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PURE BENDING OF THE ORTHOTROPIC ELASTIC RECTANGLE
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In this contribution, a new method for obtaining the solution to the linear elasticity problem
is proposed. An idea of this method is based on certain special expansion of these displacement
fields in finite trigonometric series with exponential coefficients. This approach leads to an
equivalent problem which requires to derive the exact solution. The proposed method has a
mixed analytic-numerical form and has been illustrated by the solution to the boundary value
problem for a rectangular region subjected to bending by loads applied on the opposite sides
of the region. The numerical results derived have been compared with solutions obtained in
the framework of the Euler-Bernoulli beam theory.

1. INTRODUCTION

There is a number of methods for obtaining solutions to the 3D linear elas-
ticity problems which are based on different expansions of the unknown fields in
functional series. As a rule, the fundamental solutions to special problems are
used. Many examples of these procedures can be found in the recent literature,
see e.g. [1, 2).

An alternative method for solutions to 3D linear elasticity problems has been
proposed in [3, 4]. The above-mentioned method is based on the displacement
fields expanded in trigonometric series with certain special coeflicients. In this
way, some new general solutions have been obtained.
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In this paper, the plane linear elasticity theory problems for orthotropic solids
are considered. The functional coefficients in finite trigonometric series are as-
sumed in the exponential form. In this way, the general solution constitutes a
good starting point for the numerical analysis.

A similar approach is used in the known Lévy method [6]. Using that method,
we can find the solutions for plates, which are supported on two edges and free on
the other edges. In this paper we propose other constraints of displacements than
those used in the method of Lévy. The representations of displacements satisfy
exactly all the boundary conditions for bending of a plate to a cylindrical surface.
In this manner we are able to reduce the functional coefficients which appear
in expansions of displacements and we obtain the exact solution the problems
considered.

Our earlier papers [3-5] concerned the plates, which were considered as 3D
bodies. The unknown parameters in expansions of displacements were found from
the condition of minimum of the potential energy. That method did not give the
exact solutions of the boundary conditions and the equations of equilibrium.

2. CONSTRAINTS IMPOSED ON DISPLACEMENTS

We consider an elastic body, the reference configuration Q C R3 of which in
the Cartesian system of coordinates (1, 2,z3) € R?, is given by Q = (—a,a) x
(=h,h) x (=L.l) where a,l,h > 0, I > max(a, h), i.e. the origin of coordinates is
located in the body center.

Assume that the part of the body boundary: 1@ = {%a} x (=h,h) is
subjected to the boundary tractions p = p(z1,22,23). The regular functions
u = u(z,z9,z3), (ux), k = 1,2,3 satisfying the boundary conditions on the re-
maining part of the boundary 0,{2 represent the displacements, and V stands for
the space of displacements u. The elastic properties of the body are represented
by components of the elastic moduli tensor Byjmny, which satisfy the well-known
symmetry and positive — definiteness conditions.

The variational form of the equilibrium problem for the body under consid-
eration can be stated as follows:

For the known boundary tractions p find a displacement u such that

(2~1) (VV € V) /Bklmnuk,lvm,ndv = /pm'Umda'
010

In the above equations the beam is treated as the 3D body, therefore a local
form of the equations of equilibrium can be derived by means of the well-known
variational procedure. When using this approach, the simplified models can be
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obtained as well, by imposing certain constraints upon the displacements, i.e.,
restricting the displacements space to a certain proper subset of V. Hereafter we
will follow the procedure outlined in [5].

We restrict our considerations to the class of such boundary value problems,
in which the surfaces of body zo = +h and its lateral edges 3 = £l remain
unloaded, while its longitudinal edges z; = *a are subjected to the tractions
p = [£Psin(z,/h),0,0] applied antisymmetrically about the thickness (Fig. 1).

xZﬁ
p=Psin(lyx;)
; -
% 2h o=

2a

F1G. 1. Scheme of bending of a rectangular beam.

A two-dimensional vector field of displacements determines the strain tensor
field:

(22) Eaf = U(qa,B) » a)ﬂ =1,2.

The body is assumed to be made of an elastic anisotropic material, so that
the stress tensor is given by:

(2.3) Oap = Baﬂ76576 )

where B,g,s are components of the elastic moduli tensor.

