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In this paper geometrically nonlinear analysis of functionally graded shells in 6-parameter
shell theory is presented. It is assumed that the shell consists of two constituents: ceramic
and metal. The mechanical properties are graded through the thickness and are described by
power law distribution. Formulation based on 2-D Cosserat constitutive model is used to derive
constitutive relation for functionally graded shells. Numerical results for typical benchmark
geometries of smooth and irregular FGM shells under mechanical loading are presented. The
influence of power-law exponent and micropolar material constants on the overall behaviour
of functionally graded shells is investigated.
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1. Introduction

The material known as “functionally graded material” (FGM), was probably
first proposed in 1984 by a group of material scientists in Japan [1]. Continuous
changes in the composition of constituent materials, microstructure, porosity
of the FGM material result in gradients of material properties. Functionally
graded shells are usually made from ceramic and metal. The connection of these
materials gives high heat-resistance and high mechanical strength shells. The
volume fraction of ceramic and metal is varying through the thickness of the
shell from one surface to the other. In laminated composite structures discon-
tinuous change of the material properties at interface surface sometimes leads
to delamination failure due to sliding and cracking. FGM shells do not have
this material mismatch because continuous and smooth change in the material
properties eliminates discrete changes in the stress and displacement distribu-
tions. Furthermore, there is possibility to design a functionally graded shell for
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specific application by choosing an appropriate type of materials, shell thickness
and material distribution.
With increasing application of FGM shells, it is important to investigate

the behaviour of shells in nonlinear range. Many geometrically nonlinear studies
have been performed for isotropic and laminated composite shells, see e.g. [2].
However, a review of literature shows that only the limited number of studies
have been carried out to analyze the nonlinear response of FGM plates and
shells. The results of nonlinear analysis of simply supported square functionally
graded plate under transverse mechanical load have been presented in [3] and
for immovable hinged edges in [4]. The closed-form analytical solutions for rect-
angular plates [5], illustrated by the Fourier series expansion, were compared
with the finite element solutions in [6]. Large deflection and postbuckling analy-
sis of functionally graded rectangular plates under transverse and in-plane loads
using a semi-analytical approach have been performed in [7] and for circular
plates subjected to mechanical and thermal load in [8]. Numerical results ob-
tained using higher-order elements for typical benchmark problem geometries of
FGM regular shells have been presented in [9]. In book [10] nonlinear response
of functionally graded shells and plates to nonlinear bending, postbuckling and
nonlinear vibration has been investigated. An example of dynamic buckling anal-
ysis of thin FGM plate has been presented in [11] and nonlinear bending analysis
of FGM rectangular plates on two-parameter elastic foundations in [12].
In this paper, a geometrically nonlinear FEM analysis of FGM shells is

presented. The formulation is based on the nonlinear 6-parameter shell the-
ory [13], where the sixth parameter is drilling degree of freedom. The kinematic
model, formally equivalent to the Cosserat surface, is obtained from through-
the-thickness integration of 3D balance laws of linear and angular momentum of
the Cauchy continuum. The foundations of the theory of asymmetric elasticity
were laid down by Cosserat brothers [14]. An extensive historical study about
the materials with internal structure may be found, for instance in [15–17]. Some
constitutive relations for elastic isotropic shells with drilling degree of freedom
have been presented in [13, 18–21] and for composite shells in [22]. Recently the
elastoplastic material law obtained by the Reissner-Mindlin type through-the-
thickness integration of the plane stress Cosserat relation has been proposed
in [23, 24].
In comparison with [3–12] where the Cauchy continuum is used, here we use

the formulation based on 2-D Cosserat constitutive model to describe kinematic
of functionally graded shells. Early results we have presented for simply sup-
ported square plate in [25] and for pinched cylinder with free edges in [26]. The
constitutive relation is based on the assumptions: first order shear deformation
theory (FOSD, e.g. [27] or Reissner-Mindlin kinematics), small strains, finite dis-
placements and rotations. The closed-form of constitutive matrix is obtained by
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through-the-thickness integration of the plane stress Cosserat material law. We
assume the shell base surface as geometrical middle surface. Numerical results
are presented for typical benchmark geometries of thin, smooth and irregular
FGM shells. We also investigate the influence of micropolar material parameters
on the overall behaviour of functionally graded shells. A similar approach can
be found in [28], yet different shell kinematic is used there in comparison to this
paper.

