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The paper aims at the development of the thermodynamic theory of elasto-viscoplasticity
of single crystals which takes account of the evolution of the dislocation substructure. The
next objective is the application of the theory developed for the investigation of the adiabatic
shear-band formation in single crystals under dynamic loading processes. The description of
the kinematics of finite elasto-viscoplastic deformations of single crystal is based on notions of
the Riemannian space of manifolds and the tangent space. A multiplicative decomposition of
the deformation gradient is adopted and the Lie derivative is used to define all objective rates
for the introduced vectors and tensors. A general constitutive model is developed within the
thermodynamic framework of the rate-type covariance constitutive structure with finite set
of the internal state variables, and takes account of the effects as follows: (i) thermomechani-
cal coupling; (ii) influence of covariance terms, lattice deformations and rotations and plastic
spin; (iii) evolution of the dislocation substructure; (iv) deviation from the Schmid rule of a
critical resolved shear stress for slip; (v) rate sensitivity (viscosity). A notion of covariance is
understood in the sense of invariance under arbitrary spatial diffeomorphisms. The developed
thermoviscoplasticity theory of single crystals is based on the axioms as follows: (i) existence
of the free energy function; (ii) invariance with respect to any diffeomorphism (any superposed
motion); (iil) assumption of the entropy production inequality; (iv) assumption of the evolution
equations for the internal state variables in the particular rate-dependent form. To describe
the evolution of the dislocation substructure, a finite set of the internal state variables is inter-
preted as follows: the density of mobile dislocations, the density of obstacle dislocations and
the concentration of the point defects. Physical foundations and experimental motivations are
given. Two fundamental constitutive equations of the rate-type for the Kirchhoff stress tensor
and temperature are formulated. To show that the thermodynamic theory of viscoplasticity of
single crystals takes account of all the mentioned effects, an analysis of the thermomechanical
couplings and internal dissipation is presented. Particular attention is focused on synergetic ef-
fects, generated by cooperative phenomena of thermomechanical couplings and the influence of
the evolution of the dislocation substructure. The initial boundary value problem (the evolution
problem) for rate-dependent elasto-plastic single crystal has been proved to be well posed. Cri-
teria for adiabatic shear-band localization of plastic deformation are obtained by assuming that
some eigenvalue of the instantaneous adiabatic acoustic tensor for rate-independent response
is equal to zero. The formation of the adiabatic shear-band is investigated. It has been found
that the synergetic effects generated by cooperative phenomena of thermomechanical couplings
and the influence of the evolution of the dislocation substructure play a fundamental role in
the inception of localization. The results obtained are compared with available experimental
observations.
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1. INTRODUCTION

Recent experimental observations and theoretical investigations have shown
that the synergetic effects have a great influence on the behaviour of inelastic sin-
gle crystals. Particularly, the adiabatic shear-band localization in single crystals
is affected very much by cooperative phenomena.

Experimental observations of the macroscopic adiabatic shear-band localiza-
tion in single crystals performed by CHANG and ASARO [7, 8], SPITZIG [64] and
LISIECKI et al. [35] showed that the strain-hardening rate hciq at the inception of
shear-band localization is positive and the direction of the localized shear-band
is misaligned by some small angle ¢ from the active slip system.

On the other hand, the investigations presented by MECKING and Kocks [39],
FOLLANSBEE [19] and FOLLANSBEE and KOCKS [20] showed a great influence of
the strain-rate sensitivity on the behaviour of inelastic metallic single crystals in
dynamic loading processes. To describe the strain-rate sensitivity effects, FOL-
LANSBEE [19] suggested to take into consideration the evolution of the dislocation
substructure.

Experimental study of highly heterogeneous deformations in copper single
crystals performed by RASHID et al. [57] showed that the strain-rate history
dependence of the substructure evolution plays an important role, particularly
in adiabatic shear-band formation phenomena.

AsARO and RICE [3] have clearly shown that the classical theory of crystals
based on the Schmid constitutive law does not seem to be appropriate to explain
the shear-band localization phenomenon in ductile metallic single crystals.

AsARO and RICE [3] have focused attention on the localization criteria for
“an assumed class of materials that essentially obey Schmid’s rule but display
modest departure from it”. They proved that the plastic hardening rate her at
the inception of localization may be positive when there are deviations from the
Schmid law, cf. also QIN and BASSANI [55, 56] and BASSANI [6].

To describe the main experimentally observed facts connected with the macro-
scopic shear-band formation, DUSZEK-PERZYNA and PERZYNA [14] have consid-
ered the synergetic effects resulting from taking into account spatial covariance
effects and thermomechanical couplings. PERZYNA and KORBEL [53] have inves-
tigated the influence of the evolution of substructure on the shear-band local-
ization phenomena in single crystals for single slip process. DUSZEK-PERZYNA
and PERZYNA [15] have examined the influence of thermal expansion, thermal
plastic softening and spatial covariance effects on shear-band localization criteria
for a planar model of an f.c.c. crystal undergoing symmetric primary-conjugate
double ship process, cf. also PERZYNA and DUSZEK-PERZYNA [52]. In the paper
by PERZYNA and KORBEL [54], the attention is focused on the discussion of the
cooperative influence of various effects on the criteria for shear-band localization
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in both the symmetric double slip and single slip processes.

It has been proved by the previously mentioned theoretical investigations
that the main cooperative phenomena which affect the behaviour of metallic
single crystals are generated by thermomechanical couplings and the evolution
of the dislocation substructure.

To describe the influence of main cooperative phenomena on the behaviour
of metallic single crystals, we intend to start from the development of the ther-
modynamic theory of single crystals with special emphasis on the investigations
of thermomechanical couplings and internal dissipative effects. Then this the-
ory is used for the investigations of the adiabatic shear-band formation in single
crystals under dynamic loading processes.

In Section 2 the experimental observations of shear-band localization in single
crystals are discussed. Particular attention is focused on the experimental mo-
tivations of the influence of the evolution of the substructure on the behaviour
of single crystals in the critical situation when the macroscopic localized shear-
band is formed. Physical motivations of the new thermodynamic viscoplasticity
theory of metallic single crystals have been presented. The discussion of various
physical mechanisms of dislocation motion, and particularly the interaction of
the thermally activated and phonon damping mechanisms has been given. The
relaxation time treated as a microstructural parameter has been introduced. It
has been shown that the proposed viscoplastic model accomplishes the descrip-
tion of behaviour of single crystals valid for the entire range of strain-rate changes
and encompasses the interaction of the thermally activated and phonon damping
mechanisms.

In Section 3 the kinematics of finite elasto-viscoplastic deformations of single
crystals are presented. The description is based on notions of the Riemannien
space on manifolds and the tangent space. A multiplicative decomposition of
the deformation gradient is adopted and the Lie derivative is used to define all
objective rates for the introduced vectors and tensors. Fundamental definitions
of stress tensors and the resolved Schmid stress are introduced.

Section 4 is devoted to the development of a rate-dependent constitutive
model of inelastic single crystal within the thermodynamic framework of the
rate-type covariance constitutive structure with internal state variables. It has
been assumed that a set of the internal state variables consists of the shearings
4| the densities of mobile dislocations a(*), the densities of obstacle disloca-
tions A*) and the concentrations of point defects £) (v = 1,2,...,n). The
development of the constitutive structure is based on the four axioms, namely
the existence of the free energy function, the spatial covariance objectivity, the
entropy production postulate and the assumption of the evolution equations for
the internal state variables. The fundamental rate-type constitutive equations for
the Kirchhoff stress tensor 7 and for temperature ¥ are formulated. Thermome-
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chanical couplings are investigated. The description of internal heating generated
by the rate of internal dissipation is presented.

In Section 5 a rate-independent response of elasto-plastic single crystal is
investigated as a particular case of general rate-dependent constitutive structure.

Section 6 is devoted to the formulation of an adiabatic process. Discussion
of cooperative phenomena is presented. The rate of stored energy is defined.
It has been shown that the stored energy is attributed to the evolution of the
dislocation substructure. Mathematical description of both rate-dependent and
rate-independent adiabatic processes is given.

Section 7 is focused on an analysis of acceleration waves. It has been proved
that in an adiabatic process for both elastic-viscoplastic and elastic-plastic rate-
independent model of single crystal, the acceleration discontinuity [a] is the
solution of the appropriate eigenvalue problem. In these eigenvalue problems,
the instantaneous adiabatic acoustic tensors A and A play a fundamental role.

In Section 8 the macroscopic shear-band formation during an adiabatic pro-
cess for symmetric double slip and single slip in elastic-plastic rate-independent
single crystal are studied. The necessary condition for a localized plastic deforma-
tion region to be formed is obtained when the determinant of the instantaneous
acoustic tensor A is equalled to zero. The criteria for adiabatic shear-band local-
ization in the single slip process are obtained in exact analytical form. For the
symmetric double slip process these criteria have been estimated numerically.
The identification procedure for material constants has been presented. Numer-
ical estimations for the critical hardening modulus rate hi; and the direction
of the macroscopic shear-band are given. An analysis of the influence of various
effects on shear-band localization criteria is presented. Particular attention is
focused on the investigation of the influence of the evolution of the substructure
and thermomechanical couplings.

Section 9 is devoted to the discussion of the results obtained. Comparison of
the numerical results with available experimental data is presented. The possibil-
ity of deviations from the Schmid rule of the critical resolved shear stress is also
investigated. The critical value of the hardening modulus rate hci; predicted by
the theory for a single slip process is in accord with experimental observations,
while the misalignment of the shear-bands from the active slip systems in the
crystal matrix is too small. For symmetric double slip process, both the values
obtained are in accord with experimental observations. It has been found that the
influence of the dislocation substructure is combined with the thermomechanical
couplings, and that is why it gives a distinct synergetic effect.