In a 3D case, the stiffness matrix B is the inverse of the matrix A of elastic
moduli, determined by the Young moduli E;, shear moduli G;; and Poisson ratios
v;, 1 = 1,2,3 in the following way:

—  if i=3j

Ayii = _
I _% if it

Aijij = G (no summation).
ij
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3. FORMULATION OF THE PROBLEM

We assume that the body under consideration is orthotropic. The equations
of equilibrium o, = 0, a, = 1,2 for the unknown displacements have the
following form:

Biinui + (Brize + Bi2i2)ug,12 + Biapui 22 =0,
(3.1) |
Bagooug 22 + (Bri22 + B1212)u1,12 + Bi21ou211 = 0.

Now, by virtue of Eq. (2.2) we look for a displacement vector (uq), @ = 1,2
in the following form:

u1(zq) = szlﬂ (zp) sin(d3* gx3-p) ,

ZZ)’M zg) cos(dz- gz3-p)

where m = 1,2,...,mg, mg is a certain natural number and

(3.2)

2m —
o= g
2a

(2m — 1)
2h

The functions f74(zp) are unknown and depend exclusively on the zg coordi-
nate, and the trigonometric functions sin(-), cos(-) depend on the variable z3_g,
B =1,2 only.

Substitution of Eq. (3.2) into the equations of equilibrium (3.1) yields:

(33) Z( aﬂwaw.flﬁ_*_Daﬁwawf%) =0, opf=12, w=0,12,

w

where 8“1, is the derivative of order w of the functions fsg(-), and where we
have denoted:

CMy = Buy, Oy = —Biana(dP)?, DTy = —(Buna + Bi212)dy,
Chy = Binz, CPy=—Buu(dP)?, D, = —(Buaz + Biai2)dp
05'111 = _D.ﬂl’ D'gio = “32222(%")2’ D3, = 0132’

Cph,=—-D@,, DB = —Bina(dl)?, DBy = Bymn.

bl

(3.4)

The remaining 12 parameters Cjjp;, Dj. not mentioned in (3.4), are equal
to zero.
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4. GENERAL SOLUTION TO THE PROBLEM

In order to obtain the general solution to the problem under consideration,
we assume the functional coefficients in (3.2) to the form:

(4.1) fap(zg) = Rggexp(lgAf'zp)
where I} = 1/a, Iy = 1/h and Ry, AF' are unknown complex parameters:
(4.2) op = Sap + i Top NG =Yg +ikg .

Upon substituting Eqgs. (4.1) and (3.4) into Egs. (3.3), we obtain the system
of algebraic equations for unknown parameters R{j

Bun (WAT)?RT} — (Buzz + Biai2)d3 i N RE; — 1'31212(d’2")2 =0,
43 Bia12(l1AT) R + (Bri2z + Bi212)dR i AT R — Bogao(d5)2RY ,
Bi212(12A)2RT, — (Biia2 + Bi212)dT e AP RY, — 15’1111(d'1")2 ,
Ba2oa(1225")2R3% — (Buizz + Bi212)dT 12 AT Ry — Biz12(d7*)*Rg; = 0.

The 2mg unknown parameters R[}, RJ] appear in the first two equations
(4.3), and RT3, R7; are unknown parameters in the remaining two equations.
The two systems of equations obtained above are uniform and have nontrivial
solutions only if their determinants are equal to zero. Therefore, we obtain the
following characteristic equations for unknown parameters A7} which appear in
(4.2):

3111131_212(./\{")4 - [(B1122 + 31212) B1111B2222 - B]212](A1n)2+
' +Bi212Ba222 = 0,

(4.4) |
By Bi212(AT)* — [(Bui22 + Bi212)? — Buin1Baoe — Bl (AT)2+
+Bj212B1111 =0,
AT
where A} = ;m"‘

Thus, we have arrived at the fourth-order algebraic equations with the real
coefficients which contain only even powers of the parameter A\,. It can be shown
that there exist four real roots of Eqs. (4.4), (two positive and two negative) so
that kg’ = 0 holds in Eq. (4.2). Consequently, the parameters Ry} will be also
real and Ty = 0 in Eq. (4.2).
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Let U, v = 1,2,3,4 be the solutions of Egs. (4.4). From the definition of
Ag it follows that g™ = U7, d5" , /1, while Sy7 results from Egs. (4.3). Thus,
a general solution of (3.3) has the form:

