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The article presents some formalised definitions of volume density of the molar number
of a mixture and a mixture component. With the help of the above definitions, the molar
concentration of a mixture component has been determined. An analysis has also been made
to define partial volume density. The mass density of a substance component production has
been defined and the notion of the referential density of the stream exchange of a substance
component has been applied to analyse the movement of substance components in the mixture,
whereby defining the notion of a diffusion stream density. Next, with the help of the referential
balance equation of a substance component, an analysis has been made of the balance of
substance components leading to the definition of an equation of diffusion continuity which in
turn, under the accepted constraints, leads to the so-called second Fick’s law.

1. VOLUME DENSITY OF THE MOLE NUMBER IN THE MIXTURE

For the sake of the definition of the volume density of the mole number
in mixture p,, we will mark molecules in volume V by current index v. Each
indexed molecule marked by symbol ,,cz,” will be assigned the numerical value
of one

(1.1) cz,/ =1
foriri=1:2,.... k.

Summing up the number of molecules in volume V and relating the sum to
Avogardo’s number N4, we will obtain the number of molecules in volume V/,
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Thus the volume density of the mole number in the mixture is defined by the
following relationship:
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2. VOLUME DENSITY OF THE MOLE NUMBER OF A MIXTURE COMPONENT

The components of a mixture are of the same volume as the mixture of gases
as a whole.

We will mark the component of a gas mixture by current index “1”, where “s”
assumes the value of numeric set 7 = 1,2, ...,1, where “I” is the number defining
the quantity of mixture components. We assign the numerical value of 1 to the
molecule of a mixture component cz;, the same way we used to define the volume
density of the mole number in the mixture

(2.1) Cziy: =11
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The number of moles of a mixture component will be defined by the relationship

(2.2) ni = Z —

while the volume density of the mole number in a mixture component will be
expressed by the relationship
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3. MOLE CONCENTRATION OF A MIXTURE COMPONENT

The mole concentration of a mixture component is defined in a similar way
as the concentration of a mixture component

Pn;
3.1 L=,
(3.1) N

The sum of all volume densities of the moles of mixture components is equal to
the volume density of moles in the mixture

l
(3:2) Pn =" Pix -
=1
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Thus the sum of all mole concentrations of mixture components equals 1,
(3.3) Z o> 1.

4. PARTIAL DENSITY OF VOLUME

The volume of a multicomponent gaseous phase can be analytically described
as a function of two state parameters, e.g. pressure and temperature, and the
number of moles of mixture components,

(4.1) V =Y(p, T,n1,n2,.:s8k):»

Figure 1 shows volume V taken up by the gas mixture whose pressure is p
and temperature 7', and which consists of “k” components. Two states have been
distinguished. In the case of the first one, the mixture components are separated
in volume V (before mixing). Each component has pressure p and temperature
T and occupies partial volume V;, and it also has number n; of moles, where i =
1,2,...,k. In the case of the second state, the mixture components are mixed and
are all of the same volume V, and the gas mixture as a whole has pressure p and
temperature T', while mixture components have partial pressure p;, temperature
T and volume densities of moles — p,;. An elementary increase of volume dV'
can be obtained, under the above conditions, only when elementary quantities
of moles of mixture components dn; having temperature T' and pressure p are
added to the gas mixture.

dV1, dn, dV,-, dn;
B p T B p, T

et V0B p T
9,8, p, T
pnii B: p,-: T

Vi, nj
Bp T

FiG. 1. The volume taken up by a gas mixture.
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In compliance with relationship (4.1) describing the volume of a gas mixture,
we can express an elementary volume increase by calculating the total differential
of the volume. So we have

(4.2) dV = (G_V) dni + ...+ (a—v) dny,
oy p.Tinjz1 Onn p.T\njxk
or
E oV
(4.3) dv = Z (a?:) dn;.
fu4=ad va)nj#i'

