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The article defines the microscopic substantial system and elementary first-order incre-
ments of elementary third-order increments of internal energy (IE), friction heat and heat
exchanged between the substantial microsystem and the exterior. A substantial balance of
internal energy (IE) has been presented for extensive quantities (EQ) with reference to a sub-
stantial microsystem which has been next transformed into a substantial balance equation of
the mass density of internal energy (IE). The substantial balance equation of the mass density
of internal energy has been integrated for a substantial system throughout the whole substan-
tial area, obtaining a substantial balance equation of internal energy for intensive quantities
related to this area. It has also been defined under what conditions this balance equation can
be used in the substantial area. In the case of the reversible change, the substantial balance
equation of internal energy (IE) for intensive quantities has been reduced to the equation
commonly called the first principle of thermodynamics for intensive quantities.

Due to the fact that the substance is where internal energy (IE) is placed
(in contrast to, e.g. the energy of a magnetic field), its basic balance will be
considered in a substantial area, each point of which moves in the same way
as the substance, i.e. at substantial velocity @ (of the local and instantaneous
mass centre). Substantial elements of geometrical volume, surface, lines will be
distinguished by an arrow symbol — @ placed below the proper letter.

In an arbitrary place of macroscopic substantial system Y)H we will differ-
entiate an elementary third-order increment of the volume &VE constituting a
microscopic substantial system presented in the figure given below.

According to Fig. 1, an elementary third-order increment of the ﬂ - vol-
ume of a substantial micro-system equals the scalar product of dj Eelementary

second-order increment vectors of the substantial surface and an elementary
first-order increment of the displacement vector of the substantial surface
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F1G. 1. Microscopic substantial system.

3y = a .
g ay, = (¢4, ).
However, the elementary first-order increment of an elementary third-order in-
crement of the substantial micro-system volume is equal to
3 — A ).
(2) d(t_i_’V) = ( d(d*A =) En‘ )

[

The elementary third-order increment of mass d®m filling an elementary third-
order increment of volume zﬁ}/_ of the substantial micro-system is, by definition
of a substantial system, constant and expressed by the following relation:

3, _ 3V —
(3) d°m=p cé_yﬁ = const
where p stands for the volume density of mass.
The mass density of heat quantity ¢ for the substantial micro-system d_3_)V_
u

is defined as the quotient of an elementary third-order heat increment d*Q ex-
changed between the micro-system and the exterior, and an elementary third-
order mass increment d3m contained in the substantial system

d*Q
4 = —.
(4) 4= o5
The mass density of heat friction ¢, for the substantial micro-system will be
expressed by the following relation:

BQ
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where d*Q ; stands for an elementary third-order friction heat increment created
in substantial micro-system d®V . The elementary first-order increments mass

—u

density of heat g and friction dq, for the substantial micro-system are expressed
respectively by the relations

_ (Y _i(dPQ)
(6) b= (d3m> T dBm
and
d°Q §(d*Q,)
@ b9, =9 (di*nf ) = Pm

Moving from substantial micro-system aﬁl)/_ to substantial macrosystem K_ we
. u u

will separate the variables in relation (6) and integrate them within the limits

(8) aq/]n d3m=5//Q/d3Q.
0 0

After the integration we will obtain the relation defining the elementary first-
order mass-density increment of heat for a substantial macro-system.

_ 9

m

(9) dq

Using the same algorithm with reference to equation (7), we will obtain a relation
defining the elementary first-degree mass-density increment of friction heat for
a substantial macro-system

_ %

I m

(10) dq

The mass-density of internal energy for a substantial micro-system is expressed

by the following relation:
3 E;
(11) & = Bm’

thus the elementary first-order mass-density increment of internal energy is de-
fined by the relation.

(12) der =d (daE’) _ d@E)

d3m d3m
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Obviously, the mass-density of volume ¥ (specific volume) and volume-density of
mass p, according to their definitions, are expressed respectively by the relations
v

- U
(13) 9, ==k,

d3m
a3V

—u

(14) p=

Because internal energy is an extensive quantity, the change of IE storage con-
tained in the substantial system, as in the case of every extensive quantity,
consists of an exchange with the exterior through the system boundaries (inflow,
outflow) and of production (creation, annihilation) within the system. Conse-
quently, the balance of internal energy is expressed, according to the principles
of non-equilibrium thermodynamics, by the relation

7+1
1 = Fo-dXo) — 6
(15) dEr_ <5Q,+Z;1(Fcx dXo) —pdV_ + 6Q
change A g d exchange
production

~ -
=~

of IE storage in the substantial system

In the above balance, the sum of products of generalised forces and elemen-
tary generalised displacements takes account of electromagnetic phenomena ig-
nored in classical thermodynamics. The balance of internal energy for substantial
micro-system @)VE is expressed in the same way as in the case of substantial sys-

tem V_, the only difference appearing in the scale of balancing areas.
-

Thus we can write as follows:

