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The paper uses the layerwise theory, i.e. the zigzag behaviour of the in-plane displacements
through the thickness, and the Lagrange interpolation functions for finite element to compute
the stresses and displacements in beams made by composite materials. The layerwise method
can determine the interlaminar stresses and other localized effects with the same accuracy as
2D finite element method but less computer effort. We present as illustration two examples.

1. INTRODUCTION

Composite materials are those formed by combining two or more materials on
a macroscopic scale such that they have better engineering properties than the
conventional materials, for example metals. Some of the properties that can be
improved by forming a composite material are stiffness, strength, weight reduc-
tion, corrosion resistance, thermal properties, fatigue life, and wear resistance.
Fiber-reinforced composite materials, for example, consist of high strength and
high elastic modulus fibers in a matrix material. The use of fiber-reinforced lam-
inates in aerospace, civil buildings, automotive shipbuilding and other industry
has increased tremendously during the past several years. This is largely due to
the high strength-to-weight ratio of composites as well as their ability to be tai-
lored to meet the design requirements of strength and stiffness. Coinciding with
these new applications is the interest in the accurate prediction of the detailed
response and failure characteristics of laminated plates.

Composite laminates are formed by stacking layers of different composite
materials and/or fiber orientation. By construction, composite laminates have
their planar dimensions by one or two orders of magnitude larger than their
thickness. Therefore, composite laminates are treated as plate elements.
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The layerwise theories can represent the zigzag behavior of the in-plane dis-
placements through the thickness. The zigzag behavior is more pronounced for
thick laminates where the transverse shear modulus changes abruptly trough
the thickness and can be found in the exact 3-D elasticity solutions obtained
by PAGANO [8], PAGANO and HATFIELD [9], SRINIVAS and RAO [16], Noor [7],
Savoia and REDDY [14] for bending of the rectangular laminated plates, and
by VARADAN and BHASKAR [18] and REN [13] for bending of the laminated
shells. In a series of papers, SWIFT and HELLER [17] studied laminated beams
by assuming layerwise constant shear strains and a continuous transverse dis-
placement trough the thickness. A similar approach was used by DUROCHER
and SOLECKI [5] to study transversely isotropic plates with two or three lay-
ers. SEIDE [15] and CHAUDHRI and SEIDE [3] extended the work of Swift and
Heller to laminated plates. DISCIUVA [4] proposed a generalized zigzag model
by assuming a displacement field enabling a nonlinear variation of the in-plane
displacements trough the laminate thickness and fulfils a priori the geometric
and stress continuity conditions at the interfaces.

1.1. Owverview on the laminate plate theories

Numerous displacement-based laminate theories have been proposed to de-
scribe the kinematics of laminated composites. Based on the assumed variation
of the displacement field through the laminate thickness, these theories can be
divided into the following approaches: two-dimensional theories, e.g. equivalent
single-layer theories (ESL), three-dimensional elasticity theories (3-D): (tradi-
tional 3-D elasticity, layerwise theory (LWT)) and multiple models methods.

1.1.1. Equwvalent single-layer theories (2-D). The simplest ELS laminate
theory is the classical laminated plate theory (or CLPT), which is an extension
of the Kirchhoff (classical) plate theory to laminated composite plates:
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where (ug, vp, wo) are the displacement components along the (z,y, z) coordinate
directions, respectively, of a point on the midplane (i.e., z = 0).
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The next theory in the hierarchy of ELS laminate theories is the first-order
shear deformation theory (or FSDT) [11], which is based on the displacement
field:

u(z,y,2,t) = uo (,y,1) + 2¢5 (z,9,1),
(12) v(z,y,z,t) = (-T:y,t)+z¢y (xayat))
w (m,y,z,t) = Wo (a:,y,t) )

where ¢, and ¢, denote rotations about the y and z-axes, respectively. The first-
order shear deformation theory requires shear correction factors [19, 20], that
are difficult to determine for arbitrarily laminated composite plate structures.
The shear correction factors depend not only on the lamination and geometric
parameters, but also on the loading and boundary conditions.