Section 10 is devoted to final comments. Main features of the developed
thermodynamic theory of single crystals are discussed. It has been emphasized
that application of this theory to the adiabatic shear-band formation has proved
the importance of the influence of cooperative phenomena and synergetic effects.
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2. EXPERIMENTAL AND PHYSICAL FOUNDATIONS

2.1. Experimental observations of single crystal behaviour

The high-rate deformation of face-centered cubic (f.c.c.) metals, such as cop-
per, aluminum, lead and nickel has been recently extensively studied (cf. the
review paper by FOLLANSBEE [19]). It has been shown that the apparent strain-
rate sensitivity of f.c.c. metals has two origins: that associated with the finite
velocity of dislocations, and that connected with the evolution of the disloca-
tion substructure. The first of these two components ~ the instantaneous rate
sensitivity — is related to the wait — times associated with thermally activated
dislocation motion. The second component has more to do with the relative im-
portance of dislocation generation and annihilation at different strain-rates, and
shall be referred to as the strain-rate history effect.

RASHID et al. [57] performed an experimental study of highly heterogeneous
deformations in copper single crystals to investigate the importance of the dislo-
cation substructure. Their experimental results are mainly qualitative in nature,
and include optical photographs and micrographs of the deformed specimens,
and scanning and transmission electromicrographs of the substructure. The re-
sults obtained seem to support the earlier findings related to the strain-rate
history dependence of the substructure evolution. The higher total dislocation
density observed in the notch region of the dynamically deformed specimen, as
compared to the same region in the quasi-statically deformed specimen, reflects
the higher shear stress attained in the dynamic case, cf. Figs. 1 and 2.

When ductile single crystals of metals are finitely deformed, they display
highly heterogeneous deformation, e.g. when crystals are stretched in tension,
they can neck and then develop macroscopic bands of localized shearing.

Experimental observations of CHANG and ASARO [7, 8], LISIECKI et al. [35]
and SPITZIG [64] for copper, aluminum - copper and nitrogenated Fe-Ti-Mn
single crystals investigated in uniaxial tension tests have shown that in the first
stage of the process, a crystal specimen undergoes uniform extension in single
slip. At the point when the load-engineering strain trajectory reaches its max-
imum, a crystal specimen exhibits slight amounts of very diffuse necking, cf.
Figs. 3, 4 and 5. The neck is usually symmetric in shape indicating that double
slip is operative within it, cf. LISIECKI et al. [35]. At this stage of the tensile
process, the gross plastic deformations are localized to the diffusely necked re-
gion and the thermomechanical coupling effects begin to play a crucial role. That
is why in this region of the specimen the tensile process has to be considered
as adiabatic. With continued extension the macroscopic, adiabatic shear-bands
have soon developed within the diffusely necked region. This point on the shear
stress — shear strain trajectory is found experimentally to lie on the increasing



pm
FiG. 1. Scanning electron micrograph of an intensely deformed region of a dynamically

deformed specimen, taken to the left of the specimen centreline. The lattice rotation is clearly
evident (after RASHID et al. [57]).
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F1G. 2. Scanning electron micrograph taken near the right corner of the indenter notch on
the quasi-statically deformed specimen (after RASHID et al. [57]).
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Fi1G. 3. Load versus engineering strain curves for various ageing treatments. Numbered
photos correspond to the indicated points on the load-strain curves (after CHANG and
AsARO [8]).

F1G. 4. Single crystal of aluminum — 2.8 wt. percent copper deformed in tension (after
LiSIECK! et al. [35]).

[113]
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(a) th)

F1G6. 5. Propagation of localized shear-band in nitrogenated Fe-Ti-Mn crystal deformed at
295 K: (a) 20 percent decrease in load maximum load, (b) 40 percent decrease in load
maximum load (after SPITZIG [64]).

part of this curve very near to the maximum point, so that a critical value of the
d .
strain-hardening modulus rate hgiy = (d—T) is small but positive, cf. Fig. 6.

It has been experimentally observed that at the inception of the macroscopic,
adiabatic shear-band, the direction of the band is slightly different from the
detected coarse slip bands or slip traces. In other words, the macroscopic shear-
bands are not aligned with the active slip systems in the crystal matrix but are
misaligned by angle 4, cf. Figs. 7 and 8.

2.2. Dynamic behaviour of crystals

The rate and temperature dependence of the flow stress of metal crystals can
be explained by different physical mechanisms of dislocation motion. The micro-
scopic processes combine in various ways to give several groups of deformation
mechanisms, each of which can be limited to the particular range of temperature
and strain-rate changes.

It will be profitable for further considerations to discuss some of these mech-
anisms, particularly those which lead to viscoplastic response of the crystal.
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F1G. 6. Critical ratio (h/c)crit versus 1, the angle between the tensile axis and [112] for
various ageing treatments (after CHANG and ASARO [8]).

F1G. 7. Coarse slip band (CSB) and macroscopic shear-bands (MSB) in (a) GPII tested at

77 K and (b) a 6 strengthened crystal tested at 298 K. Note the orientation difference
between CSBs and MSBs in (a), CSBs are closely aligned with the active slip systems (after
CHANG and AsaARro [8]).
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Fi1G. 8. Slip traces and localized shear on the surface of nitrogenated Fe-Ti-Mn crystal of
orientation D deformed at 295 K: (a) initial deformation until necking began, (b) subsequent
deformation after removal of neck and localized shear-bands from initial deformation, (c) slip

traces within localized shear-band in (b) (after SpitzIc [8]).
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Some common thermal obstacles or mechanisms in pure metals are as follows:
(1) intersection of forest dislocations; (ii) overcoming Peierls-Nabarro stress; (iii)
non-conservative motion of jogs; (iv) cross-slip of screw dislocations; (v) climb
of edge dislocations. Forest dislocations, the Peierls-Nabarro stress and jogs rep-
resent resistance to the motion of dislocations in the slip plane, while cross-slip
and climb represent resistance to the motion out of the slip plane. Schematic
representations of the ways in which these obstacles are overcome are given in
Fig. 9. In each case, thermal fluctuations assist the applied stress in getting a
dislocation segment L past the barrier (cf. CONRAD [11]).

To describe theoretically all the mechanisms we have to introduce three im-
portant parameters, namely the density of mobile dislocations «, the density of
obstacle dislocations 8 and the concentration of point defects £. Average den-
sity of mobile dislocations in deformed metal single crystals is of the order of
10"m~2, average density of obstacle dislocations is 10*m~2, and the average
value of the concentration of point defects can be of the order of 10®m™3.

Since plastic flow occurs by the motion of dislocation lines, the rate at which
it takes place depends on how fast the dislocations move, how many dislocations
are moving in a given volume of material, and how much displacement is carried
by each dislocation. The theory of crystal dislocations shows that for the single
slip, the inelastic shear strain-rate is as follows

(2.1) €l = abv,

where « is the mean density of mobile dislocations, b is the displacement per
dislocation line (the Burgers vector), and v denotes the mean dislocation velocity.

2.2.1. Thermally activated mechanism. It is now generally recognized that
the plastic deformation of a crystal is of dynamic nature and has been established
as a thermally activated process dependent upon time, temperature and strain-
rate. The evolution of the activation parameters is a widely used technique for
the identification of the mechanisms controlling the rate of deformation, and has
been applied to b.c.c., f.c.c., h.c.p. metals, intermetallic compounds and ionic and
ceramic crystals (cf. the review paper by Evans and KUMBLE [18] and books by
NABARRO [42], and KOCKS et al. [33]).

When a dislocation moves through a crystal lattice, a force is exerted upon
it by obstacles present in the lattice. This force can be separated into two com-
ponents, a long-range force and short-range force.

The stress nesessary to overcome the short-range obstacles is temperature-
dependent, whereas that needed to surmount fixed long-range obstacles gener-
ally depends upon temperature only through the temperature-dependence of the
shear modulus. For this reason the obstacles are often referred to as thermal and
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athermal, respectively. When both types of obstacles are present in a lattice, the
applied stress is usually comprosed of both thermal and athermal components

(2.2) T=7% 4+ 1,

where 7# is the thermal (or effective) resolved shear stress and 7, is the athermal
stress.

Plastic deformation occurs by the movement of a large number of dislocations
through an array of obstacles. At any finite temperature, coherent atomic fluc-
tuations can assist the applied stress in moving a dislocation past the obstacles,
cf. Fig. 9(i). .

The average velocity v of a dislocation that surmounts the obstacles with the
assistance of thermal fluctuations is assumed to be an Arrhenius-type relation-
ship

(2.3) v = AL_ll/exp (—%) ,

where v is the frequency of vibration of the dislocation, AL™! is the distance

covered after a successful fluctuation, U is the activation energy (Gibbs free

energy), k is the Boltzmann constant and 9 is actual absolute temperature.
Equations (2.1) and (2.3) give

. U
: P = abAL™? —— .
(2.4) €’ =ab v exp ( kl?)

Let us assume that
(2.5) U =U[(r —7,)Lb],

where L is the mean cord distance between the neighboring points at which the
dislocation is arrested. Expansion of the function U gives

| ' " (7' — T, )2 L2b2
(26) U = U |T:T“ +U ‘T:Tu (T - Tp)Lb + U |T:Tl‘ +
Let us denote by

(2.7) v* = U |y, Lb, Us=U |;=y,

the activation volume and the activation energy for intersection at zero effective
stress, respectively.