(4.5) fm(zp) Zsmﬂ exp(lgylTyzs) -

Bearing in mind (4.3) we conclude that the first two equations (4.3) are
linearly dependent so that the coefficients S};,; are also linearly dependent; hence
Sl%l = KUIS 11y where

m _ Byl — B1212dm
Vi Bi122 + Bio12

v2 5371'2 y Where

m _ Bi212lo¥)y — Buind?
2 -— .
v Bi122 + Bi212

Similarly for S7;, (Eq. (4.3)) we can write S5, = K}

Substituting the above formulae into Egs. (3.2) we obtain the following for-
mulae for the displacement field:

Z Z Z Syip exp(lpypzp) sin(dy’ gz3-p)
(4.6)
u2(%a) = Z Z Z K551 g exp(lpppap) cos(ds gz3—p) -

By virtue of Eq. (2.3), the strains of the beam are:
€11(Za) Z Z [ v (lin) exp(lip)i 21) sin(dy' z2)
+ Sa T exp () cos(dz)]
£2(7a) Z }j [ - K253 ds exp(hpfh o) sin(df's)
K SThaladh exp(layaz) cos(df'm)]

€12(2a) = =9 ZZ [ (SP1ds" + K1 SP1 ) exp(hiy)iz1) cos(dy 22)
+ (Shizlavys — K7 Sﬂzdm ) exp(lapy322) sin(dy"z1)

—_
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Substitution of the displacements (4.6) into (3.1) yields the stress distribu-
tions in the beam given by:

on =Y [ (Bunhyl} - BussKR) exp(hyfie) sin(dfzs)
T SdP(Bun - BusnKRhu) expllave) cos(dar)]
o = ZZ [S"h (Busshiy] — Bsass Kyy) exp(liypy71) sin(dy' z2)
+ SP12d7" (Bu13s — Basss K lav)3) exp(l2yhy3z2) cos(dy'z 1)] )
o12 = —B1313 ZZ [S hds (1+ K7 ll¢u1)exP(ll¢u1$1)COS(J'"$2)
+ S (29 — KI3) exp(lapes) sin(d]'z1)]

The unknowns S“;g‘ are determined from the boundary conditions at the
opposite edges of the beam:

(47) 0'11(1.'2) = PSin(lg.'L'g) , 0’12(.’122) =0 s
r1==%a =+a

and on its lateral surfaces:

4. _ = =0.

(4.8) oa1(z1) ramih 0, o22(z1) I 0

Multiplying the first equation of (3.1) by sin(djz2) and cos(djz2) and then
integrating it over [—az, as), we arrive at the algebraic equations for the unknown
coefficients Spg":

Y SuE = Shidg (Bunhlt — BusKj) exp($]}) = Pym) »

14

where Pyy(,,) stand for the Fourier coefficients:
1 . .
Py = 7 /Psm(lgarg)sm(dgmz)dxg .

It should be noted that the orthogonality of trigonometric functions has been
also utilised.
By analogy, for the Egs. (4.8) we have:

23 (St (+ K exp(o)+ SThad (o~ KIDI sin(dT'a)| = 0,

> [l 2w - K3) exp(v)] =0,

14



62 M. DELYAVSKY, M. KRAVCHUK, W. NAGORKO, A. PODHORECKI
5 [S.'/'hdé"(Buash'ﬁﬂi — Baazs Kj)) exp(liypy z1) sin(dy ' 72)
m 14
+ STiad(Buiss — Basss Kilavh) exp(v3)]

with the following notations:

m = exp(Liy)iz1) cos(diz1)dz1

= o=

" = exp(loyplszo) cos(dyzy)dzy .

S| o=

é’\:- ;'\;_

5. ANALYSIS OF THE RESULTS

Let a rectangular beam be made of the orthotropic material determined by
the Young moduli E; = 5.7 - 10'°N/m?, Ey = 14-10"°N/m?, E; = 1.4 -
10'°N/m?, the shear modulus G2 = 0.57 - 101 N/m?, and the Poisson ratio
v12 = 0.068, and be subjected to the boundary tractions shown in Fig. 1. Using
the procedure proposed above, the boundary value problem has been solved.

Figures 2-7 show the diagrams of the displacements and stresses obtained for
mp = 25, and for the ratio of beam thickness to its length h/a = 1/20.

1.5-10
U
1.0-10°¢

0.5-10°¢
0

-0.5-10°°

-1.0-10°¢

-1.5-10°¢
-1

Txy/h

F1G. 2. Distribution of the displacement u; over the thickness of a beam.