7+1
(16) d(d3E2 = §(dQ,)+ ) (Fo-d(d®X,) —pd(d®V_ ) + 6(d°Q))
! ) s 012::1 U

. —
"

change . exchange
production

of IE storage in the substantial micro—system

Considering relations (6), (7), (12) and (0.14), we can write that:

e the elementary first-order increment of the third-order IE increment of the
substantial micro-system equals

(17) d(d3Ey) = deyp d®V

3
—u
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e the elementary first-order increment of the elementary third-order increment
of friction heat exchanged between the substantial micro-system and the exterior
equals

(18) }(d’Q) =dgp &V, ;

e the elementary first-order of the elementary third-order increment of friction
heat created in the substantial micro-system equals

3 — 3
(19) 8(d°Q,) = 8q,p a’V_ .

Taking account of the above assumption that generalised forces appearing
in the effective work segment of the substantial balance of internal energy are
conjugated with their corresponding generalised displacements in such a way
that their products form elementary first-order increments of third-order effective
work increments, we can write as follows:

(20) Z (Fy - d(d®X4)).

Substituting (0.17), (0.18), (0.19) and (20) into (0.16), we obtain

v+1
31 3 T ooABY ) 3 3
(21)  dep pd®V = équ(i_)Vﬁ+Zl (F,, d(d*X ) pd(d_)Vﬁ)+ 5qp i{é) .
o=
Dividing the last equation by the elementary third-order increment of mass d*m
contained in the area of a substantial micro-system, we will obtain

v d3V pAR: X))
(@2) Eerp B =00 r +Z( 45D
d3V d3V

Taking account of the definition of mass-density of volume (relation (0.13)) in
the above equation as well as the constant character of mass d®m = const con-
tained in the elementary third-order increment of volume d*V of the substantial
micro-system, and also defining the mass generalised coordinate as the ratio of
the elementary third-order increment of generalised coordinate d®X, to the el-
ementary third-order of mass increment of d3m
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we will obtain a substantial balance equation of the mass-density of internal
energy for substantial micro-system gil{ expressed by the relation below
B u

v+1
24 d =4 Fo-dZ,) — pdd )
(24) dep_ Q,+Z( o dfe) = pdd_ + O
change production etchange

N )
v~

of IE mass density at the substantia 1 point

Multiplying the last relationship by volume density of mass and dividing by an
elementary time increment, we will obtain the balance of internal energy (IE) at
the substance point

der dg, X (= dz de dg

2 u = s Rbiad o I m 4

O dt +le(F°‘ dt) Pt T Pa
N——~ N a= - ——r

~—

change velocity ezchange velocity

production velocity

[ I
—

of IE mass density at the substantia 1 point

According to [1], the right-hand side of the above balance of internal energy (IE)
at the substantial point or otherwise, production velocity and exchange velocity
of IE volume density consists of the following parts which respectively describe:

da,

at =—(ﬁv:gl‘#adﬂ)>0

e irreversible creation of thermal energy at the expense of kinetic energy (vis-

cous dissipation)
— dI S
) = - . >0:
p(F1 dt) <£{>a —zm) <05

e reversible conversion of binding energy (electrochemical phenomena) or ther-
mal energy (thermoelectric phenomena) with electromagnetic energy

— 4z -
p| Fa- ) - (ki i >0;
dt —T =7
‘e irreversible creation of thermal energy at the expense of electromagnetic en-
ergy (Joule’s heat during electric conduction)

p(F3'Tt‘>=Gpm>0;
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o irreversible creation of thermal energy at the expense of electromagnetic en-
ergy (heat of polarising-magnetic hysteresis)

ppi;»:ﬁ = (ﬁp:gﬁﬂ)%o;

e reversible conversion of thermal energy with kinetic energy in a liquid (com-
pression, expansion)

d —_
pd—z = —divdye > 0;

e non-convective exchange stream of internal energy by way of diffusion, con-
duction and radiation
In these formulas:

ﬁv - stands for viscous stress in the liquid,
- motive vector (taking account of electric micro-field properties —

- forces of the electrochemical and thermoelectric nature),

i — vector of current density,

e

K - resistivity,
Gpm - density of polarising-magnetic conversion — it accompanies polarisa-

tion and magnetic hysteresis,

ﬁp — pressure stress,
Jne — non-convective transfer-stream density of internal energy by diffu-

sion, conduction and radiation.

We will obtain a substantial balance equation of internal energy mass-density
for substantial macro-system V_by transforming equation (0.21) into the form
presented below (0.26). -

In classical thermodynamics, which assumes quasi-static states, all fields are
treated as non-gradient within the area under consideration.

y+1
(26)  de_pd®V =6q,pd’V + 3 (Fa-d*(dXa))
a=1

—pd3(dV ) +dq-p-d3V .
—u —u
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We will integrate the above equation within the limits:

7+l

(27) de;///dSV—Jqf/// d3V+Z(///F - d3(dX o )
[ [t (a) o] [ e

The integrals of equation (0.27) are calculated in the following way; the first one
- by taking account of the definition of the volume density of mass

&2 /// // 2= [[[ #nem

The second and third integrals are obtained by assuming that the field of pressure
p in the elementary first-order volume increment of substantial area is non-
gradient (homogenous)

(29) gradp=0,

and by assuming that the field of generalised forces F, is non-gradient (homoge-
nous) on elementary first-order of displacement increment dX ,

(30) grad Fo =0.