The linear approximation to Eq. (2.4) gives the SEEGER relation (cf. SEEGER
(60, 61])

(2.8) EP = abAL 'vexp {—% + [(T - v_] } ’
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or

U, ki eP
(29) T = (T#+1)-*> +Flnm

When the activation energy U is a nonlinear function of the effective stress (cf.
Eq. (2.5)), the relation (2.4) yields

(2.10) €P = abAL 'vexp {-U (T — 7,) Lb] /k¥}
or
(2.11) T="T,+ zle"l [k In (abAL™'v/EPY].

Let us denote by

1
(2.12) Tyt = o (abAL™'W)™Y g = (1, + Us/v¥),
T

the relaxation time for the thermally activated mechanism of dislocation motion
(yr defines the viscosity coefficient) and the flow stress 75, respectively. Then
the relations (2.8) and (2.9) take the form

(213) &= —exp | D (r—1p)|, =75+ (k00" In(TprE?).
Tour P | 10

In this linear theory we have three intrinsic material parameters, namely the
relaxation time T),, the activation volume v* and the flow stress 735.

In the most general case, each of these three parameters may be considered
as a function of the three independent variables €P, 7 and 9.

In the nonlinear theory

(2.14) & = L exp{~Ul(r — 7,)Lb)/k8)
TmT
or
1 1
(2.15) T=mt U ! [w In <m)}

there are two intrinsic material parameters T,7 and 7, and, in addition, one
response function U.
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2.2.2. Damping mechanism (phonon viscosity). With increasing dislocation
velocities at high enough stress or in a perfect crystal, the velocity is only gov-
erned by the phonon damping mechanism. The phonon viscosity theory has been
developed by MASON [37] (cf. NABARRO [42]). At very high strain-rates, the ap-
plied stress is high enough to overcome instantaneously the dislocation barriers
without any aid from thermal fluctuations. This is true for the resolved shear
stress T > Tg, where 7g is attributed to the stress needed to overcome the forest
dislocation barriers to the dislocation motion and is called the back stress.

In this region of response, the evolution equation for the inelastic shearing
has the form

. ab’r, [ 1
2.1 P = El—-1
(2.16) € B [TB ]

where B is called the dislocation drag coefficient. If we introduce the denotation

B 1
1 = =
(2 7) TmD Otb2TB D

for the relaxation time for the phonon damping mechanism (yp defines the vis-
cosity coefficient for this region), then the evolution equation (2.16) takes the
form

(2.18) er o L (L _ 1)

or
(2.19) 7 =18 (1 + Tmp€f).

For the phonon damping mechanism we have two intrinsic parameters, namely
the relaxation time Ty, p and the back stress. It is noteworthy that the dislocation
drag coefficient B can be interpreted as a generalized damping parameter for
phonon viscosity and electron viscosity mechanisms (cf. GORMAN et al. [22]) i.e.

(2.20) B = By + Bey.

2.2.8. Interaction of the thermally activated and phonon damping mecha-
nisms. If a dislocation is moving through the rows of barriers, then its velocity
can be determined by the expression

(2.21) v=AL""/(ts +tB),
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where AL~ is the average distance of dislocation movement after each thermal
activation, tg is the time a dislocation spent at the obstacle, and tpg is the time
of travelling between the barriers.

The shearing rate in single slip is given by the relationship (cf. KUMAR and
KUMBLE [34], TEODOSIU and SIDOROFF [67] and PERZYNA [48, 49])

(22) &= Tl—T(exp {Ul(r = 7,)Lbl/k8} + BAL'v/(r — 15)b)~"
m

where

(2 23) 1 b’l’B abQTB _ 1

Tor BAL-l0 B Tpp’
and two effective resolved shear stresses
(2~24) T;*ZT—Tu and TB:T—TB

are separately defined for the thermally activated and phonon damping mecha-
nisms, respectively.

If the time tp taken by the dislocation to travel between the barriers in a
viscous phonon medium is negligible when compared with the time tg spent at
the obstacle, then

AL
-

(2.25) v

and we can focus our attention on the analysis of the thermally activated process.
When the ratio tg/ts increases then the dislocation velocity (2.21) can be
approximated by the expression

AL
-

(2.26) v
for the phonon damping mechanism.

2.3. Viscoplastic model of single crystals

The main idea of the viscoplastic flow mechanism is to accomplish in one
model the description of behaviour of single crystals valid for the entire range
of strain-rate changes. In other words, the main concept is to encompass the
interaction of the thermally activated and phonon damping mechanisms.

To achieve this aim, the empirical overstress function ® has been introduced
and the strain-rate is postulated in the form as follows (cf. PERZYNA [49])

1 T

(2.27) ¢ =7\ @950

T — 1] )sgnr,
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where T is the relaxation time, (-) denotes the Macauley bracket and 7y is the
static yield-stress function. In this model the static yield-stress function depends
on the inelastic strain €P, temperature 9, the density of obstacle dislocations
and the concentration of point defects €.

It is noteworthy that the empirical overstress function ® can be determined
basing on available experimental results performed under dynamic loading.

To describe the main experimentally observed facts connected with the macro-
scopic shear-band localization of single crystals, namely that the strain-hardening
modulus rate heit at the inception of shear-band localization is positive and the
direction of the localized shear-band is misaligned by some angle ¢ from the
active slip system, we intend to consider the synergetic effects resulting from
taking into account spatial covariance effects and thermomechanical couplings
(cf. DUSZEK-PERZYNA and PERZYNA [14]).

To take into consideration the evolution of the substructure of crystals we
introduce the density of mobile dislocations a{*), the density of obstacle disloca-
tions B(*) and the concentration of point defects £*) for particular slip system
v as the internal state variables.

2.4. Heuristic considerations

From the analysis of the experimental investigations of localized shearing in
single crystals performed by CHANG and ASARO [7, 8|, SPITZIG [64], LISIECKI et
al. [35] and RASHID et al. [57] we can follow the events in the order in which things
naturally happen within a gauge length of the specimen during the uniaxial test,
cf. Fig. 10.

In the first stage of the adiabatic inelastic flow process, a crystal specimen (a
system) undergoes uniform extension and slip takes place. When control param-
eters are changed over a wide range, our system may run through a hierarchy
of instabilities and accompanying cooperative phenomena. When we look at a
microscopic level we observe that a crystal is well ordered, and is self-organized
in microscopic shear-band pattern.

At the point when the load-engineering strain trajectory reaches its maxi-
mum, i.e. when the criterion of the onset of the localization by necking mode
is satisfied, a crystal specimen exhibits slight amount of very diffuse symmetric
necking.

With continued extension, the instability of inelastic flow process takes place
and we observe on a macroscopic level the formation of adiabatic shear-band
pattern within the diffusely necked region. A system is self-organized to a new
two-phase material system (cf. Fig. 10). This is mainly due to different substruc-
ture and its evolution within the regions of adiabatic shear-bands when compared
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F1G. 10. Subsequent states of adiabatic inelastic flow process of single crystal.
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with the substructure in the attached zones, cf. Fig. 8c. Final separation occurs
by a ductile failure mechanism along the shear-band, cf. Figs. 4 and 5.

3. KINEMATICS OF FINITE DEFORMATIONS AND FUNDAMENTAL DEFINITIONS

3.1. Fundamental measures of total deformation

Our notation will be as follows: B and S are manifolds, points in B are
denoted by X and those in § by x. The tangent spaces are written Tx 3 and
TyS. Coordinate systems are denoted {X4} and {z%} for B and S, respectively,
with corresponding bases E4 and e, and dual bases EA and e%.

Let us take the Riemannian spaces on manifolds B and S, i.e. {B,G} and
{S, g}, the metric tensors G and g are defined as follows G : TB — T*B and
g : TS — T*S, where TB and T'S denote the tangent bundles of B and S,
respectively, and T*B and T*S their dual tangent bundles.

Let the metric tensor G 4 be defined by G 4p(X) = (E 4, Ep)x, and similarly
define ggp by gap(x) = (€4, €p)x, where (, )x and ( , )x denote the standard inner
products in B and S, respectively.

Let

(3.1) x = ¢(X, 1)

be a regular motion, then ¢; : B — S is a C! actual configuration (at time t) of

B in S. The tangent of ¢ is denoted by F and is called the deformation gradient

of ¢; thus F = T'¢. For X € B, we let F(X) denote the restriction of F to Tx B.
Thus

(3.2) F(X,t) :TxB — Tx:¢(X,t)S

is a linear transformation for each X € B and t € I C IR. For each X € B
there exists an orthogonal transformation R(X) : TxB — TS such that F =
R -U =V - R. Notice that U and V operate within each fixed tangent space.
We call U and V the right and left stretch tensor, respectively. For each X € B,
U(X) : TxB — TxB and for each x € §, V(x) : xS — T%S.

The material (or Lagrangian) strain tensor E : Tx B — Tx B is defined by

(3.3) 2E =C -1, (I denotes the identity on TxB),
where
(3.4) c=FT.F=U?=B"L

The spatial (or Eulerian) strain tensor e : T4xS — TS is defined by

(3.5) 2e =i—c, (i denotes the identity on TxS),
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where
(3.6) c=b"' and b=F -Ff =V2

The various strain tensors can be redefined in terms of the pull-back and push-
forward operations. For the material strain tensor E and the spatial strain tensor
e we have

(37) E° = ¢*(e"), Eap(X) = enp(x)FUX)F4(X),
¢ = 4. (E), ea(x) = Eap(X)(F(X)™HAEX)™HE,

where the symbol b denotes the index lowering operator.

