

In case n=2, setting w = /4 — 2¢ and a = 2, we have

(2.14) wuy(t) = Acos(vV4 — 2¢)t — 266_:112 [cos(V/4 — 2€)t — cos 4]
[cos(V4 — 2¢)t — 1].

+4—25

For small ¢, we have
A
(2.15)  wuy(t) = Acos2t — 'sl—;l(cos 2t — cos4t) + %(cos 2t — 1).

In this paper, we are interested in the approximate solution in cases of w =
1,2,3,- -, since, under such conditions, the perturbation solution is meaningless.
In case w =1 or a = /1 + 2¢, we obtain

€A

1—(2+V1+2e)
eA

+1-(2—\/ﬁ2‘5)2

(2.16) wy(t) = Acost + > [cost — cos(2 + V1 + 2¢)t]

[coswt — cos(2 — V1 + 2¢)t].
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In case w = 2 or a = /4 + 2¢, we have

(2.17) ug(t) = Acos2t + - +6A4 ) [cos 2t — cos(2 + V4 + 2e)t]
€A
2t — 2 — V4 + 2)t|.
+4_(2_ I [cos cos(2 — v £)t]

The approximate solutions (2.16) and (2.17), which are valid not only for
small €, but also for very large parameter €, can not be obtained by perturbation
techniques.

3. NONLINEAR MATHIEU EQUATION WITH CUBIC NONLINEARITY

For simplicity, in this section we discuss only the case w = 1 and g(t) defined
by (2.5). The nonlinear Mathieu equation is a coupled equation to the Duffing
equation (¢ = 0) and the linear Mathieu equation (8 = 0).

The correction functional for Eq. (1.2) can be written down as follows:

2 T
B1) tnns(®) =)+ [ A2 b une) + glr)inlr) + g o

The Lagrange multiplier can be readily identified as above, and the following
iteration formula can be obtained:

d?un (T)
dr?

t
(3.2)  ups1(t) = un(t) + /sin(T — 1) [ +un(7) + g(7)u, (1) + ﬂui] dr.
0

We also assume that its initial approximation has the form
(3.3) up(t) = Acosat,

where a=a(e) is an unknown function of ¢ with a(0) = 1.
Substituting (3.3) into (1.2) results in the following residual

(3.4) R(t) = A(—a? + 1) cos at + 2eA cos 2t cos at + SA3 cos® at
= A(=a® + 1) cos at + e A[cos(2 + a)t + cos(2 — a)t]

+ %ﬂA3(3 cos at + cos 3at).
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Applying the Galerkin method to identify the unknown q, i.e. setting

2w [
(3.5) / cosotR(t)dt =0
0

leads to

(3.6) a=4/1+ %ﬂA?

By the iteration formula (3.2), we have

t
(3.7) wuy(t) = Acosat+ %/ sinw(7 — t)R(r)dT = Acosat
0

A(l—a? + 3842

4 _ eA B
+ 21 (cosat — cost) + i—@etar [cost — cos(2 + a)t]
cA BA
Ttz 2— a)2[COSt cos(2 — a)t] + 4(1 = 902) [cost — cos 3at]

In case of 8 = 0, Eq. (1.2) becomes the linear Mathieu equation, and its
corresponding approximate solution reads

(3.8) wuy(t) = Acost+ #ﬁ_a)z[cost —cos(2 + a)t|
+ TT;A—a_V[COSt — cos(2 — a)t].

In case of € = 0, Eq. (1.2) becomes the well-known Duffing equation, and its
approximate solution is expressed as follows:

Al - a? + 3842

(3.9) wuy(t) = Acosat + o 14 (cos at — cost)
BA
+ m[cost cos 3at).

All approximate solutions (3.7), (3.8) and (3.9) for the nonlinear Mathieu
equation, the linear Mathieu equation and the Duffing equation, respectively,
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have high accuracy. For example, the exact period of the Duffing equation can
be written down as follows:

/2
pA?

4 / k= .
VI+BAZ) /1-ksine 21 +AA%)

(3.10) Ty =

The period of Eq. (3.9) can be expressed as follows:

(3.11) T =2m/[4/1+ ?—l,BAz,
while its perturbation solution reads
(3.12) T =2n(l — g—ﬂAz).

It is obvious that (3.12) is the approximation of (3.11) in case of 8 << 1.
That means that the approximate period obtained by the variational iteration
method is also valid for a small parameter 8. However, for large parameter S,
the perturbation solution (3.12) will be no longer valid, while (3.11) will be valid
even in the case f — oo:

3 2 7l'/2
lim 222 — Jim el / do
esoo T e—oo 2r V1 + g A? J \/i —ksin’z

2 v / 2 V3/4 x 1.68575 = 0.93.
V1 —-0.5sin?z n

So the approximate solutions obtained by the variational iteration method
are of very high accuracy.