Thus we can write that elementary thermodynamic work is defined by the fol-
lowing relation:

2 La
(31) [ [ @vy=[ [ [tav)-
0 0

but the elementary work of generalised forces on an elementary generalised dis-
placement increment is defined by the relation

(32) ///F - d3(dX s) ///dadX = (Fo-dX,).
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We will separate the coordinates in expression (23) defining generalised co-
ordinate X ,, and next we will integrate this expression

(33) / 7/ BX, = / ]n/ Tod’m.
0 0

If we assume that generalised mass coordinate Z, is non-gradient in a sub-
stantial micro-area containing an elementary third-order mass increment

(34) gradz =0,

then the integral on the right-hand side of Eq. (0.33) will define the value of a
generalised coordinate

(35) Xa=fa'm.

Thus the generalised mass coordinate, with condition (34) taken into account,
will be expressed by the following relationship:

X,

By applying the same procedure in relation to Eq. (0.13) defining mass-density
of volume, we will obtain

VH
o [ [
0 0

Assuming that the field of the mass-density of volume (specific volume) is non-
gradient (homogenous)

(38) grady =10,
we will calculate the value of the integral defined by equation (0.37),
(39) 9 -m=

—u -u

and hence we will determine the relation describing the mass-density of volume
(with condition (38) satisfied)

(40)

3| &
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Taking account of the assumptions made about the homogeneity of pressure
fields (0.29) of mass-densities of volume (38) inside a substantial system and
about the homogeneity of the fields of generalised forces (0.30) as well as the
assumption about non-gradient generalised coordinate (0.34) and also taking
account of the integration results of (0.28), (0.31), (32) in Eq. (0.27), we will
obtain

v+1
(41) a,ns,-m=<sqf-m+zl(ﬁ,-dfa)—pﬂ/a +6g-m.
o=

Taking into account the above assumptions and the fact that mass storage is
constant in substantial system V_
U

(42) m = const,

after dividing Eq. (0.41) by mass and taking into account relations (34) and
(0.40), we will obtain a substantial balance equation of internal energy for in-
tensive quantities (IQs).

7+1
4 = F, . —
(43) d_E)Ii_2 6q, + Z (Fa dfa) pi?i + 4q
N a=1 C ~—
change prod:ction exchange

~ —
N

of IE mass density

From a formal point of view concerning the transcription of substantial bal-

ance equations, the mass density of internal energy for substantial micro-system

(_1_3_}{ expressed by Eq. (0.24), and from the point of substantial macro-system
u

_I)/_ expressed by Eq. (0.43), there is no difference between the two. However,
u

in formulating the substantial balance equation of internal energy mass-density
for substantial system (0.43), assumptions were made about the homogeneity
of pressure fields, mass densities of volume, generalised coordinates and gener-
alised forces, which made it possible to integrate the initial Eq. (0.26) concerning
the substantial micro-system and to obtain the substantial balance equation of
internal energy mass-density for substantial system _I’/ﬂ.

If the substantial V_ system _Y_ is not affected by the exterior, or when
—U u

generalised forces fulfil the condition

(44) Fo=0
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for @ = 1,2,...,7, then the substantial balance equation of internal energy for
(IQs) will be as follows:

(45) dej = 6q;, — pdd + dq
—7
NI S~~~
change production ezchange

L N— ”

—

of IE mass density

The substantial balance equation of internal energy (IE) for intensive quantities
(IQs) expressed by equation (0.43) is the basis on which we can formulate the first
principle of thermodynamics for intensive quantities (IQs). The first principle of
thermodynamics for 1Qs is a substantial balance equation of internal energy
for 1Qs referring to the conditions of a reversible thermodynamic process, or
referring to a thermodynamic process which goes on under the conditions of
thermodynamic equilibrium without any friction

(46) 6q, =0.

Considering the above statement and the constraint defined by relation (46), we
can write an equation describing, in its most developed form, the first principle
of thermodynamics for intensive quantities (IQs).

7+l _
(47) dey = Y (Fo-dzy)—pdd + dg
—Uu a=1
~
change N ~ 4 exchange

production

~ 7
\

of IE mass density

On the other hand, if the elementary mass-density increment of external work
equals zero

(48) 8l, =0,

which means the exterior does not affect the system, then the first principle of
thermodynamics for intensive quantities (IQs) will take the form expressed by
the following equation:

:—E — ~~
change production exchange

~ J
—

of IE mass density
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