3.2. Finite elasto-viscoplastic deformation

Motivated by the micromechanics of single crystal plasticity we postulate a
local multiplicative decomposition of the form

(3.8) F(X,t) = F*(X, t) - FP(X, 1),

where F¢~1 is interpreted as the local deformation that releases the stresses from
each neighborhood N (x) C ¢(B) in the current configuration of the body.

Let us consider a particle X, which at time ¢ = 0 occupied the place X in
the reference (material) configuration B, its current place at time ¢ in the actual
(spatial) configuration S is x = ¢(X, ), and its position in the unloaded actual
configuration S’ is denoted by y. Thus we have

(3.9) F*:Ty,S - TS, FP:TxB—T,S,

where TyS/ denotes the tangent space in the unloaded actual configuration S,
cf. Fig. 11. It is noteworthy that F¢ and FP defined by (3.9) are linear transfor-
mations.

We shall treat the tangent space TyS' as an auxiliary tool which helps to
define the plastic strain tensors!).

The plastic strain tensor EP : Tx B — Tx B is defined by

1
(3.10) B = (C? - 1),

where

(3.11) CP=F" .FP=U"” =B? ' and E°¥E-FEr.

DFor precise definition of the finite elasto-plastic deformation see PERzYNA [50]. Different ap-
proach to define the finite elasto-plastic deformation has been presented by Nemat-Nasser [43].
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Fi1G. 11. Schematic representation of the multiplicative decomposition of the deformation
gradient.

Similarly the elastic strain tensor e€: T, S — T3S is defined by
1
(3.12) e = §(i —c%),
where
(3.13) cc=b"", b*=F.F =V and & Te—e

The plastic tensors EPand eP operate within each fixed tangent space; that is
EP : TxB — TxB and eP : TS — TS, cf. Fig. 11.
We can show that the following relations are valid

(3.14) 6. (EP) = e,  4"(e®) = E°.
3.8. Rates of the deformation tensor

Let ¢(X,t) be a C? motion of B. Then the spatial velocity is v, = V0 ¢,

0
where V; = a—f is the material velocity, i.e. v:SxI - TS, I C R.
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The collection of maps ¢;s such that for each s and x, t = ¢;4(x) is an
integral curve of v, and ¢, s(x) = x, is called the flow or evolution operator of
v, l.e.

(3.15) {rs | bu,s = dro byt : s(B) = $(B)}
and
(3'16) ¢t,s o ¢s,r = ¢>t,r) ¢t,t = identity

for all ,s,t € I C IR.
Iftisa C! (possibly time-dependent) tensor field on S, then the Lie derivative
of t with respect to v is defined by?)

(3.17) Lot = (gt-qb;stt) lezs -

If we hold ¢ fixed in t;, we obtain the autonomous Lie derivative

d
(3.18) Lot = (-&Z@,Sts) li=s -
Thus
(319) Lvt = % + ;Cvt.

Ift € T"4(S) (elements of T74(S) are called tensors on S, contravariant of order
r and covariant of order s) then Lyt € T74(S).
The spatial velocity gradient 1 is defined by

a

0
(3.20) 1=Dv :T4S = TS, ie. lf =0 = % + Voot

where v}, denotes the Christoffel symbol for g.
The spatial velocity gradient 1 can be expressed as follows

(321) 1=Dv=F-F !=F.F 4+F° (FP.FF ).F* =14+
=d+w=d°+w+d’ + P,

where d denotes the spatial rate of deformation tensor and w is called the spin.

DThe algebraic and dynamic interpretations of the Lie derivative have been presented by
Abraham et al. [1], cf. also MARSDEN and HUGHES [36].
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Let us define the material (or Lagrangian) rate of deformation tensor D as
follows

(3.22) D(X,t) = %E(X,t).

We have a very important relation

0

b __ b, &

* — a p—
(4"€") = gu(5.B') = $(D").

On the other hand

b
1 _ 1
(3.24) d’ =Lye’ =Ly [5 (g-b 1)} = 5Lvg
1
= 5 (gchC Ia +gacvc ‘b) e’ ® eb,
i.e. the symmetric part of the velocity gradient 1.
The components of the spin w are given by
1 1 8va 6Ub
(3.25) Wab = 5 (9acv® lb =9V |a) = 5 (3$b - 3:1:“) ’
and
(3.26) d® =Lye®, d” =Lye”.

3.4. Application to single crystal behaviour

A fundamental principle of the description of the thermomechanical, elasto-
plastic behaviour of crystals had been introduced by Taylor [65]. He postulated
that material flows through the crystal lattice via the dislocation motion, whereas
the lattice itself, with the material embedded in it, undergoes elastic deforma-
tions and rotations. Thus there are two physically different mechanisms for de-
forming and reorienting the material of a crystal, namely plastic slip and lattice
deformation. Of course, single crystals can be generally subjected to rigid body
rotations owing to the boundary constraints or compatibility requirements. Then,
it may be convenient (although arbitrary) to consider this as the third mecha-
nism (cf. ASARO [2], PEIRCE et al. [46, 47]). In this presentation we have not
taken the third mechanism into account.

It is noteworthy that a local multiplicative decomposition of the form (3.8) is
just motivated by the micromechanics of single crystal plasticity. It is understood
that F€ is the lattice contribution to F, and is associated with stretching and
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F=F%FP

FC

VaARr=q
@) = { Tm {a)
X 5", 1 FP N Y d"|

FiG. 12. Decomposition of the deformation gradient for single crystal.

rotation of the crystal lattice, FP describes the deformation solely due to plastic
shearing on crystallographic slip systems, cf. Fig. 12.

A particular slip system « is specified by the slip vectors s(()a), mga), where

sga) gives the slip direction and mga) is the slip plane normal. Let z(()a) be a unit

vector perpendicular to sga) and mga) in Fig. 12 so that sga), mga), z(()a) form
a right-handed triad. Thus the vectors sga), méa) and z(()a) in the undeformed
lattice are taken to be orthonormal.

As the crystal deforms, the vectors s(®) and m(® are stretched and rotated

according to F¢. In the deformed lattice we have

(3.27) s@) = pe. sga), m(® = mga) - (Fe)~L

Using Eq. (3.21) we define the elastic part of the velocity gradient as follows
(3.28) 16 = Fe.pe!

and postulate for the plastic part

n
(329) P=F -F'-F Fl=F 5P FP L Fl =) s@m@4le),

a=1
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where (%) is the rate of shearing on the slip system a.

The elastic rates of stretching and spin d® and w® are the symmetric and
anti-symmetric parts of Fe . Fe~ ! respectively. The plastic parts of the rate of
stretching and spin are determined by the relations

n n
(3.30) dr = Z;Y(G)N(a)’ WP = Z Sleyw(e)
a=1 a=1

where
(331) N®= % [S(a)m(w . m<a)s(a>} o owe= % [Sm)m(a) _ m<a>s<a>] _

Of course, the schematic decomposition of the deformation gradient for single
crystal shown in Fig. 12 is directly related to the appropriate decomposition
represented in Fig. 11. In the points X, x and y, i.e. in the reference, actual
and unloaded configurations, respectively, of the considered body, in Fig. 12
the crystalline structure of the single crystal and its deformation is explicitly
presented.

3.5. Stress tensors and the resolved Schmid stress

The first Piola-Kirchhoff stress tensor P%* is the two-point tensor obtained
by performing a Piola transformation on the second index of the Cauchy stress
tensor o, i.e.

(3.32) P = J(F Yo%,

where J denotes the Jacobian of the deformation.
The second Piola-Kirchhoff stress tensor S is defined as follows:

(3_33) SAB — (F—I)ZXPCLB — J(F_l)f(F_l)bBaab — (F—l)aA(F—l)bBTab,
Le.
(3.34) S = ¢"(7),

where 7 = Jo is called the Kirchhoff stress tensor.
Let us take the rate of stress working per unit reference volume

n

(3.35) T:d=7’:de—i—’r:dpz’r:de—!—z—r(o‘)f'y(a)’
a=1

where

(3.36) @) — . N

is the Schmid resolved stress on the slip system a.
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3.6. Rates of stress tensors
The rate of the Kirchhoff stress tensor 7 is given by

(B30 Lot =6 o (#7) = bu(o8) = F - (5:8) - FT o ;"

Let us define

T = %, ® ep € TQO(S),
(3.38) 1o = 12" @ ey € T1H(S),
T3 =7%€, ® eb e Tll(S).

Then

or®t  ared . Lo .00

o e’ T a | aw
is the rate associated with the name of Oldroyd (cf. OLDROYD [45]). The Zaremba-
Jaumann rate (cf. ZAREMBA [71, 72] and JAUMANN [32]) is defined as follows

(3.39) (LyT)® =

oreb  9rab
o + 52c vt + 78 wdb—Tdbwd

(340) 5 [(Lors)tg® + g (Loma)d] =

2
4. CONSTITUTIVE STRUCTURE OF INELASTIC SINGLE CRYSTALS

4.1. Constitutive postulates

Let us assume that the laws of: (i) conservation of mass, (ii) balance of
momentum, (iii) balance of moment of momentum, (iv) balance of energy, (v)
entropy production inequality, hold true.

We introduce the four fundamental postulates:

(i) Existence of the free energy function. It is assumed that the free energy
function is given by 3)

(4.1) i = (e, F,9;4¥), ), ) W),

where e denotes the Eulerian strain tensor, F is deformation gradient, 9
temperature and v(*) denotes the shearing on slip system v, o) is the
density of mobile dislocations and () the density of obstacle dislocations
for particular slip system v, and ¢) denotes the concentration of point
defects for slip system v.