4. CONVERGENCE AND FURTHER DISCUSSION

The rate of convergence of the proposed method heavily depends upon the
accuracy of the identification. If the Lagrange multiplier can be exactly identified,
then its exact solution can be obtained by only one step. For nonlinear equations
and some linear equations (such as the Mathieu equation), in order to identify
the Lagrange multiplier in such a simple way as possible, restricted variation
has to be applied; as a result, their exact solutions can be obtained by iteration.
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Hereby a very simple example will be illustrated. Consider the following linear
equation

(4.1) u” +wlu = f(2).

Its correction functional can be written as
(4.2) Un+1(t) = up(t /)\{u” + wu, (1 (1) }dr.

The Lagrange multiplier can be readily obtained, and the following iteration
formula can be obtained

(43)  unp(t) = ua(t) +

Ol R

t
/sinw t){un(7) + wun(r) — f(r)}dr.
0

If we use its complementary solution ug = C} cos wt + Cy sinwt with suitable
constants C] and C, as an initial approximation, using the iteration formula
(4.3), we get

t

/smw T —1t)f(r)dr.

0

(4.4) u1(t) = C1 coswt + Cy sinwt —

gl

It is easy to prove that (4.4) is the general solution of (4.1).

However, if we apply a restricted variation to the correction functional (4.2),
then its exact solution can be obtained only by successive iterations. Considering
a homogenous equation of (4.1), i.e. f(z)=0, we rewrite the correction functional
as follows:

(45) i1 (t) = yn(t) + / Ml (7) + Wi (r) }dr.
0

Herein 4, is considered as a restricted variation; under this condition, its
stationary conditions of the above correction functional (4.5) can be expressed
as follows:

N'(1) =0,
(46) M)l =0,
1- )‘I(T)I*r=t =0



NONLINEAR MATHIEU EQUATION ol

The Lagrange multiplier, therefore, can be easily identified
(4.7) A=T1—t,

leading to the following iteration formula:

(4.8) Ung1(t) = un(t) + / (1 = t){un(r) + w2un(7)}dr.

If, for example, the initial conditions are u(0) = 1 and «/(0) = 0, we begin
with ug(t) = u(0) = 1. Using the above iteration formula (4.8), we have the
following approximate solutions:

1
_ 2 _ 242
=14w / T t 2 12,
0
t
ua(t) =1—§w2t2+/(7 t){ w®+w o }dr
(4.9) o 1
1 =, ,242 4
=1 - gt + jw't
un(t) =1- ltu2152 + lu)“t‘1 o (=1)" 1 ny2n
2! 4! (2n)!

From the above solution procedure, we can see clearly that the approximate
solutions converge to its exact solution cos wt relatively slowly due to the approx-
imate identification of the multiplier. It should be specially pointed out that the
more accurate is the identification of the multiplier, the faster the approximations
will converge to its exact solution. If the Lagrange multiplier is approximated by

L "y 1 3
(4.10) /\=;smw(r—t)~'r—t—:—3—!w (r —1)°,

then we have the following iteration formula:

(4.11) un+1(t)=un(t)+/t{'r—t—3lw T —t) }{u” ) + w?un(7) }dr.
0

We also begin with ug(t) = 1; using the same approach, we have

t

1 1
(4.12)  uy(2) 1+/{T—t-— —w?(r - )3}w2d'r =1- §w2t2+ 1 —whtt,
0
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o) uﬂU=UNﬂ+/{r—t—?ﬁh—nﬂ{aw%ﬁ}m
/ !

_ 1 00,1 44 1 66,1 g4
—l—awt+awt—awt+awt.

So, it can be seen that the approximations obtained from (4.11) converge to
its exact solution faster than those obtained from the iteration formula (4.8).

5. APPENDIX: A PHYSICAL ILLUSTRATION OF EQ. (2.1).

Consider an algebraic equation

(A1) f(z)=0.

Suppose that its initial approximate root is z, i.e.
(A2)  f(zn) #0.

In order to impr(;ve the accuracy, we correct z, by the following expression:
(A.3) T4l = Zn + Af(zy),
where ) is a generalized Lagrange multiplier [8]. The multiplier can be identified

in view of the stationary condition with respect to z,, that is

0Tn41

(A.4) o

=0,

which leads to the results A = —1/f'(z,). Substituting the identified multiplier
into Eq. (A3), we obtain the well-known Newton iteration formula:

(A.5) f(zn)

bl = En T f’(zn).

For differential equations, Eq. (A.3) is replaced by Eq. (2.1), and the multi-
plier is determined by the functional stationary condition.

In Eq. (2.1) the concept of restricted variable is used. That means that the
variable % should be considered as a known function in the procedure of identi-
fication of the multiplier. To illustrate its basic idea, we consider the following
algebraic equation:

(A6)  z’+brx+c+2z*=0.

We consider z3 as a restricted variable, i.e.
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(A7) 2 +br+c+i®=0.

This means that Z can be considered as a known number. Solving Eq. (A7)
results in '

(A8) —b+ \/b? — 4(c + 73) .

T = D)

The value of Z can be calculated using the previous iteration value, so we
can obtain the following iteration formula:

—b+ /b? —4(c+z3
(A9) a1 = der )

In Eq. (2.1) the restricted variable is used in order to simplify the procedure
- of identification of the multiplier.
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