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STUDY ON NORMAL STRESSES IN COMPOSITE CURVED BEAMS
SUBJECTED TO UNSYMMETRICAL BENDING
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Based on the formula for normal stresses in curved beams of one material, the formu-
lae for normal stresses in composite curved beams with general cross-sectional shape under
complicated loads can be derived. The novel formulae presented in this paper can be used in
evaluating the normal stresses of connecting rod bush coated with bearing metal for internal
combustion engine. These normal stress formulae, in special case, are reduced to those for
composite curved beams subjected to symmetrical bending. A numerical example is given for
verification at the end of this paper.

1. INTRODUCTION

The formulae for normal stresses, shearing stresses and radial stresses of com-
posite curved beams subjected to symmetrical bending can be found in details
in [1, 2]. However, in engineering applications, some composite curved beams
with general sectional shape are subjected to complicated loads, resulting in two
bending moments and shearing forces in the corresponding vertical direction,
apart from the normal force on any section of the beams. Therefore in this pa-
per, the formulae for normal stresses in composite curved beams are derived in
a more common sense.

2. THE LOADS AND CROSS-SECTION OF A COMPOSITE CURVED BEAM

For the purpose of convenience of discussion, we take the example of a curved
coplanar beam with the constant cross-section consisting of two different mate-
rials and suppose that the two materials are connected with each other firmly,
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as shown in Fig. la, and the composite curved beam is subjected to compli-
cated loads. We denote the y and z components of the external forces per unit
length arc by py(s) and p,(s), respectively, and assume that twisting of any
cross-section is zero or negligible [3]. In the curvilinear system (s,y, 2), s is the
arc length measured along the geometric axis, y is a radial coordinate directed
toward the center of curvature of this axis, and the direction of 2z is normal to
the plane of the beam. A section of the beam with two different materials I and
II is shown in Fig. 1b. The interface between material I and II is parallel to the
z axis, and G is the centroid of beam’s section.
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Fic.1. Composite curved coplanar beam and its cross-section.

3. THE DERIVATION OF THE FORMULAE FOR NORMAL STRESSES IN
COMPOSITE CURVED BEAMS

Navier’s assumption is introduced here. The studied composite curved beam
is subjected to distributed loads of intensity py(s) and p,(s) as shown in Fig. 1a,
and on any cross-section of the beam the axial force, shearing forces and bending
moments are assumed to be positive when they act in the directions shown in
Fig. 2. Therefore, the normal stress at every point on the material I and II of
beam’s section can be written in the form [3]

E
01=E151=—1(A+By+0z),
1-y/R
(3.1) -
o o 2
02—E252—71_y/R(A+By+CZ).

where
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F1G. 2. Internal forces acting upon the typical beam unit.

Ey, Ey - modulus of elasticity of material I and II,

£1,€2 — longitudinal strain of any fiber in material I and II of the beam.

The problem now reduces to the determination of A, B, and C. When the
beam is subjected to complicated loads, which on any section result in normal
force Ng, and bending moments M, and M,, the following equations can be
obtained:
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Ay

Az Ay
ydA1 ZdA1 / dA2
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(3'2) My = /alsz1 +/UQZdA2 '—"AEI/ ZdAl

[cont.] 1 __ y/R
Ay A A
: | yZdAl / szAl / szQ
BE CFE AFE.
* R/l—WR+' V1= T ) T=y/R
1 A Az

yszg / szAQ

BE ~———+CE e
* 2/l—y/R+ 2/ 1-y/R

2 Az

where A;, Ay are the areas of material I and 11, respectively. Integral coefficients
are obviously functions of the geometry of the cross-section. For simplification,
the following notations are introduced:

2
Jyl—/mdfh, Jyzl—/l_ /RdAl,

A1 AI
’!/2 2
(33) “:/?ﬁm““‘mz/ Tyt
Al Ay
y2
= | ———=dA 0= | ———=dA,.
A2 A2

In Eqgs. (3.2), some surface integrals in material I can be written as

1
/1—y/Rd ! ! R/y ! R2 b

Ay
z

- = A —Jyz1,
/l—y/RdAl /zd1+RJy1
A1 Al

1

/l—y/RdAl = /ydA1 +EJ11.
Al Al

The same is true for some surface integrals in material 1I. Hence, Egs. (3.2)
can be reduced to

N, = Aa+ Bb+Cd,
(3.4) M, = Ad+ Bf +Cy,
M, = Ab+ Be + Cf,

where
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1
a=F; (A1+—/ydA1+R2J )

Ay
1 1
Ey | A — dA —J, s
+2(2+R/y 2+R2J2)
Az

1 1
b= FE (A/ ydA; + Rle) + E; (A/ ydAs + EJZQ) ,

1 2

1 1
d=FE; (A/ zdA, + EJyZI) + Fy (A/ zdAq + EJyZQ) ,

1 2

e=E1J. + EaJy2,
f = E1Jyzl + E‘ZJyz2 )
g = ElJy1 + EaJys .

Solving Egs. (3.4), we find

A:%[(eg 12) N, — (bg — df) M, + (bf — de) M,
(3.6) B= % [— (bg — df) Ns + (ag — d*) M, — (af — bd) M,,],

C= E[(bf de) Ny — (af — bd) M, + (ae — b?) M,],
in which

H = aeg — af? — b2g + 2bdf — d?e.