2. Functionally graded shells

Functionally graded materials (FGMs) are microscopically inhomogeneous
composites in which the material properties exhibit continuous and smooth
change from one surface to another. This characteristic allows for eliminating
interface problems and mitigate thermal stress concentrations. In this paper,
we analyze the most popular in the literature [3–12] case of functionally graded
shell which top surface is ceramic-rich and bottom surface is metal-rich (Fig. 1).

Fig. 1. Typical functionally graded shell.

The effective material properties P (z) (for instance Young’s modulus) in the
lamina of FGM shell may be calculated by using a simple rule of mixture of
constituent material properties Pi, i = c,m

(2.1) P (z) = PcVc + PmVm, −h

2
≤ z ≤ h

2
,

where the subscripts c and m refer to ceramic and metal constituents, Vi is the
volume fraction of constituent material i and z is the coordinate in the thickness
direction (Fig. 1).
In the literature one may found different functions describing variation of

volume fraction of constituent materials through the shell thickness. The results
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for power-law, sigmoid and exponential function have been presented, e.g. in
[5, 6]. When precise information about distribution of particles is not available,
the micromechanical models [10] may be used to obtain effective properties. In
this work, we assume that volume fraction distributions of the ceramic Vc and
metal Vm are expressed by the power law

(2.2) Vc =

(

z

h
+

1

2

)n

, Vm = 1− Vc, n ≥ 0,

where n is the volume fraction exponent. The shell base surface is defined as
geometrical middle surface. For n = 0 we obtain a fully ceramic shell, and as
n tends to infinity we have a fully metal shell (Fig. 2). Considering (2.1), (2.2)
the material properties P (z), like Young’s modulus E(z), density ρ(z) and the
shear modulus G(z), are functions of the thickness coordinate z

(2.3) P (z) = (Pc − Pm)

(

z

h
+

1

2

)n

+ Pm.

Variation of the material properties through the thickness of the shell for
different values of exponent n is presented in Fig. 2.

Fig. 2. Variation of the volume fraction of the ceramic and of the material properties
through the thickness.

Considering that the effect of changing Poisson’s ratio ν in the thickness
direction on the results is very small [6], in this work, we assume that the
Poisson’s ratio is constant in the shell. During determining the components of
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constitutive matrix we calculate following integrals of Young’s modulus through
the thickness:

(2.4) E1 =
1

h

h/2
∫

−h/2

E(z) dz

=
1

h

h/2
∫

−h/2

(Ec − Em)

(

z

h
+

1

2

)n

dz+
1

h

h/2
∫

−h/2

Em dz =
Ec − Em

n+1
+ Em,

(2.5) E2 =
1

h2

h/2
∫

−h/2

E(z)z dz = (Ec − Em)

[

1

(n+2)
− 1

2 (n+1)

]

,

(2.6) E3 =
12

h3

h/2
∫

−h/2

E(z)z2 dz = (Ec − Em)

[

3

(n+1)
− 12

(n+2)
+

12

(n+3)

]

+ Em.

The moduli E1, E2, E3 will be used in next section to derive analytical closed-
form of constitutive matrix.
Direct analysis of functionally graded shells in FEM commercial programs

is not generally available. However user may model FGM shell as a composite
shell consisting of many layers. In this method the Young’s modulus of com-
posite layers is calculated in the middle of each layer according to (2.3). This
approach gives approximated results because distribution of the material prop-
erties through the thickness is discrete, and as the number of layers will increase
the results will be more precise. This method has been used for instance in [11]
and in this paper during calculation in commercial program Abaqus.

3. Constitutive relation

This section shows derivation of the 2D constitutive relation for functionally
graded shell which general form is

(3.1) s = Cε.