®For a similar idea see TEODOSIU and SIDOROFF [67].
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(i) Axiom of objectivity (spatial covariance). The constitutive structure should
be invariant under any diffeomorphism (any motion) £ : S — S (MARSDEN
and HUGHES [36]), cf. Fig. 13. Assuming that £ : S — § is a regular,
orientation preserving map transforming x into x and T¢ is an isometry
from TxS to T,» S, we obtain the axiom of material frame indifference (cf.
TRUESDELL and NOLL [69]).

CHANGE OF
SPATIAL FRAME

METRIC

£(¢(B))

»g

F1G. 13. Schematic representation of the change of spatial frame generated by superposed
spatial diffeomerphism.

(i) The axiom of the entropy production. For any regular motion of a single
crystal (denoted by B), the constitutive functions are assumed to satisfy
the reduced dissipation inequality

1 co 1
4.2 —7:d—-(nd +9Y) — —q-gradd >0
(4.2) o (md +¢) S5de ,
where prer and p denote the mass density in the reference and actual
configuration, respectively, 7 is the Kirchhoff stress tensor, d the rate of

deformation, 7 is the specific (per unit mass) entropy, and q denotes the
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heat flow vector field. MARSDEN and HUGHES [36] proved that the re-
duced dissipation inequality (4.2) is equivalent to the entropy production
inequality, first introduced by COLEMAN and NOLL [10] in the form of the
Clausius-Duhem inequality. In fact the Clausius-Duhem inequality gives a
statement of the second law of thermodynamics within the framework of
mechanics of continuous media.

As it has been pointed out by MARSDEN and HUGHES [36], the question
how one should set the basic principles of thermodynamics has given rise to
much controversy (see e.g. MULLER [40] and GREEN and NAGHDI [23]). Al-
ternative theories have been proposed e.g. by GREEN and NAGHDI [23, 24],
MULLER [40, 41], SERRIN [62] and DAY and SILHAVY [12], cf. also an ex-
haustive discussion on the subject given by TRUESDELL [68].

(iv) The evolution equations for the internal state variables are assumed in the
form as follows:*)

n

n n
S0 1 P4 S0 1 3O,

Q-
S
<
<
Il

(43) =1 6=1 6=1
n . n n
¥ = D50 4 9+ Z cgms)a(‘s) + 5050,
5=1 5=1 5=1
w)
1 = e |G = 1| )sgor®,
T TCU (’Y’ 67 5)1‘9) + n(‘/) T

where v = S r_ 4, B =30 g0 ¢ = 0 €W 7(¥) denotes the
Schmid resolved shear stress on the slip system v, TC(") is the yield-stress
function on the slip system v, k(%) is the symmetric tensor of non-Schmid

effects and the coefficients a;, b;, ¢; (1 = 1,2,3,4) are material functions.

4.2. Rate-type constitutive relations

Suppose the axiom of the entropy production holds. Then the constitutive
assumption (4.1) and the evolution equations (4.4) lead to the results as follows:

“Particular case of the evolution equations for densities of dislocations (4.4);» has been
considered by ESTRIN and KUBIN [17] and BALKE and ESTRIN [4].
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r— 00 %
(4.4) PRl e 89’
91 — iq -gradd > 0,
oV
where

denotes the rate of internal dissipation.
We take here advantage of the thermodynamic restrictions on materials de-
scribed by internal state variables presented by COLEMAN and GURTIN [9].
Operating with the Lie derivative on the stress relation (4.5); and keeping
the internal state variables constant, we obtain® (cf. DUSZEK-PERZYNA and
PERZYNA [14])

n
(4.6) Lot =L%:d— L%~ [z:e N 4 b(ﬂ)] 48)
=1
where
0% 8%
e vy th _ _

b® = (N® + WO) . 1 4 7. (NB — W),

Operating on the entropy relation (4.5) with the Lie derivative and substituting
the result into the energy balance equation, we obtain

n
(4.8) peyd = —divg + 9 p_or cd+y Z 74
v=1

PRef 00
n n n on
+x* Z Z(al‘l)(UJ)T(@d(V) + ™ Z z(bl—l)(ué),r(é)ﬂ'(u)
v=14=1 v=1 =1
n o n
+ X*u Z Z(Cl—l)(uzi),r(é)é'(u),
v=146=1

S)Particular case of the rate equation (4.6) has been presented by Hill and Rick [31].
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where
8% o 0%
g9 W) - _ _
@ apz X7 p ((9')'(”) V5957 |
n h 2.
“ () — _ w) ([ O . O
(49) X pag “ (6a(5) Y 59600 )

n } 2,7
xx (V) — (vd) 32[) _ 9 1/)
X = b (c’w(@ Y 5005@ )

n A 2,7,
Hok K (u) — (‘/5) 61/) _ 8 1/’
X pg c (85(5) 1931935(5) .

A set of equations (4.4), (4.6) and (4.8) generalizes the “Duhamel-Neumann hy-
pothesi” for inelastic single crystals, cf. SOKOLNIKOFF [63], p.359 and MARSDEN
and HUGHES [36], p.204. It is noteworthy that this generalization takes account
of the effects as follows: (i) thermomechanical couplings; (ii) evolution of the
dislocation substructure; (iii) influence of covariance terms, lattice deformation
and rotation, and plastic spin; (iv) deviation from the Schmid rule of a critical
resolved shear stress for slip; and (v) rate sensitivity (viscosity).

4.3. Analysis of thermomechanical couplings

To show synergetic effects generated by cooperative phenomena of thermo-
mechanical couplings and the influence of the evolution of the dislocation sub-
structure, let us consider the evolution equations for the internal state variables
o, B) and €@ cf. Eqs. (4.4);_3. These equations can be written in the form
as follows:

o =y AP0 4 A0,
6=1
(4.10) ﬁ(”) — ZBg'/&),},(&) +B§V)’19,

(=2
Il
—

cv950) 4 o3,

A
S
I
]+

o,
i
—
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where
A, = —A—_l'Agl(Al-i-ALj-B;l'Bl),
Ay = AV A7U(Ay+Ag-BfN-By),
(4.11) B, = B -By'(Bi+Bs-Ay'-A)),
' B, = B ' -B;'(By+Bs-A;l-Ay),
C; = c1+c3-Ap+cy By,
Cy = co+c3-Ay+cq- By,
and
Ay =a;t+as-c;, Apy=ay+ay-cy,
Bi =b;+bg-c;, Bay=by+byg-co,
(4.12) Az3=1-a4-¢c3, Ay=az+ay-cy,

B3:b3+b4-03, Bs=1-—by-cy,
K:].—A:,TI'A4'BZ]'-B3, E:l—BZl.BS.Agl.A‘i_

Substituting (4.10) into (4.8) gives the fundamental rate equation for tempera-
ture ¥ in the form

. or (6
(413) (pCp - /\)19 = —divq+9—— 8’19 rd+xT d? + Z Z A )

R v=1 k=1

with the denotations as follows:

(4.14) )= ZZ[ 1) 4

v=1¢=1
+ X** (bi—l)(”‘S) Béu) + X*** (cl—l)(’/‘s) Cg”)] 7_(5)’

n
=3 [x* (o) 4l
1
v=1
+ ™ (bl—l)('/ts) B{M) 4yt (cl_l)(ms) C{un)].

Let us interpret each term of Eq. (4.13). On the left-hand side of Eq. (4.13) we
have the term (pc, — A)d which represents the heat rate conversion minus the
internal heating lost for the generation of new dislocations and point defects. The
first term on the right-hand side represents the heat conduction effects induced
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by the heat flux vector q. The second term on the right-hand side of Eq. (4.13)
is caused by the dependence of the stress tensor 7 on temperature and is not of
a dissipative nature. The third term on the right-hand side represents the rate
of internal dissipation due to plastic flow process, while the last term gives the
contribution to the rate of internal dissipation generated by the evolution of the
dislocation substructure.

This interpretation can be more understandable when we look at the char-
acter of the coefficients A and A(%%). Both of them account for the evolution of
the dislocation substructure, the first due to the transient thermal effects, the
second being attributed to the influence of plastic flow phenomena.

5. RATE-INDEPENDENT RESPONSE OF SINGLE CRYSTALS

The viscoplastic kinetic law of a single crystal (4.3)4 can be written in the
form

(5.1) ) = [7) 4 K0 7] {14+ 37 T4},
When the relaxation time T®) = 0, then (5.1) gives
(5.2) ) =7)(,9,8,6) + &) : 7.

Material differentiation of (5.2) yields

n n
(53) Z h (6) + I‘&(‘s) ) + 71'(")’!9 - Z gV&ﬂ(J) - Z luéé(ﬁ)
6=1 6=1
where
or) " or?
=2° w) — _ ¢ §-1
hu5 37(5) y T 99 h’u& ’
6=1
(5.4)
aTc — aTcU) 7 -
ok Z o

We interpret iz;él as the modulus hardening rate matrix, 7(*) as the thermal
plastic softening coefficient, g,5 as the dislocation obstacle hardening matrix,
and l,s5 as the point defect hardening matrix.

Equation (5.3) constitutes the fundamental evolution equation for shearing
4®) in elastic-plastic rate-independent response of single crystals.
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6. ADIABATIC PROCESS

6.1. Discussion of cooperative phenomena

For adiabatic process (q = 0) Eq. (4.13) takes the form

N —g P 9T PSS A6, 0) ()
6.1)  (pcp A)ﬁ_ﬂpﬂefaﬂ.dur.d +§{sz 7(8)5(%),

The first term on the right-hand side of Eq. (6.1) is not dissipative and is of the
second order when compared with the internal dissipation terms. Its contribution
to internal heating is small. This suggests that it can be neglected in some con-
siderations like the adiabatic shear-band formation. However, this nondissipative
term can have important influence on the propagation of acceleration waves in
an inelastic crystal.

