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An idealized model of prism-like trabecular bone was developed to study its static and
dynamic responses under torsional moments. Effects of bone marrow and bone apparent density
were investigated. By constructing multipoint Padé approximants [1, 2] to the torsional complex
modulus, hydraulic stiffening of the prism-like bone due to the presence of bone marrow was
predicted. The torsional compliance, creep function and relaxation function were also evaluated.

1. INTRODUCTION

Trabecular bone is a porous structure consisting of bony network of con-
necting rods, plates and prisms (elastic phase) filled with bone marrow (viscous
phase). Various approaches to modelling the mechanical behaviour of trabec-
ular bone as a continuum have been proposed, see [10, 13, 15] and [35]. By
assuming the trabecular bone to be a solid, only apparent material properties
can be obtained, and this assumption is not valid over the length scales close
to microstructural dimensions, cf. [14]. In order to study the states of stress
and strain in individual trabeculae, microstructural analysis is required. This is
important in bone biomechanical processes, such as bone remodelling, and in me-
chanical processes, such as trabecular bone fatigue, which are most likely affected
by trabecular tissue stresses and strains [17].
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Microstructure analysis of trabecular bone has followed the general approach
used in modelling cellular plastics. MCELHANEY et al. [18] developed a porous
block model of trabecular bone based on integration of spring stiffness, loaded
in parallel or in series. Using this model, these authors found good agreement
between prediction of apparent stiffness and the experimentally measured stiff-
ness values in some internal layer of human skull. PUGH et al. {24] modelled the
subchondral trabecular bone as a collection of structural plates and concluded
that bending and buckling were major modes of deformation of the trabecu-
lae. WILLIAMS and LEWIS [35] modelled the exact structure of two- dimensional
section of trabecular bone with plane strain finite elements to predict the ap-
parent transversely isotropic elastic constants. GIBSON [10] developed models
of trabecular bone structure using analytical techniques for porous solids. He
predicted the dependence of apparent stiffness on apparent density for differ-
ent structural types of trabecular bones. BEAUPRE and HAYES [3] developed a
three-dimensional spherical void model of trabecular bone and used finite element
analyses to predict apparent stiffness and strength, as well the stress distribu-
tion within the trabeculae. HOLLISTER et al. [15] applied the homogenization
theory [25] for an investigation of mechanical behaviour of cubic rod-like struc-
tures modelling trabecular bones By using finite element method these authors
evaluated the apparent, orthogonal Young’s moduli and compared them with
the experimental data obtained for proximal humerus, proximal tibia and distal
femur. In the structural models discussed above only the static response of the
trabecular structure has been studied and the effect of bone marrow has not been
considered.

Hydraulic stiffening of trabecular bone due to the presence of bone marrow
has been exhibited in the the papers [5] and [21]. More precisely, CARTER and
HAYEs [5] performed compression tests on trabecular bone samples at differ-
ent strain rates. These authors claim that at elevated strain rates the viscosity
effect of bone marrow in increasing bone strength and stiffness become signifi-
cant. OCHOA et al. [21] measured femoral head stiffness and studied its changes
by altering the fluid boundary condition. They suggested that a mechanical
strengthening mechanism due to fluid may be present in intact trabecular bone,
and the overall stiffness reflects the material properties of both the porous solid
matrix and the entrapped fluid. KASRA and GRYNPAS [16] analyzed the idealized
structural model of vertebral trabecular bone under compressive loading. These
authors also predicted hydraulic stiffening of trabecular bone due to the presence
of bone marrow.

Both the compact and trabecular bones exhibit time-dependent behavior,
however at rather elevated strain rates. The paper by TELEGA and LEKSZYCKI
[29] provides, among others, a review of inelastic and torsional behavior of bone.
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The reader is referred to this comprehensive paper for relevant references. The
excellent book by TAVASSOLI and YOFFEY [26] offers a systematic study of struc-
ture and function of bone marrow. However, its mechanical properties have not
been included. Therefore we treat marrow as a viscous material and present the
results of calculation in a nondimensional form.