Second and higher-order ELS laminated plate theories use higher-order poly-
nomials in the expansion of the displacement components trough the thickness
of the laminate [10], often difficult to be interpreted in physical terms. The
second-order theory with transverse inextensibility is based on the displacement
field:

U(x»y,zat) = Up (zayat) +Z¢)z (a:,y,t) + 22¢$ (I)y’t)a
(13) v (Ziy’zat) = UO ($7y)t) + z¢y (I’y)t) + 221/)31 (xayvt) b}
w(z,y,2,t) =wo (z,y,t).

Higher-order theories can better represent the kinematics, may not require
the shear correction factors, and can yield more accurate interlaminar stress
distributions. However, they involve considerably more computational effort.

The major deficiency of the ELS models in modeling composite laminates
is that the transverse strain components are continuous across the interfaces
between dissimilar materials; thus, the transverse stress components are discon-
tinuous at the layer interfaces. This deficiency is most evident in relatively thick
laminates, or in localized regions of complex loading and geometric and material
discontinuities.

1.1.2. Multiple models methods. The analysis of composite laminates has
provided the incentive for the development of many of the reported multiple
model methods [1, 2, 6, 10]. In general, those models can be divided into two cat-
egories: the sequential or multi-step methods, the simultaneous methods. Most
of the sequential multiple model methods are developed for global-local analysis.
Typically the global region (i.e. the entire computational domain) is analyzed
economically (often an ELS laminate model) to determine the displacement or
force boundary conditions for a subsequent analysis of the local region (i.e. a
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small subregion of particular interest). The simultaneous multiple model meth-
ods are characterized by a simultaneous analysis of the entire computational
domain where different subregions are modeled using different mathematical
models and/or distinctly different levels of domain discretization.

2. BEAM LAYERWISE MODEL

The layerwise finite element model studied in this work is the same as a
conventional 2-D displacement finite element model in terms of interpolation
capability and problem size for a 2-D body with parallel top and bottom surfaces.

A beam of variable thickness must be approximated as a constant-thickness
beam in order to use the present element. In all practical cases, a laminated
structure is made of constant-thickness laminate and therefore the present ele-
ment can be used to model such structures. In contrast to the equivalent single-
layer laminate theory, the layerwise theories are developed by assuming that
the displacement field exhibits only C? — continuity through the laminate thick-
ness. Thus, the displacement components are continuous through the laminate
thickness but the derivatives of the displacements with respect to the thickness
coordinate may be discontinuous at various points through the thickness, thereby
allowing for the possibility of continuous transverse stresses at the interfaces sep-
arating dissimilar materials. Layerwise displacement fields provide a much more
kinematically correct representation of the moderate to severe cross-sectional
warping associated with the deformation of thick laminates.

The layerwise format maintains a 1-D type data structure. This provides
several advantages over the conventional 2-D finite element models:

e First, the volume of input data is reduced.

e Secondly, the in-plane 1-D mesh and the transverse mesh can be refined
independently of each other without having to reconstruct a 2-D finite
element mesh.

The generalized laminate plate theory proposed by Reddy will be adapted to

laminated beams.

The displacement field in the k-th layer is written as [12]:

1\]
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where u,w represent the displacement components in the x and z directions,
respectively, of a material point initially located at (z,z) in the undeformed
laminate. N and M are the numbers of finite element subdivisions through the
laminate thickness. The Uj(z,t) and W;(z,t) represent the axial displacement
and transverse displacements along lines of constant z in the undeformed beam
corresponding to nodes 1,2, ..., N trough the thickness of the beam. The @J(z)
and U/(2) (j = 1,2,..., N) are linear Lagrangian interpolation polynomials which
are nonzero only between nodes j—1 and j+1 through the thickness. Typically N
should be greater than or equal to the number of material layers in the laminate,
so that transverse stresses can be accurately determined. In general, N and M
do not have to be equal; however, the finite element formulation is simplified
by making N and M equal, that implies that ®’(z) and U/(z) are the same
interpolation functions.

For a linear variation through each numerical layer, the shape functions are
(see Fig. 1):

J-th layer

FiG. 1. Bending of a laminated beam and the linear approximation functions ®”’(z) used in
the layerwise theory.
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The strains associated with the displacement field (2.2) are:
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The finite element model corresponding to each of these theories is developed
by applying the principle of virtual displacements to a representative physical

element of the beam.