We assemble the strain components on the shell base surface in the one column
array (vector form)

(3.2) ε = {ε11 ε22 ε12 ε21 | ε1 ε2 ||κ11 κ22 κ12 κ21 |κ1 κ2}T = {εm | εs || εb | εd}T,



114 K. DASZKIEWICZ, J. CHRÓŚCIELEWSKI, W. WITKOWSKI

where letters m, s, b, d denote the following components: the membrane, shear,
bending and drilling, respectively. The Cosserat type strain measures on the
shell base surface may be written as, see e.g. [13]

(3.3) εβ = y,β −tβ, δεβ = v,β +y,β ×w, β = 1, 2.

In the above equation ti(x) (i = 1, 2, 3) is the orthogonal basis in the current
placement of the shell, v(x) and w(x) are vector fields of virtual translations
and virtual rotations, respectively. Comma in (3.3) and further indicates partial
differentiation with respect to the surface coordinates. For the curvatures the
following definitions hold, see e.g. [13]

(3.4) κβ = axl(Q,β Q
T), δκβ = w,β .

In (3.4) axl(. . .) is the operator defining an axial vector of some skew tensor and
Q(x) is an independent proper orthogonal tensor field computed here through
canonical parametrization, described, for instance in [29]. The strain components
in (3.2) are defined by component form of equations (3.3)1 and (3.4)1

(3.5) εβ = εβ1t1 + εβ2t2 + εβt3, κβ = t3 × (κβ1t1 + κβ2t2) + κβt3.

Correspondingly to (3.2) we populate one column array of the shell stress and
couple resultants

(3.6) s={N11N22N12N21|Q1Q2||M11M22M12M21|M1M2}T={sm|ss||sb|sd}T.

The column arrays (3.2) and (3.6) are energy conjugated. Detailed formulation
of the 6-parameter shell theory and mathematical background one may found
in [13, 18–20] and references given there.
In this paper we use the formulation described recently in works [23–25].

We assume the plane Cosserat stress in each lamina of the shell. Then the one
column arrays (vectors) of generalized stresses and strains for lamina of the shell
have form

(3.7) e=







em
. . .
ed







=







































ε11
ε22
ε12
ε21
. . . .
ε1
ε2







































=


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




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
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





















ε11
ε22
ε12
ε21
. . . .
κ1 · l
κ2 · l







































, σ=







σm

. . .
σd







=














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






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
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σ11
σ22
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. . . .
m1/l
m2/l







































,

where l is the micropolar characteristic length – material parameter. Introduc-
tion of l in (3.7)1,2 gives all the components the same physical dimension.
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The elastic constitutive relation of the plane Cosserat stress is following

(3.8) σ = Cee,

where Ce is the constitutive matrix of the shell lamina defined as

(3.9) Ce =

[

Cmm Cmd

Cdm Cdd

]

=





















Ea1 Ea2 0 0 0 0

Ea2 Ea1 0 0 0 0

0 0 G+Gc G−Gc 0 0

0 0 G−Gc G+Gc 0 0

0 0 0 0 2G 0
0 0 0 0 0 2G





















=





















Ea1 Ea2 0 0 0 0

Ea2 Ea1 0 0 0 0

0 0 Gµ1 Gµ2 0 0

0 0 Gµ2 Gµ1 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G





















.

Here a1 =
1

1− ν2
, a2 = νa1 and Gc is micropolar modulus [15]. Additionally in

further part of section we will use symbols µ1 =
1

1−N2
and µ2 =

1− 2N2

1−N2
in

which, following [30], N2 =
Gc

G+Gc
is the Cosserat coupling number. In the pa-

pers [31, 32] experimental methods for determining the micropolar constitutive
parameters for elastic solids are described.
We further employ the kinematical assumption of Mindlin-Reissner, known

also as the first order shear deformation (FOSD) theory, e.g. [27]. Paper [33]
shows that for thin plates higher-order shear theories and FOSD give almost
the same results. One column array (vector form) of the strain components e in
the shell space under FOSD hypothesis follow from known strains ε (3.2) at the
shell base surface as