More precisely, an idealized structural model of a prismatic cancellous bone
filled with bone marrow has been developed in order to study its static and dy-
namic response under torsional loadings. Our main goal is to derive analytical
formulae relating effective torsional moduli such as complex modulus, complex
compliance, creep and relaxation functions to the apparent density of the tra-
becular bone and viscosity of a bone marrow. To this end, the homogenization
procedure [25] and multipoint Padé approximants ([2, 30, 31, 32]) have been
successfully applied.

2. MATHEMATICAL MODEL OF A PRISM-LIKE CANCELLOUS BONE

Let us consider a two-phase material consisting of elastic porous solid filled
with viscoelastic fluid. Such an idealized composite materlal is used to model a
trabecular bone. Assume that A} = )\1 + z)\l and u} = ,u1 + z,ul are complex
moduli of the solid phase, while /\2 = Xy +i); and B = po +zu2 characterlze the
v1scoe1ast1c properties of the fluid phase. Note that the case A\] =0, y; = 0 and
Ay =0, fto = 0 represents a material consisting of a porous elastic matrix filled
with a Newtonian fluid.

For the oscillating viscoelastic solid-fluid composite the governing equations
take the form

(2.1) gij,jz 0 on 6, n= 0, 1,
where
n
(2.2) g:ijz X;z '?"k,k (51']' + ﬂ; ('Zi,j + 'Zj,i) in Q, n=1,2.
The interface conditions are given by
2 1
(23) &iz Us, Ulij m; 202'1'_7’ m; on onN.

The boundary condition is classical
(2.4) O%j my; =g; on on.

1 .
Here alij, 02ij, u; and 1%1- denote the components of stress and displacement fields
in the solid and fluid phases respectively, while g; are prescribed. The geometry
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1
of the composite material is defined by: Q is the domain occupied by a matrix,
2 12
while ) denotes the domain occupied by fluid, @ = U Q is the domain occupied

1 2
by the composite material, 30 and 9 are the surfaces enclosing the solid and
fluid phases, respectively. As usual 9 denotes the boundary of €2, m stands for

1 2
the unit vector normal to 9 and 92 and is directed outwards.

3. TORSION OF AN INHOMOGENEOQOUS BEAM

Consider a porous beam filled with a fluid. Assume that at the opposite ends
of the beam the torsional moments are applied . For such a case the displacement
field takes the form [19]

12
(3.1) wu; = —ox3T2, U = QT3IT1, uz = af(z1,72) in Q=QUQ,

12
(3.2) ol1=0p=033=012=021=0in Q=QUQ.

The parameter a denotes the torsional angle of unit length of the beam. By
substituting (3.1) - (3.2) to (2.1) - (2.4) we obtain

7]
(3.3) or3 = al™*(z)— ((ﬂ(m) + (—1)kmkmki1) inQ, k=1,2
Oz
T = (:1:1,:1:2),

where

Tk+1, if k= 1, - * -
(34) Tpr1= . , T*(z) = 01(z)p] + O2(z)u2.

Tp_1,ifk=2. '
Here ©;(z), ¢ = 1,2, are the characteristic functions: Q;(z) =1 (Bi(z) = 0), if
z belongs (does not belong) to the phase i. The stresses ox3 given by Eq. (3.3)
satisfy the equilibrium equation, cf. [7],

2
o, N 0 .
B5) Y e @5 (6@ + (-1 zarar)| =0in @,
k=1
and the interface condition
2
0
(3.6) Z F*(m)g— (B(x) + (—l)kxkxkil) my =0 on 0.
k=1 Tk

!
Here 0 denotes the lateral surface of the beam, while I'*(z) is the complex shear
modulus. The set of Egs. (3.1) - (3.2) and (3.5) — (3.6) describe the torsional
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response of the prismatic solid-fluid beam under harmonically oscillating external
moments.

4. HOMOGENIZATION OF AN ANISOTROPIC INHOMOGENEOUS BEAM

In the sequel we restrict our considerations to a periodic distribution of shear
modulus now represented by

(4.1) I*(e) =I"(a) =I"(3),
where € > 0 is a small, nondimensional parameter characterizing the periodicity

of a cross-sectional microstructure of the porous beam.By substituting (4.1) into
(3.5) one obtains

QJIQ)

2
(4.2) Z

=[G (@) + (V)] =0 i o0,

To solve Eq. (4.1), the method of two-scale asymptotic is applied. Thus we write,
cf. [4, 5],

(43)  B(z) = wo(z,y) + ewi(z,y) + ’wa(z,y) + ..., y = z/e, yEY.