Finally, substituting Eqgs. (3.6) into Egs. (3.1), we obtain

i _H(l—f;ly/R—_) {[(eg = F)N; — (bg — df)M; + (bf — de) M, ]
— [(bg — df )Ny — ag — d*)M, + (af — bd)M ly
+ [(bf — de)Ns — (af — bd)M, + (ae — b?) M, }
(3.7)
Es 2
09 = m{[(eg - f )Ns - (bg - df)MZ + (bf - de)My]

—[(bg — df)N;s — (ag — d*) M + (af — bd) M,y
+[(bf — de)Ns — (af — bd)M, + (ae — b*)M,]z}.
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Equations (3.7) are general formulae for normal stresses in composite curved
beams. By simply equating of Eqs. (3.7) to zero, we obtain the equation for the
neutral axis, which reads

[(eg — f?) Ny — (bg — df) M, + (bf — de) M,
(3.8) — [(bg — df) Ns— (ag — d*) M, + (af — bd) M,]y
+ [(bf — de) N, (af—bd)M + (ae — %) My| z=0.

Given the value of s, it is obvious that neutral axis doesn’t generally pass
through the centroid of the cross-section.

4. DISCUSSION

Equations (3.7) can be reduced to simpler forms :a some special cases:
a. Unsymmetrical curved beam loaded in its plane; In this case, p, and M,
are both equal to zero, and Egs. (3.7) become

o = T [(eg = £7) Ne— (b9 ~d) M) = [(bg =) N

— (ag — &) M;) y + ((bf — de) Ny — (af — bd)M]}
(4.1)

g9 =

E
2y/R) {[(eg = 1%) No = (bg — df) Mz] — [(b9 — df) N

H(1-
— (ag — &) M,] y + [(bf — de) Ny = (af — bd) M,] 2},

b. If the cross-section is symmetrical with respect to the y axis, then

Syl = /ZdA1 = 0, Syg = /ZdA2 = 0,
Al AZ
Yz Yz
Jyzl /l—y/R 1 0, Jyz2 /1—y/Rd 2 0,
A[ A2
d=f=0, H = aeg — b%g.

Equations (3.7) reduce to
E, [(Nse — M,b)  (Nsb— M,a)y N Myz
( )

wy | WRLU @) T e
. B [(Nse - Mb)  (Nib—M.a)y Myz]
2~1—?//R (ae — b?) (ae — b?) g |’
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c. Symmetrical curved beam loaded in its plane; now M, is zero, and d =
f =0, Egs. (9) can be further written in the form:

i E, [(Nse — M,b) - (N,b— M,a) y]
1= )

1-y/R (ae — b?)
(4.3) By [(Nee— M;b) — (N;b— Ma)y
02—1—y/R[ (ae — b?) ]

For symmetrical curved beam loaded in its plane, it follows M, = 0, and
d = f = 0. By Egs. (4.3), we obtain the results for connecting rod bush of
internal combustion engine subjected to radial, uniformly distributed load on
gauge dia, which are almost the same as those in [4].

When the curved beam is made of the same material, it holds F; = Fy = E.
And we have

E E E

a:EA+ﬁJZ, b= EJZ, d:__éjyz’
e=EJ,, f=EJ,., 9=EJ,

(aeg — af — b2g + 2bdf — d%e) = E3AJ,J, — E3AJZ,.

Introducing the above results into Egs. (3.7), we obtain:

Ny M, M.Jy— My y
A RAT T JJ,-J2, 1-y/R

(44) oy =02 =05=

M,J, - M,J,, =2

which is the formula in [3].

5. NUMERICAL EXAMPLE

As a numerical example, we take into consideration an unsymmetrical curved
beam made of two materials shown in Fig. 3a. We assume that the distance from
the centroid axis z of the section to the center O of curvature is R, the external
side of the section is a rectangle 4a’ x @' for material I, and the internal side is
on angle section of 4a’ x 4a’ x o’ for material II (see Fig. 3b). The beam is loaded
by equal moments M, = M, = M and N; =0, so that Eqgs. (3.7) become
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FiG. 3. Bending of the composite curved beam with unsymmetrical cross-section.

7= e (065 = de) = g )]
+[(ag —d*) - (af — bd)]y+ [(ae —b?) — (af — bd)]z},
(5.1) ME,
02 = m{[(bf — de) — (bg — df)]

+[(ag —d?) ~ (af — bd)]y-!— [(ae— b?) — (af — bd)]z}.

Note that for the structure shown, the twisting moments are also necessary
on some section to provide equilibrium; but again we neglect their influence on
the normal stresses [3]. In order to simplify the calculation, we assume E; = 3 E,
Es =E, ¢’ = 1lcm, R = 6cm. Substitution of these values into Eqs. (3.3) yields the
geometric coefficients of the section, then introduction of the obtained geometric
coefficients into Egs. (3.5) and (5.1) results in the following equations:

U 3M (100.04 + 763.13y + 933.34z>
1 )

T 1-y/R 13558.27
(5.2)
M (100.04 + 763.13y + 933.342
2T 1-y/R 13558.27 '

A plot of Egs. (5.2) is shown in Fig. 3c. The variation is linear in z direction
but hyperbolic in the y direction. Normal stresses are changed suddenly at the
interface of the two materials. Since E; = 3F,, the maximum stress doesn’t
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occur at D’ but at D on the section. We can obtain the equation for neutral axis
by simply equating o1 or g9 of Eqs. (5.2) to zero and simplifying

100.04 + 763.13y + 933.342 =0

CONCLUSION

a. In this paper, the general formulae for normal stresses in curved beams
made of two materials are derived; however, the results can be readily extended
to multi-materials.

b. The formulae derived in this paper are valid for composite curved beams
of general cross-sectional shape subjected to complicated loads. The effects of
torsion can be neglected when the bars of solid section are subjected to trans-
verse forces passing through the centroid of the section, thus the given formulae
can be applied to the calculation of normal stresses for composite curved beams
subjected to unsymmetrical bending, which represents a general engineering ap-
plication.
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