(3.10) em = εm + zεb,

where z is the coordinate through the thickness of the shell h which varies from
h− = −h/2 to h+ = h/2. For drilling components of strains we propose the
following relation

(3.11) ed = εd · l.
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However, recently in paper [34] has been shown that, in some cases, the drilling
couples is connected also with membrane strain components.
During calculation of the stress resultants we assume that µ ≈ 1 with µ

being the determinant of the shifter tensor µαβ . This simplification is reasonable
only for thin shells with a small curvature h ≪ Rmin. Through the thickness
integration of stresses using (3.8)–(3.11) we obtain the membrane, bending and
drilling stress resultants (3.6) as functions of the strains defined in (3.2):

(3.12) sm =

h+
∫

h−

σm dz =

h+
∫

h−

[Cmm(εm + zεb) +Cmd l · εd]dz

= E1cHmmεm + E2bHmmεb,

(3.13) sb =

h+
∫

h−

σmz dz =

h+
∫

h−

[Cmm(zεm + z2εb) + zl ·Cmdεd]dz

= E2bHmmεm + E3dHmmεb,

(3.14) sd =

h+
∫

h−

l · σd dz =

h+
∫

h−

[l ·Cdm(εm + zεb) + l2 ·Cdd · εd]dz

=

h+
∫

h−

l2 ·Cdd · εd dz = G1Hddεd,

where

c =
h

1− v2
, b =

h2

1− v2
, d =

h3

12 (1− v2)
,

G1 =
E1

2(1 + ν)

and Hmm, Hdd are coefficients matrices

(3.15) Hmm =











1 ν 0 0

ν 1 0 0

0 0 µ1(1− ν)/2 µ2(1− ν)/2

0 0 µ2(1− ν)/2 µ1(1− ν)/2











, Hdd =

[

2hl2 0

0 2hl2

]

.
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The shear part following [13] is defined as

(3.16) ss =

h+
∫

h−

σs dz = αs

h+
∫

h−

Css εsdz = G1Hssεs = G1

[

αsh 0

0 αsh

]

εs,

with a shear correction factor αs = 5/6. In the calculations αs, l and N are
assumed to be constant in the thickness direction.
We compare below the structure of elastic drilling stiffness (3.14), (3.15)2

with form used in [13], [18–20]. For N = (1/2)
√
2 and n = 0 (the fully ceramic

shell) from the equivalence condition for the elastic drilling stiffness we obtain
the following identities

(3.17) αt
Eh3

12(1 − v2)
(1− v) = 2Ghl2 ⇔ αt

Eh3

12(1 − v2)
(1− v) = 2

E

2(1 + v)
hl2

which yields

(3.18) l =

√

αt

12
h ⇔ 12

(

l

h

)2

= αt.

The relation (3.18) clearly shows that αt is a material parameter connected
with the micropolar length l =

√

(1/12)αth and have not to be understood as
a penalty coefficient. Hence, under given N = (1/2)

√
2, l and αt have similar

influence on the results.
Table 1 presents a comparison between the stress resultants components de-

rived for functionally graded shells based on 2-D Cosserat constitutive model and
for isotropic shells in 6-parameter shell theory [13]. In Table 1 we introduce for
isotropic shell coefficients C and D as the tension stiffness and bending stiffness,
respectively. Analogically for FGM shell: E1c is the tension stiffness, E2b – the
coupling stiffness and E3d – the bending stiffness. Comparing the components
for FGM and isotropic shells E1 has the sense of the effective membrane moduli,
E2 of the “coupling” moduli and E3 of the effective bending moduli. For n = 0
and n = ∞ the resultants for FGM shells simplify to that for isotropic shells
based on 2-D Cosserat constitutive model because then E2 = 0 and for n = 0
E1 = E3 = Ec, for n = ∞ E1 = E3 = Em. The stress resultants for FGM shell
and isotropic shell described e.g. in [13] are equivalent, if additionally are fulfilled
following conditions: N = (1/2)

√
2 and l =

√

(1/12)αth. In FGM shells the base
surface defined as geometrical medium surface is not a mechanical neutral sur-
face because of asymmetric distribution of stiffness through the shell thickness.
A consequence of that is E2 6= 0 and fact that the constitutive relations include
terms coupling membrane and bending components.
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Table 1. Comparison of constitutive relations for FGM and isotropic shells in 6-parameter shell theory.