Here Y is the two-dimensional unit cell. We set

AR = 9 (F*(y)—?—-—),

dyx, Oy

0 _ 9 ( i) 0 9

(44) AP = 5 (W5, ) + T W55
*) _ ey 99
A2 =T (y) amk awk

We recall that I'* is now a complex function. Formally, the method of asymptotic
expansions proceeds similarly to the case of real coefficients. Then Eq. (4.2) takes
the following form:

2
(45) Y (7248 +e7 4P + AP (wo + (~DFapzpar +ewr + ) =0.
k=1
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Comparing the terms containing equal powers of € we get

2
> AP (wo + (—1)Fzparsr) = 0,

k=1
2 2
(4.6) > A wy + > AF) (g + (~1)*zpz421) = 0,
2 ) . 2
Z (Agf)wz + A(lj)'wl) + Z Agk)(wo + (-D)*zpzre) = 0.
j=1 k=1

The standard procedure shows that, cf. [4, 5],

(4.7) wo(z,y) = f(z),
and
2 P ‘
(48)  wil@y) =~ Y )z~ (f@) + (Doksi) + filo),
k=1
where fi(z) is an arbitrary function of z, while x*(y), k = 1,2 is a solution to
(4.9) ZA(J) k(y az I*(y), x*(y) Y - periodic.
k

Equation (4.9) has a Y — periodic solution, provided that

(4.10) / (}: AP, 4 Z AP (wo + (1) kakﬂ)) dy = 0.

y =l

Substituting (4.7) and (4.8) into (4.10) we obtain

2
P ($@) + (-1 axziar) dy =0

Since the functions I'*(y) and x*(y) are Y — periodic, the first two integrals
appearing in (4.11) vanish. Thus we arrive at the following homogenized bound-
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ary value problem: find the function f such that

2 2 . 62 .
> Q;kgg; (f(“") + (_1)k$k$ki1) my = 0.
k=1
Here )
* N 0
(4.13) Qjx = }[I‘ (y) <6jk - -—%—y(]—y)—) dy,

are the homogenized coefficients. We recall the Y - periodic functions x* are
solution to Eq. (49). By substituting x*(y) = yx — T*(y) into (4.9) and (4.13)
we obtain

. . OT* _
(4.14) Qjx = / ) —5,— (,y)dy, Jhk=1,2,
Yj
Y
where T*(y) are determined by

(4.15) ig(?— ( 3’—’(; ';E )) =0, (w—T*®)) is ¥ ~ periodic.

Relations (4.14) — (4.15), where I'*(y) is given by (3.4), were investigated in [12]
in the context of dielectric coefficients of two-phase composite materials. Due
to the results obtained in [12], the effective torsional moduli @}(2)/u1 have a
Stieltjes integral representation of the form

;k(z) 1= dﬂ]k( ) P /‘_5

4.16
(4.16) Bt l1+zv’ pi

_]_,

o

where the matrix [B;(v)] is positive definite, while Bi;(v), B22(v) are non-
decreasing functions.

5. HOMOGENIZATION OF INHOMOGENEOUS BEAM WITH ISOTROPIC SYMMETRY

Let us consider an inhomogeneous beam consisting of cylinders filled with a
fluid, regularly spaced in a solid phase. Such an idealized system models prism-
like cancellous bone filled with marrow, see Fig. 1. For the prismatic beam shown
in Fig. lbwe have T! = T2 =T, Q}, = Q% = Q* and Q}, = Q% = 0. On
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account of that, the anisotropic boundary value problem (4.14) - (4.15) reduces
to the isotropic one:

(5.1) Q" / I (y dy,
where

0 (1w, T (y) O (w2 OTW)\ _
(5:2) E (F v I )+ dy2 (P ®) Y2 ) =0

(y1 —T(y)) is Y — periodic
REMARK 1.