An elementary increase of partial volume caused by the addition of an ele-
mentary number of moles of i-component to the mixture is defined, in compliance
with relationships (4.2) or (4.3), by the following relation

ant p,T,ﬂ:’#i

Taking account of relation (4.4) in Eq. (4.3), we will obtain the equation
which shows that an elementary increase in the mixture volume equals the sum
of elementary increments of partial volumes of mixture components,

k
(4.5) dv =) " dv;.
f=1

Multiplying and dividing Eq. (4.4) by the molecular mass of a mixture com-
ponent M;, we will obtain the following expression:

ov
(4.6) v = (—-—) d(niM;) .
9 (niM;) T

Because the relation between the mass of a mixture component and the number
of moles in the mixture is defined by the following relationship

(4'7) m; = Min,- y

Equation (4.3) will change its argument and will refer to the mass of a mixture
component

(4.8) dv; = ( &% ) g
om; P, Tym;2;
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Dividing the last relation by the elementary mass increase of a mixture com-
ponent, we will obtain an equation defining partial volume density marked by
symbol 195-" )

(4.9) 8% = (6_V) :
ami p!T7mj#i

When the fields of partial volume densities of mixture components are ho-
mogenous (non-gradient) or when

(4.10) grad 9™ =10,

we can separate variables in Eq. (4.9) and integrate them within limits

Vi m;
(4.11) / av; = 9 / dm; .
0 0

After integrating Eq. (4.11) and transforming it, with condition (4.10) taken
into account, we will obtain the relation describing the partial density of volume

w_Y
(4.12) ! ok

where V; stands for partial volume or volume taken up by mixture component
“4” at the pressure and temperature of the mixture, i.e. before mixing. The sum
of partial volumes of the mixture of all components is equal to the volume taken
up by the mixture

(4.13) w= 3"V,

The sum of partial products of volume density and concentration of all mixture
components is equal to the mass density of the mixture mass

k k
(4.14) 9= Zﬂ(”)c, ZV@_ 5:%.
=i i=1
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5. DENSITY OF A DIFFUSION STREAM

At the beginning, we will define the notion of production mass density of a
substance component.

production
mass density
of a substance
component

Production of a substance component mass
time, substancemass
1
g i

Due to the principle of conservation of joint substance mass, the sum of mass
densities of mass production of all substance components equals zero.

(5.2) Xn:g,- —0 [-::] :

=1

(5.1) = lim f

The sum of volume densities of mass production of all substance components
also equals zero.

5 S0 2]

Relating the quantities in question to generalised motion, i.e. referential ve-
locity %, we can write, according to [1], that the density of the exchange stream
of substance component mass through the referential surface is expressed by the
following relation:

(54) Ji_ = pi (@ — W) [ X ]

e m3s

where @; stands for component velocity (the velocity of a substance component).
The mass of a substance component travels at velocity @;, which is at the same
time the velocity of component surface 14,5.- Thus, identifying the referential

velocity with the component velocity in Eq. (5.4)

(5.5) T=1; [?] .

we will obtain the density value of the exchange stream of substance component
mass through the componential surface

(5.6) ",-l_ =6[—]i] ;
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from which it follows that componential surface A_ is a nonpervious surface for

the flow of the mass of a substance component.
However, if we compare the referential velocity to zero

(5.7) w=0.

then we will obtain, from equation (5.4), the relation describing the exchange
stream density of substance component mass through a stationary surface

- - i K
(58) ]1’6 = ]i -, piui [_.g_] p

By analogy with Eq. (5.4) describing the stream density of the mass exchange of
a substance component through a referential surface, we will define the stream
density of the mass exchange of all substance through a referential surface by
the following relation:

5:9) gy, =ea-m) 2],

AT m3s

where is 7 substantial velocity.
If we compare, in this case, the value of referential velocity to zero

(5.10) w=0

then we will obtain the relation describing the stream density of a substance
mass exchange through a stationary surface

(5.11) 'ﬁ_=3=pn[“}.