Resultant Functionally graded shell Isotropic shell [13, 18, 19]

N11 = E1c(ε11 + vε22) + E2b(κ11 + νκ22) C(ε11 + vε22)

N22 = E1c(vε11 + ε22) + E2b(νκ11 + κ22) C(vε11 + ε22)

N12 =
1− ν

2(1−N2)

(

E1c[ε12 + (1− 2N2)ε21] + E2b[κ12 + (1− 2N2)κ21]
)

C(1− v)ε12

N21 =
1− ν

2(1−N2)

(

E1c[(1− 2N2)ε12 + ε21] +E2b[(1− 2N2)κ12 + κ21]
)

C(1− v)ε21

Q1 = G1αshε1 Gαshε1

Q2 = G1αshε2 Gαshε2

M11 = E3d(κ11 + vκ22) + E2b(ε11 + vε22) D(κ11 + vκ22)

M22 = E3d(vκ11 + κ22) + E2b(vε11 + ε22) D(κ22 + vκ11)

M12 =
1− ν

2(1−N2)

(

E3d[κ12 + (1− 2N2)κ21] + E2b[ε12 + (1− 2N2)ε21]
)

D(1− v)κ12

M21 =
1− ν

2(1−N2)

(

E3d[(1− 2N2)κ12 + κ21] +E2b[(1− 2N2)ε12 + ε21]
)

D(1− v)κ21

M1 = 2G1hl
2κ1 αtD(1− v)κ1

M2 = 2G1hl
2κ2 αtD(1− v)κ2

E1 =
Ed

n+ 1
+ Em, E2 = (Ec − Em)

[

1

(n+ 2)
−

1

2 (n+ 1)

]

, E3 = (Ec − Em)

[

3

(n+ 1)
−

12

(n+ 2)
+

12

(n+ 3)

]

+ Em,

G1 =
E1

2(1 + ν)
, C =

Eh

1− v2
, D =

Eh3

12 (1− v2)
, b =

h2

1− v2
, c =

C

E
, d =

D

E
, n ≥ 0, 0 < N < 1, l > 0
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4. Numerical examples

In this section we present three numerical examples which show the range
of applicability of our formulation to the geometrically nonlinear analysis of
smooth and irregular FGM shells. For numerical simulations we use our own
FEM program written in Fortran. In numerical examples we apply the 16-node
C0 Lagrangian type shell finite element, denoted as CAMe16, with 6 DOFs
at each node and fully integrated matrices. All variables from SO(3) group
are interpolated using the algorithm described, e.g. in [13, 22]. To increase the
efficiency of calculations the solver uses the HSL library [35].
The effective moduli of FGM shells defined by equations (2.4)–(2.6) and the

shell resultants depend on the volume fraction exponent n. We investigate its
influence on the equilibrium paths of shell structures. However in our formulation
based on 2-D Cosserat constitutive model results also depend on two micropolar

constants i.e.: N2 =
Gc

G+Gc
and l. We study, therefore, the influence of coupling

number and characteristic length on the arbitrary displacement for chosen load
level and force for selected value of displacement or critical force.
In all examples we assume following values of Young’s modulus:Ec=1.51×109

for the ceramic constituent, Em = 0.7 × 109 for the metal constituent and con-
stant value of Poisson’s ratio ν = 0.3.