When the nondissipative term is neglected, then Eq. (6.1) takes the form

(62) (pcp — A)'ﬁ =XT: d? + Z Z A(5“)7(5),}1('€)_
é=1k=1

From Eq. (6.2) we can compute the irreversibility coefficient x. It gives

(pep = N9 — 351 ey AR TO)4(x)
T:dP '

(6.3) X =

For A = 0 and A%%) = (, i.e. when the influence of the evolution of the dislocation
substructure is not taken into consideration, Eq. (6.3) takes the form

_ PepY

(6.4) X= g

For this particular case the irreversibility coefficient y has a simple interpreta-
tion as the heat-rate conversion to plastic work-rate fraction. However, Eq. (6.3)
shows that the remaining work rate is attributed to the stored energy, e.g. dislo-
cations, point defects and their interactions and is described by two additional
terms, namely by Ad and S35, S3"_ A 7(0)5(),

Let us denote the rate of the stored energy by

n n
(6.5) s= M+ Z Z A @) 50
0=1v=1

then the irreversibility coefficient x (cf. Eq. (6.3)) takes the form

_pop¥—s
(6.6) X=""qa
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and Eq. (6.1) can be written as follows:

: p Ot
6.7 9 =19 —:d+x7:d” +s.
o0 o= oney 09 O X
Let us define a sum of all dissipative terms in Eq. (6.7) by
n n
(6.8) w=x7:d? + ) + Z ZA(JV)T(‘S)"Y(")-
6=1v=1

After WILLEMS [70] and GURTIN [25] we can define the storage function

t
(6.9) S(t) = S(0) + /0 w(z)dz.

The storage function (6.9) plays a fundamental role in the determination of
stability criteria for dynamic plastic flow processes in single crystals. It takes
account of the most important cooperative phenomena coupled with thermal
effects®).

When modelling thermomechanical behaviour of materials, x is usually as-
sumed to be a constant in the range 0.85 — 0.95 (a practice that dates back to
the work of TAYLOR and QUINNEY [66]).

Recent experimental investigations performed by MASON et al. [38] by using
a Kolsky (split Hopkinson) pressure bar and a high-speed infrared detector array
have clearly shown that this assumption may not be correct for all metals, cf.
Fig. 14.

The reason for this considerable discrepancy is clearly visible from Eq. (6.6).
The rate of the stored energy s implied by the evolution of the dislocation sub-
structure is responsible for reduction x (e.g. as it has been observed for Ti-6Al-4V
deformed at high strain-rates, that x decreases from 0.975 to 0.5, cf. Fig. 14).

MASON et al. [38] observed that the irreversibility coefficient x depends on
strain and strain-rate in a range of metals. Their experimental observations have
significant implications in the study of the conditions preceding and govern-
ing adiabatic shear-band formation and shear-band growth as well as on the
establishment of a criterion governing dynamic fracture mode selection in rate-
sensitive materials.

6.2. General formulation

To investigate the behaviour of rate-dependent elasto-plastic single crystal
during an adiabatic dynamic process and particularly, to examine the shear-
band formation, let us formulate the initial boundary value problem as follows.

®)For general methods of the description of cooperative phenomena and synergetic effects
see GLONSDORFF and PRIGOGINE [21], NicoLls and PRIGOGINE [44] and HAKEN [27, 28, 29].
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Titanium at high strain rate (~1500s™)
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F1G. 14. The irreversibility coefficient x versus strain calculated for Ti-6Al-4V titanium
using the average of the temperature of the two detectors (after Mason et al. [38]).

Find ¢, v, p, 7, Y v), B() ¢() and 9 as functions of ¢ and x such that the
following assertxons are satlsﬁed.
(i) the field equations

$ = v,
1 1
= ~div(=7),
) p 1v(J'r)
p = pdivo,

n
Lyt = Lf:d- L") [£°: N +bM)5¢)

)
(7, 8,€,9) + K :

n

o = ST AV 4 AP,
=1
n

AW = 3" B4 4 B,
0=1

£ = Y50 4 e,
=1

(6.10) 4 = ! (® —1 ysgnt®),

T(v)
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n

(610) 5o 1 1y P OT g ey AL 5O |
[cont.] pcp — A | PRes 0V X szl ; Lk
(ii) the boundary conditions

(a) displacement ¢ is prescribed on a part 94 of 0¢(B) and tractions
(T - n)? are prescribed on part 0r of 0¢(B), where 9y N 07 = 0 and
0y U Or = 0¢(B);
(b) heat flux (q-n) = 0 is prescribed on d¢(B);
(iii) the initial conditions: @, v, p, T, Y, &), )| ¢¥) and 9 are given at
XeBatt=0.
For elasto-plastic rate-independent response of crystals, to define an adiabatic

flow process, we have to replace Eq. (6.10)s by Eq. (5.3).
6.3. Rate-dependent process

For an adiabatic process, the rate equation for temperature (6.10)g can be
written in the form

(6.11) d9=F:d+ ZK(V):),(V)
v=1
where
p ) or
6.12 F = ,
(6.12) PRef (pcp — A) OF
1 n
K» = [XT(") + Z A(5V)T(5)] )
pep — A 6=1
Let us denote
1 7(0)
6 — _ (%)
(6.13) P T (® EONTI l] )ysgn7'%’,

then the evolution equations (6.10)¢—g take the form as follows:

n

o = 3 (Al + AVKO) PO 1 AP F g,

=1

(6.14) g9 = 3 (BIY + BYK®) PO+ BYF
=1
n

Q- (Cfutﬂ +C§u) K(“)) PO 4 Céu)}-: d.

=2
Il
—
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The fundamental rate equation for the Kirchhoff stress (6.10)4 takes the form
(6.15) Lyr=E:d+ F,

where

P 0 zhé”_’_
PRef (pcp — )~ 09’

F = -3 (L‘" . N® 1 p®) 4 cth K(u)) pw).
v=1

(6.16) E = [£°-—

3

6.4. Rate-independent process

Taking into account the equation for 7(*) (cf. DUSZEK-PERZYNA and PERZYNA
[15], Eq. (46))

(6.17) FM =QW.d-qQW . ZN _rth  N@§
5=1

where

(6.18) Q(") =Lre:NW 4 b(‘/)’

and the evolution equation (2.8) and (6.11), we obtain

09

+ Z 676 Z 8Tc N)>}' KO Le} . d

- ard
(6.19) 4®) ZMW,) Q¥ — [t NO 4 =2

where

(v)
(6.20) M5 = hus + QW : NO® 4 (1:”‘ :N®) 4 3;29 ) K®

01 (o) (8) 3 1 (b)) (8)
+;[aﬁ(~) (Bl +BYK )+a§(~) (C +CMK )

- k@ Lf NG,
Substituting (6.19) and (6.11) into (6.10)4 yields

(6.21) Lyr=1I:d
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where the fundamental matrix IL has the following form:

(6.22) IL=L®—LhF
En §n (Q‘ + Ltk )) {Q(‘” [ﬁ‘h N® o)
_ v v _ . 4 c
6
v=1 §=1 ) v
o ) 4 o )

K K _ (8) . pe

+,§:1 (aﬂN)BQ 65(”0 F—=r'Y LS.

7. ANALYSIS OF ACCELERATION WAVES

7.1. General considerations

To investigate the intrinsic mathematical structure of the set of the field
equations (6.10) which determine the adiabatic inelastic flow processes, let us
analyse the problem of propagation of acceleration waves. We shall show that
the theory of acceleration waves in the materials considered can be based on the
notion of an instantaneous adiabatic acoustic tensor.

Let > (t) denote a smooth surface with outward normal n which is mov-
ing through the solid body with velocity w(t,x). Some field quantities or their
derivatives may be discontinuous across ) (¢) which is then called a singular sur-
face. If the surface 3 (t) is composed of the same material points at all times, one
then refers to Y (t) as a stationary discontinuity. Otherwise, the surface ) (¢) is
called a propagating singular surface or wave, cf. HiLL [30].

Let ¢ denote the normal speed of propagation of ) (¢) with respect to the
material in its current configuration. It is related to the spatial velocity v(t,x)
and to the normal wave speed w = w - n, by the following equation:

(7.1) c=w-—v-n

It is said that ) (¢) is an acceleration wave if the fields ¢, v, F, p and o
are continuous functions of ¢ and x, while ©, Vv, F, VF, [, Vu, 9, V19 have
(at most) jump discontinuities across Y (t) but are continuous in ¢ and x jointly
everywhere else (1 denotes a set of the internal state variables).

An acceleration wave in which 9 and V¥ are continuous functions of ¢ and x
is called homothermal.

From the definition of an acceleration wave and the constitutive assumption
P =1(e,F,9,7®) we have

(7.2) 1= o] =l =0,

where [ -] denotes the jump of a quantity across ) (t) in the direction of its local
normal n(t, x).
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Hadamard’s compatibility conditions require the jumps in velocity and stress
derivatives to be related as follows (cf. HADAMARD [26]):

(7.3) [Vv] = ——i—[[a]]n,
Vol = —:[sIm,

where V denotes the spatial gradient and a = v.
Balance of momentum requires that (cf. (6.10)3)

(7.4) dive = pa.
Combining (7.3) and (7.4) yields
(7.5) n-[o]= —pc[a].

From the last result it becomes clear that the existence and propagation speed
of acceleration waves in solids is directly related to the assumed constitutive
structure of the material.

Since 9 is continuous across Y (t), we have

(7.6) [9] = —c [V9]- n.

For an acceleration wave in an adiabatic process we have (cf. PERZYNA [50])

(7.7) [al =0, [q]=0
and
(7.8) [9]#0, [Vo]#0.