In Fig. 2, a line segment No. 1 represents the displacement u of the right-hand
side edge of the beam, while Nos. 2 and 3 represent displacements of the middle
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section and left-hand side edge of the beam, respectively. The displacements in
longitudinal sections of the beam, i.e., for zo = const, are of the same nature.
Therefore, it can be clearly seen that the displacement distributions u; over both
the beam thickness and length are linear.

1.5-10° T

U

1.0-10°

0.5-107

0
-1.0 -0.5 0 0.5 1.0
X1 /a

FiG. 3. Change of the deflections of a beam in its longitudinal sections.

From Fig. 3 it can be seen that the distribution of beam deflection over its
length (z2 = const) has the parabolic form, reaching its maximal value at zo = 0.
The deflection uz remains unchanged over the beam thickness, i.e., its diagrams
for the upper, middle and bottom surfaces coincide.

1.5 T T T

o, /P 1ok
0.5
0

-0.5

-1.0
-1.5 1

21.0 0.5 0 0.5 1.0
x2/h

F1G. 4. Distribution of the normal stress o3 over the thickness of a beam.

As it can be seen from Fig. 4, the normal stress distribution ¢1; over the beam
thickness is linear almost everywhere except near the boundary layer, where the
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boundary conditions have to be satisfied. On the other hand, the diagram shown
in Fig. 5 shows that the stress o711 remains unchanged over almost the whole beam
bottom surface, except for the boundary layer, where it tends to the value of the
external tractions applied. Therefore, it can be concluded that the considered
beam deforms uniformly over its length.

-0.95 LI T T

ou'P 100} ]
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-1.20F -

-1.25 L - )
-1.0 -0.5 0 0.5 1.0
Xyla

FiG. 5. Change of the normal stress o11 on the lower surface of a beam.
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F1G. 6. Distribution of the normal stress 22 over the thickness of a beam.

The normal stress o995 equals zero on the upper, middle and bottom surfaces,
respectively, of the beam reaching its maximal value at the distance 2o = +h/4
from the extreme surfaces (see Fig. 6). Since the values of the stress o9y are
lower than those of the normal ones analysed above, it can be concluded that
the condition for the plane stress is satisfied.
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F1G. 7. Distribution of the tangential stresses o012 over the middle surface.

The tangential stresses 012 calculated within the framework of the plate bend-
ing theory reach their extreme values on the middle surface. From Fig. 7 it can
be seen that the values of tangential stresses equal zero, except for the boundary
layers, where they undergo a small jump of an order of 0.02.

Bearing in mind the above analysis it can be concluded that during bending
of the sufficiently long orthotropic beams, the Kirchhoff theory assumptions hold

true, i.e.:

e Distributions of stresses and displacements over the beam thickness are
linear in the planes parallel to the middle surface.

e Beam deflection remains unchanged over the beam thickness.
e The stresses normal to the middle surface and the shear stresses are neg-

ligible.
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0.5
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FiG. 8. Distribution of the normal stress over the bottom surface of a short beam.
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The results presented above can be compared with those obtained from the
analysis of normal and tangential stresses depending on the beam thickness. The
two values of thickness ratio to its length have been considered: i.e., h/a = 1/5
and h/a = 1/3. It can be shown that the values of normal stresses, in these cases,
are much smaller than the stresses for a long beam, cf. Fig. 8. On the contrary,
the values of tangential stresses change considerably on the middle surface of the
beam (see Fig. 9), being no longer equal to zero on the middle surface, as it was
for h/a =1/20.

0.03
O,(%1,0)

0.02

0.01

0

-0.01 hla=1/3

-0.02
-0.03 - L L
-1.0 -0.5 0 0.5 1.0

x1 /a

Fi1G. 9. Distribution of the tangential stress over the middle surface of a short beam.
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F1G. 10. Variation of the normal stress with the number of approximations.
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FiG. 11. Variation of the tangential stress with the number of approximations.

Figures 10 and 11 illustrate the influence of the number my, i.e. the number
of terms in expansion of the displacements fields, on the value of the normal
(Fig. 10) and tangential stresses (Fig. 11). The dashed line represents the case
when my = 10, while the solid one corresponds to my = 25. It can be clearly
seen that rising the number mg above 25 does not affect the results.
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