4.1. Annular FGM plate under end shear force

A benchmark of cut thin plate ring subjected to a distributed transverse
shear force (Fig. 3) has been proposed in paper [36] as a test of shell elements

Fig. 3. Cantilever annular FGM plate strip under transverse shear force.
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in the range of finite rotations. This example was considered for homogenous
and isotropic plates e.g. in [13] and for functionally graded shells in [9]. The ge-
ometric quantities are given by R1 = 6, R2 = 10, h = 0.03. The analysis is
performed for regular mesh 6×30 CAMe16, with 80 load steps for distributed
load qref = 0.25. The micropolar constants are assumed as N =

√
2

2
,
l

h
=

1

1000
.

The comparison of our equilibrium curves of vertical displacement at point B
for different values of power-law index n with reference solutions from paper [9]
is shown in Fig. 4.

Fig. 4. Annular FGM plate strip, equilibrium curves of transverse displacement
at point B for different values of n.

Then we investigate the influence of micropolar constants on normalized
deflections of point B w(B) for load multiplier λ = 80 and n = 0.5. The results

obtained for N =

{

0.1;

√
2

2
; 0.9

}

and the micropolar characteristic length taken

as the ratio to the shell thickness
l

h
=

{

1

1000
;

1

100
;
1

10
; 1; 10; 100

}

are compared

in Fig. 5. The reference solution w(B)ref = 13.09 is calculated for N =

√
2

2
,

l

h
=

1

1000
.
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Fig. 5. Annular FGM plate strip, variable N , variable l, normalized displacement
wB for λ = 80.

4.2. Pull-out of a functionally graded cylindrical shell

As the second example we consider a functionally graded cylindrical shell
with free edges (Fig. 6) which is subjected to two opposite point loads. The
homogeneous case was investigated, e.g. in [13, 37] while FGM case in [9]. The
following data is used in analysis: L = 10.35, R = 4.953, h = 0.094, Pref = 106,
P = λPref. In calculations we assume that the internal surface of cylinder is
made of metal and the external surface of ceramic. Due to three planes of sym-

Fig. 6. Pull-out of FGM cylinder with free edges, geometry.
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metry, we analyze only octant of the cylindrical shell using regular mesh 12×12
CAMe16. The micropolar constants are assumed as N = (1/2)

√
2 and l = 10−4.

The obtained curves of deflections at point a w(a) and transverse displacements
at point b u(b) are shown in Fig. 7 and are compared to reference solutions
from paper [9]. The equilibrium paths can be divided into two parts: the first
being dominated by the bending stiffness and characterized by large displace-
ments, the second is characterized by reinforcement due to increasing role of the
tension stiffness. The characteristic point on the equilibrium path we call here
“boundary” point.

Fig. 7. Pinched FGM cylinder with free edges, equilibrium paths of radial displacements
at point a and b.

Next we investigate the influence of micropolar constants on the equilibrium
paths of radial displacement at point a and b. The curves calculated for N =
{

0.1;

√
2

2
; 0.9

}

,
l

h
=

{

1

1000
; 1; 10

}

and n = 2 are depicted in Fig. 8. Then

we compare in Fig. 9 values of normalized force P calculated for fixed radial
displacement at point a w(a) = 2.5 and variable micropolar parameters l and N .
The value w(a) = 2.5 responses “boundary” points on the equilibrium paths.

The reference value P0 = 1.891 is calculated for N =

√
2

2
,
l

h
=

1

1000
and the

power-law index n = 2.
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Fig. 8. Pinched FGM cylinder with free edges, influence of micropolar parameters l and N

on equilibrium paths.

Fig. 9. Pinched FGM cylinder with free edges, variable N , variable l, normalized P

for w(a) = 2.5.

4.3. Channel section clamped beam, irregular shell

In the last numerical example we analyze a channel-section clamped beam as
the example of irregular shell. The so-called drilling degree of freedom problem
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makes numerical analysis of the shells with orthogonal intersections a demanding
task. We wish to emphasize that in our formulation based on the 6-parameter
shell theory the drilling DOF is naturally defined, so this issue is absent. The
geometry of the cantilever channel-section beam loaded with vertical force at
the free end is presented in Fig. 10. This example was described originally in
[18] for purely elastic homogenous shell and later studied, e.g. in [13, 21]. The
results for elastoplastic analysis are presented, for instance in [23, 24, 38]. For
large displacement and rotation analysis the solution of this example has mainly
shell character, therefore in calculations we use shell model instead of the beam
theory.