Hence an acceleration wave in inelastic solids for an adiabatic process is not
homothermal.

This conclusion will play an important role in the analysis of acceleration
waves in particular material models for adiabatic process of a crystal.

7.2. Rate-dependent adiabatic process
Since IF' is continuous across Y ,(t) Eq. (6.15) gives
(7.9) [Lyt]=IE: [d].

Combining Egs. (7.3)1, (7.5) and (7.9) we can prove
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THEOREM 1: For an adiabatic rate-dependent plastic flow process of a single
crystal described by Egs. (6.10), the acceleration discontinuity [a] is the solution
of the eigenvalue problem

(7.10) A - [a] = prese’[al,
where
(7.11) A=n-(F -n+T7-ng)

denotes the instantaneous adiabatic acoustic tensor.

It is noteworthy to stress that the instantaneous adiabatic acoustic tensor
A for rate-dependent response of a single crystal does depend on the evolution
of the dislocation substructure. This is implied by the direct dependence of the
adiabatic matrix IF on the coefficient A.

Let us assume the strong ellipticity condition in the form

(7.12) B0 Copippia > €ll )22

for all vectors ¢ and p € IR3.

Then we can prove that all eigenvalues of the acoustic tensor A are real and
positive.

Thus, the Cauchy problem

(7.13) ¢ = Alt,p)p +£(t, ), t€[0,t], ¢(0,x)=¢°(x),

for the field equations (6.10) is well-posed provided some conditions for the
spatial differential operator A and the nonlinear function f are satisfied”). This
fact has very important implications for the numerical simulation of an adiabatic
inelastic flow process.

It can be proved that the localization of plastic deformation in an elastic-
viscoplastic crystal body may arise only as the result of the interaction and
reflection of stress waves. It has a different character than that which occurs in
a rate-independent elasto-plastic single crystal.

Viscosity introduces implicitly a length-scale parameter into the dynamical
initial-boundary value problem and hence, it implies that the localized shear-
band region is diffused when compared with that in an inviscid plastic material.
Rate dependency (viscosity) allows the spatial difference operator in the govern-
ing equations to retain its ellipticity and the initial value problem is well-posed.

Since the rate-independent plastic response is obtained as the limit case when
the relaxation time T tends to zero, hence the theory of viscoplasticity offers the
regularization procedure for the solution of the dynamical initial-boundary value
problems with localization of plastic deformation.

DFor a discussion of the well-posedness of the Cauchy problem see PERZYNA [50].
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7.8. Rate-independent adiabatic process

Combining Egs. (7.3)1, (7.5) and (6.21) we can prove

THEOREM 2: For an adiabatic rate-independent plastic flow process of a sin-
gle crystal described by Eqs. (6.10)1—4 and (6.10)s—g and (5.3), the acceleration
discontinuity [a] is the solution of the eigenvalue problem

(7.14) A - [a] = presc?[al,
where
(7.15) A=n.(L n+7-ng)

denotes the instantaneous adiabatic acoustic tensor.

8. MACROSCOPIC ADIABATIC SHEAR-BAND FORMATION

8.1. Necessary conditions
Let us denote A = pgesc?, then the eigenvalue problem (7.14) takes the form
(8.1) A - [a] = A[a].
The necessary and sufficient condition for (8.1) to have a non-trivial solu-
tion is
(8.2) det[A — \IT| = 0,

where I is the 3 x 3 unit matrix.

When zero is an eigenvalue of the instantaneous adiabatic acoustic tensor A,
then the associated discontinuity does not propagate (¢ = 0) and we speak of
a stationary discontinuity. In a quasi-static case this situation is referred to as
the strain localization condition. It corresponds to a loss of hyperbolicity of the
dynamical equations.

To satisfy this condition let us assume A = 0 in Eq. (8.2). Then the necessary
condition for a localized plastic deformation region to be formed is as follows

(8.3) detA = 0.

It is noteworthy that this condition for localization is equivalent to that obtained
by using the standard bifurcation method (cf. RICE 58], RUDNICKI and RICE
[59], Duszek and PERZYNA [13], DUSZEK et al. [16]).

In what follows we shall neglect the influence of the point defects, i.e. we
assume f = 0 and £y = 0. It means that we concentrate only on the interaction
of the thermally activated and phonon damping mechanisms in the case when
the concentration of the point defects can be neglected, e.g. for the mechanism
of the intersection of forest dislocations, cf. Fig 9(i).
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8.2. Necessary conditions for symmetric double slip process

Let us introduce the Cartesian coordinate system {z*}. To obtain the direct
analytical results we shall introduce the following simplifications:

(i) Let us assume

(8.4) Z=s-(s-L°.

(i) Let us restrict our consideration to the linear, isotropic and homogeneous
elastic properties of the crystal, i.e.

(8.5) (Le)abcd — ,rbdgac + /J(gacgbd +gadgbC) + /\gabgcd,

where the constants p and A are the Lamé moduli.
The localization condition (8.3) gives the result as follows (cf. PERZYNA and
KORBEL [54]):

4 3 2
(8.6) A(ﬂ) +B(ﬂ) +c(ﬂ> +D(ﬂ>+E= ,
nyg 9 no N9

where
A = (]L2222 +722)(L2“2 +722),
B = (L*** +722)(L1112 +le111) 4 (]L2112 +722)(E1222 +_IL2221)
—]L2212(IL”22 +L2121))
C = (Luu +711)(1L2222 +7_22) + (L1222 +L2221)(IL1”2 +1L2m)
(8.7) +(]L1221 +711)(112112 + 722) (L2 +L2121)(L1212 +]L?2“)

1121 57 2212
—pu 22

D = (Ellll +T11)(L1222+L2221)_+_(E1221+7_11)(E1112+E2111)
_E1121(E1212 +.ZL2211)

E = (E1111+T11)(E1221+7‘11).

n
The ratio —= = tanf determines the direction of the shear-band. The localization

n

of plastic déformations along the shear-band may take place if real n exist.
When the evolution of substructure and the non-Schmid effects are not taken

into consideration, then the fundamental matrix IL takes the form which has been

first considered by DUSZEK-PERZYNA and PERZYNA [15]. When additionally

the Lie derivative is replaced by the Zaremba-Jaumann rate and an isothermal
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process is assumed, then the fundamental matrix IL is the same as that which
has been considered by PEIRCE et al. [46].

For symmetric double slip process it is assumed that the crystal has two
active slip plane (primary and conjugate) systems, symmetrically oriented with
respect to the maximum principal stress 722 (the tensile axis is z2) direction at
the angle ¢, cf. Fig. 15. Then the subscripts v and § take on values 1 and 2.

-

f f-~[:22

- 722

F1G. 15. Schematic representation of symmetric primary-conjugate double slip systems of
single crystals.

Let us assume further that

h [+ c
1) = o = ) =@ =3
o « a, ,
(8.8) 0 ln
kD =k = 2 , k~O0 (—Z—e) ~ 3.48 - 1073,
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8.3. Necessary conditions for a single slip process
A rate-independent constitutive structure of elasto-plastic single crystal in a
single slip adiabatic process is described by the equations as follows:
Lyt = L£°:d—LM)—[L°: N+ by,
= l(T'—l~f<c:'i-)+7r19—gB,

Y h
(8.9) & = ary+ad +asp,

B = biy+bod + bycy,

b = Ll Tasyrlpl+ 207,

oy T X G STy PRefCp 00 "
where
1

(8.10) p=O o 10 _ Lor

“rhow YT hop

Differentiation of the resolved Schmid stress 7 = s - 7 - m gives additionally the
relation (cf. Eq. (6.17))

(8.11) F=[L°:N+b]:(d-dP) - L": NJ.

Equations (8.9) and (8.11) can be reduced to the fundamental evolution equation
as follows:

(8.12) Lyr=1I:d,
where
_pe_gtZoT
(8.13) L =L @A,uc')ﬂ
. T Z:N L OT
_(Q+£ .n—}-@uZ)[Q (@ P H+Q>E(’M]

h-HT+r+QT+e£z:N+(Q+ce:n);N
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with the notations

Q=L¢:N+b, ©=A0u 6Z=CLr 1=Arh,

by + aobs by + a1b3
Q= hgA—-—- I'=hg———
g 1—a3b3’ gl—a3b3’
X* X**
x(1 —asb3) + a—(al +agby) + b (b1 + a1b3)
(814) A == 1* Xl** )
pcp(l —agbs) — X—(a2 + azby) — (bo + aobs)
a by
9—L— (1~ agbs)
L = PRef

7(b2 + aghs3)

pep(L — agbs) — 2=7(az + aghy) — X
a1 by
Let us introduce the Cartesian coordinate system {z'} and restrict to the linear
form of £¢ and Z given by (8.4) and (8.5), respectively.

We shall study the influence of particular effects on adiabatic shear-band
localization. First we focus the attention on the discussion of the influence of
the evolution of substructure, thermomechanical couplings, non-Schmid effects
and covariance terms. This case has been considered by PERZYNA and KOR-
BEL [53, 54]. So, let us neglect in the fundamental matrix IL the nondissipative
thermal term effects. Then we have

(Q+ L k+0-2)Q
(8.15) IL=[f— £

h—nT+P+QT+®£zaN+UQ+ﬁ:@;N’

Using the necessary condition for localization of plastic deformation (8.3)
and applying the perturbation procedure about n = m, we obtain

Or T 1 2v—1 T 72
(8.16) n:m+<5;+zﬂ—y+§/iss+ » sz)s+f€szz+0<zgyﬁ>,

2
(8.17) heiy =Ir =T — Qr + % (u@2 + 0+ 41—11) + 7(200 + 1)K

p(2v — 1)

4 (EZZ)Q

1
+7 [(21/ -1)0+1- 5;] Koz + v (kss)? +

7.2 ’T3
+ ,u(21/ — l)K,zinss + O (E, F) y
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where

v= A+,u'
A+2u

(8.18)

Now we use the evolution equations for parameters a and § proposed by
EsTRIN and KUBIN [17] in the form

a= al(avﬂ);ya a’l(aaﬂ) = ;):—; (’g) — Ca — ? IB)

(819)  B=bh(eB)r,  blah)=aa+ 2VE- b,

where b is the Burgers vector.