—0 m_25
The flow of substance mass through a stationary surface equals the sum of the

mass of substance components constituting it.
Thus taking (5.8) and (5.11) into account, we will obtain

Lo kg
(5.12) ;J:’ = [ﬁ] y

or

n
(5.13) Zpiﬁi =pu.

=1
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Taking relation (3.1) into account, we can define the value of substantial velocity
from the last relationship

n
(5.14) U=) o =0
=1

The motion of a substance component in relation to a substantial point is called
diffusion motion and the exchange stream density of the mass of a substance
component through a substantial surface is called the stream density of diffusion.

Thus comparing the referential velocity to the substantial velocity in Eq. (5.4)

(5.15) T=1.

we will obtain an expression describing the stream density of diffusion

- - s g k
(5.16) Ta = Il pi(T; — %) [m—gs] .

It follows from relation (5.12) and (3.3) that the sum of stream densities of
diffusion of substance components equals zero

n
(5.17) : Y W,
=1

It follows from equation (5.16) describing the density of a diffusion stream
that the stream density of the mass exchange of a substance component through
a stationary surface equals the sum of an individual stream density of the mass
exchange of a substance component taking part in the joint mass exchange and
the stream density of diffusion.

If the substance consisting of components does not move as a whole, then
the following condition is fulfilled for the stationary mixture:

(5.18) a=0

which implies the relation

(5.19) Ji = Pilhi = Jg-

In this case, for small concentration gradients of substance components c;, for
binary diffusion in a incompressible mixture,

p = const
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the vector of diffusion stream density is described by Fick’s law expressed by the
relationship

S — [ kg
(5.20) Jai = —pDgrade; [m] .
sl
where D = const [—s-} is called the diffusion coefficient.

6. EQUATION OF DIFFUSION CONTINUITY

According to [1], the referential derivative of a scalar which is, e.g. the stor-
age volume density of the mass of a substance component, is described by the
following relation:

(6.1) doi 5 &
0 S0 R
& = @) [ 2]

and then, according to [1], the referential balance equation of the mass of a
substance component can be expressed by the relation

(6.2) dpi .
EtW + pi divw = p¢; — div((w; — w)p;).

The above equation in a stationary point, i.e. when referential velocity is as
follows:

(6.3) w=0

will be reduced to the form given below

(6.4) % 1 div(pim) = pt [ “"S]

However, when the referential velocity is identified with substantial velocity
(6.5) u=1u

the referential balance equation of the mass of a substance component (6.2) will
be transformed into a substantial balance equation of the mass of a substance
component which will be written down as follows:

(6.6) de. k
prala diva = p&; — div jg [ gs] .



78 - Z. WRZESINSKI

Expanding the substantial derivative of product pc;, putting the terms on
the right-hand side of the equation in order and at the same time, taking account
of the continuity equation for the substance as a whole

we will obtain a substantial balance equation of the mass of a substance compo-
nent which is called the equation of diffusion continuity

(6.8) de;_ R
i p&i — div 74 [m—g,s] .

However, if referential velocity is equal to component velocity
(6.9) w=1u;

then the component balance equation of the mass of a substance component will
be expressed by the relation

(6.10) dpi , k
-Jzﬁ.- + p;i diva; = pé; [-rn_gs] :

The above equation indicates the missing element of the mass exchange of a
substance component through a component surface.

It follows that in this case, the mass exchange of a substance component in a
component area can only be the result of mass production, that is, of a chemical
reaction.

In the case of a free binary diffusion occurring in a stationary mixture

(6.11) =0
without any chemical reaction
(6.12) & =0,

the diffusion continuity equation (6.8) will be reduced to the following form:
e o ke
(6.13) o = divjy [m3s] ;

Taking account of Fick’s law (5.20) in the above equation, describing the vector
of a diffusion stream for the binary diffusion in an incompressible stationary
mixture

p = const,
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we will obtain the so-called Fick’s second law which is, in fact, a substantial

balance equation of the mass of a substance component under conditions (6.11)
and (6.12) still holding.

L . — [1
(6.14) o Ddivgradc; [s] :
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