The governing equations of motion for the present layerwise theory can be

derived using the principle of virtual displacements:

T
0:/(6U+5V—5K)dt.
0

(2.6)

The constitutive equation for the k-th orthotropic lamina with an arbitrary

layer angle can be written as:
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where there are the transformed elastic coefficients in the (z,z) systems, which
are related to the elastic coefficients in the material axes, C;;.

Substitution of Eqgs. (2.2), (2.5) in (2.6), followed by integration with respect
to y and z, yields:
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Using the constitutive relations (2.7), the expressions of the resultant forces
that require laminawise integration take now the forms:
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The subscript S indicates that the quantities are related to the transverse
shear, and:

ou’ U’
(2.10) et = 81‘5] y eé = owJ
w Oz

Substitution of Egs. (2.9) into Eq. (2.8) gives the compact form of Hamilton’s
principle as follows:
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3. FINITE ELEMENT APPROACH

Over each finite element, the dlsplacements (U?, W) are expressed as a
linear combination of shape functions ¥; and nodal values (U, W) as follows:

NPE .
(3.1) wl, wh =3 (W, Uf) ¥,
=1
where NPE is the number of nodes per element.
Substituting approximations (3.1) in (2.10) we obtain:
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where:
. ) R T
= 001 9, OVnpE
(3'3) 6x am ..... az )
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and the displacements vector for each element:
ul = ful w')T,
(3.4) o ={ U] Ul ... Ulpe }

’LU'] — { WlJ Wé] ..... W}‘\]’PE
The stiffness matrix K, takes the form:
HTA11H+GB11G HTA12H+GB12G

HTA2'H + GB2G  HTA2H + GB2G
(35) K. = / | |
Ll BT AN + gBY'G HTAN?2H + GBN2G
..... HTAWH 4+ GBNG
..... HTA?NH + GB2NG
) i dz
..... HTANNH £ GBNNG

and the loading vector P, is:

(3.6) P.=PyoW!+...+ P.nyoWV

/[(11(1)'5W1+...+qN(z)-(5WN]dz.
L

4. RESULTS AND DISCUSSION

A linear static analysis of the composite beam was performed. In the direction
of the thickness coordinate we choose a linear piecewise Lagrange interpolation
functions, and along the beam we use one-dimensional elements with quadratic
Lagrange interpolation functions.
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In the general case we should consider any number of layers, but in this
numerical example we consider 8 layers and the reduced Gauss points corre-
spond to the centroid of each layer of each finite element. We study two numer-
ical examples concerning in each case simply supported beam. Beam length is
10 em and width 2 cm and the beam is loaded by a concentrated force at the
middle span equal with 1kN. The first one is a symmetric laminate with angle-
ply (0/45/ — 45/90),)(0° corresponds to outer layers), and in the second case
(90/ £ 45/0)s.s (90° corresponds to outer layers). Each layer, in both the exam-
ples has the same thickness hy = 0.1. The following layer material properties are
used (Er — 1 msi,):

(4.1) % =25, G12=G13=05Fy, Go3=02F,, v=0.25.

Here the subscript L denotes the direction parallel to the fibers, subscript
T denotes the inplane direction perpendicular to the fibers, and the subscript z
denotes the out-of-plane direction.

The displacements and stresses results are presented in the Fig. 2 and Fig. 3
and the comparison with the classical method in the Table 1.

Table 1. Dimensionless displacement of the point (x=L/2, z=H/2) and stresses.

Beam model w(100) / H
CBT -3.92

LWT -3.90185
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Fi1G. 2. Maximum normal stress, ozs(a/2, z), distribution through the thickness of a
symmetrically laminated (a), (0/ +45/90)s and (b) (90/ £+ 45/0)s; beams subject to
three-point bending.
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F1G. 3. Variation of transverse shear stress d4.(0, z) = 0z.bh/F through the thickness of a
symetrically laminated (a), (0/ £45/90)s and (b), (90/ £45/0)s beams subject to three-point
bending.

CONCLUSIONS

The resulting layerwise finite element model is capable of computing interlam-
inar stresses and other localized effects with the same accuracy as a conventional
2D finite element model.

For these two examples considered, the results are near to the classical theory,
in order to have a comparison.

The layerwise theory can be very useful for complex elements. Thus, we may
use simultaneously on the structure conventional finite elements and in other
subregions — the LWT elements.
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