Let us notice that the above equations do not describe the dependence of both
densities of dislocations on temperature. Then the considered process is not a
fully temperature-dependent process, but it involves temperature only thorough
parameter . The identification of the coefficients a; and by one can find in the
paper presented by ESTRIN and KUBIN [17], cf. BASINSKI and BASINSKI [5].

For the particular case considered by ASARO and RICE (3], when

1 1

(8‘20) Kss = Kzz = 0, Kzs = Kgp = E”’ Kmz = Kam = 5”1,
we have
Ca T 1
(821) n = m-+ <ﬂ + 4/_1,—1/> s + EI‘CZ,
h T 1 1
(8.22) - = M-=+(0%+0+—] - +2x2E
T/ crit T dp)p 4 7
where
0T,
(8.23) 0 = Abyu, II = Arh=-A—,
oY
r o= 50 A XEXTHXT
op PCp

From estimations of the parameter x done in paper of ASARO and RICE [3] we

/b
have k = 1.1 7 where L is the slip-line length. In the moment of localization

we may assume that L ~ 107% m.

We shall use the experimental data from the papers of CHANG and ASARO
[8] for aluminum-copper single crystals tested at 298 K, and SpiTzIG [64] for
Fe-Ti-Mn single crystals tested at 295 K.
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For aluminum-copper single crystals we have the result as follows:

(g) = 0.043 + 0.0090 + 0.0010 + 0.0032 + 0.0025 + 0.0186 = 0.0773,
crit
and for nitrogenated Fe-Ti-Mn crystals
(ﬁ) = 0.0653 + 0.0100 + 0.0012 + 0.004 + 0.003 + 0.0173 = 0.1008.
T/ crit

We observe that the non-Schmid effects are about three times smaller than the
thermal plastic softening effects I, and about two times larger than the interac-

tion between macro- and microstructure .
Terit

9. DISCUSSION OF THE SYNERGETIC EFFECTS AND COMPARISON WITH
EXPERIMENTAL OBSERVATIONS

We shall consider both the single slip and symmetric double slip processes.
All numerical results are taken from the paper by PERZYNA and KORBEL [54].

9.1. Single slip process

For a single slip process, numerical computations have been performed for
the fundamental matrix IL determined by Eq. (8.15) by using the necessary
condition (8.3).

For Al-Cu single crystals some particular material parameters are taken from
CHANG and ASARO [8]. We consider the same example of uniaxial tension as
that tested by CHANG and ASARO (8] at room temperature. The results obtained
for the hardening modulus rate h/7%? as a function of the misalignment angle §
are plotted in Fig. 16.

For nitrogenated Fe-Ti-Mn single crystals, some particular material param-
eters are taken from SPITZIG’s [64] experimental data. The same example as
that tested by SPITZIG [64] at room temperature (295 K) has been considered.
The results obtained for the hardening modulus rate h/722 as a function of the
misalignment angle § are presented in Fig. 17.

9.2. Symmetric double slip process

For symmetric double slip process, numerical computations have been per-
formed for the fundamental matrix IL determined by Eq. (6.22) with simplifying
assumptions (8.4), (8.5), (8.8), and by using the necessary condition (8.6).

For Al-Cu single crystals an example of uniaxial tension has been considered
at room temperature with the orientation as follows: s; = (1,0,1), m; = [1,1,1]
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F1G. 16. Numerical results for single slip process for the hardening modulus rate h/7%? as
function of the misalignment angle § for Al-Cu single crystal.
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F1G. 17. Numerical results for single slip process for the hardening modulus rate h/7%? as
function of the misalignment angle § for Fe-Ti-Mn single crystal
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and s = (0,1,1), ma = [1,1, 1]. The numerical results obtained for the hardening

modulus rate h/7%? as a function of the ratio ¢ = ﬁ are plotted in Fig. 18, and
the misalignment angle § as a function of the ratio ¢ is shown in Fig. 19.

For nitrogenated Fe-Ti-Mn single crystals the orientation is as follows: s, =
(0,1,1), my = [1,1,1] and s = (1,0,1), ma = [1,1,1]. The numerical results
obtained for the hardening modulus rate h/72? as a function of the ratio q are
presented in Fig. 20, and for the misalignment angle § as a function of the ratio
q are plotted in Fig. 21.

The influence of the assumed value for the irreversibility coefficient x on the
inception of the adiabatic shear-band localization for Al-Cu single crystals is
presented in Figs. 22 and 23.

040

0.35

030

0.25

09 1.0 1.3 1.2 1.3 1.4 q

adiabatic with substructure
—=~—isothermal with substructure
—-— qadiabatic

---------- isothermat

FiG. 18. Numerical results for symmetric double slip process for the hardening modulus rate
h/7*? as function of the ratio g for Al-Cu single crystal.



)

5K

W

3f

L

2f

1|

-lllll]llllLIIJALll_llllllIl }\\‘nj
09 10 11 12 13\\W4 g
C ANY

4 \

F1G. 19. Numerical results for symmetric double slip process for the misalignment angle § as
a function of the ratio g for Al-Cu single crystal.
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Fi1G. 20. Numerical results for symmetric double slip process for the hardening modulus rate
h/7?% as function of the ratio g for Fe-Ti-Mn single crystal.
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Fi1G. 21. Numerical results for symmetric double slip process for the misalignment angle § as
function of the ratio ¢ for Fe-Ti-Mn single crystal.
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FiG. 22. The influence of the assumed value for the irreversibility coefficient x on the
hardening modulus rate h/7%* for Al-Cu single crystal.
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F1G. 23. The influence of the assumed value for the irreversibility coefficient x on the
misalignment angle § for Al-Cu single crystal.

9.3. Discussion and comparison

Comparison of the analytical theoretical results with the available experimen-
tal observations of CHANG and ASARO [8] for aluminum-copper single crystals
tested at 298 K, and SPITZIG [64] for nitrogenated Fe-Ti-Mn single crystals tested
at 295 K, clearly shows that the influence of the dislocation substructure on the
critical hardening modulus rate is very pronounced. However, the misalignment
of the macroscopic shear-bands from the active slip systems in crystal’s matrix
is not very much affected by the influence of the evolution of substructure.

Comparison of the theoretical results plotted in Figs. 14-21 with those ob-
tained experimentally by CHANG and ASARO [8] and SPITZIG [64] shows that

h
the theoretical results for (—ﬁ give higher values. This seems to be natural

since the experimental observatioflrsl,tdetected the values of the hardening modulus
rate when the shear-band had been already well developed, while the theoretical
predictions were computed at the inception of the shear-band localization.

Comparison of the theoretical results for the misalignment angle ¢ plotted in
Figs. 19 and 21 with those obtained experimentally by CHANG and ASARO [8],
LISIECKI et al. [35] and SPITZIG [64], shows that the theoretical predictions give
good agreement.

It is noteworthy that different situation takes place for a single slip process
when the geometry of the deformed specimen is simplified and the misalignment
angle § computed analytically is too small.
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It should be pointed out that the influence of the evolution of the dislocation
substructure is combined with the thermomechanical coupling and it gives a
distinct synergetic effect. This synergetic effect is very well visible from the
results presented in Figs. 18 and 20.

The changes of the assumed value for the irreversibility coefficient x in the
range of 0.65 — 0.85 (as it has been suggested by Mason et al. [38]) does not
influence the inception of the adiabatic shear-band localization too much, cf.
Figs. 22 and 23.

10. FINAL COMMENTS

The main features of the theory of thermodynamic viscoplasticity of sin-
gle crystals developed in this paper are as follows: (i) it is invariant under any
diffeomorphism: (ii) it takes into considerations such important effects as ther-
momechanical coupling, the evolution of the dislocations substructure, the non-
Schmid law, the spatial covariance and plastic spin; (iii) it describes cooperative
phenomena and as the result, it takes account of synergetic effects.

To accomplish this purpose, the theory has been developed within the ther-
modynamic framework of the rate-type covariance constitutive structure with
finite set of the internal state variables. The crucial idea in this theory is the
very efficient physical interpretation of the internal state variables. Assumption
that o) and B) are interpreted as densities of mobile and obstacle dislocations
in a particular slip system v, respectively, and £™) as the concentration of point
defects, permitted to base all considerations on good physical foundations and
to use the available experimental observations of single crystals.

This theory has been inspired by recent theoretical and experimental inves-
tigations by FOLLANSBEE [19], RASHID et al. [57], ASARO and RICE [3], CHANG
and ASARO [7, 8], SPITZIG [64] and LISIECKI et al. [35]. All these mentioned
works present deep understanding of real features of the deformation process
of single crystals and have given many important measurements needed for the
development of the theoretical descriptions.

The necessary criterion for the adiabatic shear-band localization introduced
allows to discuss particular effects which can affect the localization phenomena
in single slip, as well as in symmetric double slip processes. It has been proved
that the cooperative phenomena play a very important role in the development
of macroscopic shear-band localization of plastic deformation in single crystals.
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