Fig. 10. Geometry of the channel section clamped beam.

The following data is used in analysis: L = 36, hf = 6, bf = 2, h = 0.05,
Pref = 10000, P = λPref We assume that internal surfaces of channel section
beam are made of metal and external surfaces of ceramic. For computation the
regular discretization (4 + 8 + 4)×36 CAMe16, i.e. number of elements per:
(flange+web+flange)×length, is chosen. The following values of the micropolar
constants are used: N = (1/2)

√
2 and l = 10−4. Figure 11 shows the compar-

ison of our results with solutions calculated in commercial program Abaqus,
as there is not available in literature any reference solution for FGM channel
section beam. In Abaqus we model FGM shell as composite shell consisting of
10 layers using the simplified method described at the end of the Sec. 2. In
calculations we used the discretization (4 + 6 + 4) × 36 of eight node elements
with reduced integration of matrices S8R. The influence of the power-law index
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n on equilibrium paths is depicted in Fig. 11. In Table 2 for different values of
n are compared values of load multiplier for curve limit points.

Fig. 11. Channel section clamped beam, equilibrium paths of deflection u(a) for different values
of exponent n.

Table 2. The influence of exponent n on loci
of the limit point for the channel section.

Power-law index n Load multiplier λ

0 1.741

0.5 1.394

1 1.244

2 1.115

106 0.807

Next we investigate the influence of the micropolar parameter N and ratio

l/h on value of P for the limit point. The results calculated forN=

{

0.1;

√
2

2
; 0.9

}

and ratio
l

h
=

{

1

1000
;

1

100
;
1

10
; 1; 10

}

are compared in Fig. 12. The reference

solution P0 = 1.115 is obtained for N =

√
2

2
,
l

h
=

1

1000
and exponent n = 2.
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Fig. 12. Channel section clamped beam, variable N , variable l, normalized P for limit point.

5. Conclusions

In this paper, we have presented the formulation based on 2-D Cosserat con-
stitutive model appropriate for the resultant 6-parameter shell theory. We used
this formulation to derive the elastic constitutive relation for functionally graded
shells. We assumed that FGM shell is made of two isotropic constituents: ce-
ramic and metal and the variation of properties through the thickness is defined
by the power law. The geometrically nonlinear analysis have been performed for
two examples of the regular FGM shells: annular plate strip and pinched cylin-
der with free edges. The calculated equilibrium paths show very good agreement
with the reference solutions from paper [9]. Additionally our formulation allows
for correct analysis of irregular shells, therefore in this paper we extended the
set of reference solutions available in literature for functionally graded shells
with the example of FGM channel section clamped beam. The numerical results
of geometrically nonlinear analysis show that

• response curves of FGM shells under mechanical loading lie between curves
of ceramic and metal shells and has similar character like response curves
of homogenous shells;

• power-law index n has a big influence on the results.
The simplified method for modelling of FGM shell as composite shell consisting
of many layers, used in the commercial program Abaqus, gives the results in
good agreement with that obtained by the exact formulation.
The Cosserat constitutive relation used in our formulation has two addi-

tional material parameters, i.e. the micropolar parameter N and the micropolar
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characteristic length l. The numerical results obtained for thin shells show that
parameter N has very small influence on the results, noticeable only in the ex-
ample of pinched FGM cylinder with free edges. The common conclusion for all
examples is that for l/h <∼ 1 the equilibrium curves do not show significant
discrepancies. However, values of l/h >∼ 1 cause stiffening effect and in some
examples have qualitative influence on the results. So to avoid discrepancies be-
tween our formulation and the reference solutions we propose the range of l/h
should be from 0 to 1. The influence of ratio l/h on shell behaviour obtained in
this work for FGM shell is similar to that presented for homogenous shells, for
instance in [23, 24, 30].
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