We observe that replacing in Eqs. (5.1) and (5.2) the complex modulus
I'*(y) by the corresponding real modulus I'(y) one obtains the equations defining
the effective shear modulus @ for a beam with elastic phases. Conversely, the
replacement of I'(y) by I'*(y) transforms the real effective modulus @ to the
corresponding complex one Q*.

b)
T
v =
Y compact bone
e £))= £
= E <
= t marrow
c E Ny
L:; E @ 5
£ Y/ trabecular bone
L\.
LLL
L

!
(s

,_
(s
1
(x

Fi1G. 1. (a) The scanning electron micrograph showing a prismatic structure of cancellous bone;
a sample taken from the femoral head, after {11}, pp. 318. (b) An idealized structural model
of a prism-like cancellous bone.

In the next section Egs. (5.1), (5.2) will be solved for a composite material
consisting of elastic cylinders embedded in an elastic matrix.
6. HEXAGONAL ARRAY OF ELASTIC CYLINDERS

Let us study a hexagonal array of elastic cylinders embedded in an elastic
matrix. For such a case the parameters i, u5 and consequently z = p3/u} — 1
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take real values only. For convenience we set Q* = Q, p} = py = p1, p3 = py =
p2 and z = X. From (4.16), it follows that the solution Q(X)/u1 of the boundary
value problem (5.1), (5.2) has a Stieltjes integral representation

1
QX) . [ dBw) . _pm
(6.1) i =2 | T %o’ X = o 1,

where B(v) = B11(v) = Boa(v). In order to find Q(X)/u1 defined by Egs. (5.1)
- (5.2), the multipoint Padé technique will be applied, cf. [30]. That technique
requires the following input data:

(i) The discrete values of (Q(p, X)/p1) — 1 given at ¢ = ¢; and X = X;, see
Table 1.

Table 1. Discrete values of the elastic torsional modulus Q(X)/p1 — 1
for the hexagonal array of cylinders, after [23].

z | 9=0.76 | p=0.80 | p=0.84 | »=0.88
1 | -0.8711 | -0.8996 | -0.9286 | -0.9607
0 | 0.0000 | 0.0000 | 0.0000 | 0.0000
9 | 3.3778 | 3.9489 | 4.6887 | 5.7225
49 | 5.7076 | 7.2600 | 9.7931 | 5.1565
oo | 6.7600 | 8.9586 | 3.0093 | 24.4508

(ii) The expansion of (Q(X)/u1) —1 at X = 0 given by QX)) —-1=
X +0.50(1 — ) X2 + O(X3).
In the present paper the following rational functions

a1 X + aM2X2 + ...+ aMMXM

MM X = 9
[ / ]( ) 1+bM1X+bM2X2+...+bMMXM

(6.2)
M -1/M - 1}(X
_ &(M—I)IX + d(M_1)2X2 + ...+ é(M_l)M_IXM~1
14 bg-11 X + bar—12 X2 + oo + bag—1ym—1 XM ’

define the multipoint Padé approximants [M/M](X) and [M — 1/M - 1)(X) to
(Q(X)/u1) — 1 respectively, cf. [32] The coefficients ank, bumr (k= 1,2,..., M)
and d(pr—1);5 b(M ~1)j (4 =1,2,..., M —1) are defined by 2M equations for [M/M]

[M/M](X) = X +05X(1 — p)X? + O(X?),
[M/M)(X;) = (Q(X:)/m) -1, for X_;, -1<X;<oo,
i=1,2,.,2M — 4,
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and 2M — 2 relations for [M — 1/M — 1]

M —1/M - 1)(X) = ¢X + 05X (1 — ) X% + O(X?),
(6.4)
[M - I/M - l](Xi) = (Q(X,,)/p,l) -1 for —1< X; < oo,
i=1,2,.,2M — 4.
In [30] it has been proved that Q(X)/u; satisfies the following inequalities
(6.5) (-1 [M/M)(X) < (-D% [Q(X)/m) = 1] < (1)
M -1/M - 1](X).
Here K, denotes the number of the input data given at points X; belonging to
the interval [-1, X). By starting from the values [(Q(g;, X;)/u1) — 1] depicted in
Table 1 and the coefficients ¢ and 0.5¢(1—¢) of power expansion of [(Q(X)/u1) -

1], the multipoint Padé approximants 1+ [3/3](X) and 1+ [2/2](X) are evaluated
and gathered in Table 2. Those approximants estimate of Q(X)/u; is as follows:

(6.6)  (-1)"* (1+[3/3)(X)) < (1) Q(X)/m1 < (-1)** (1 +[2/2)(X)) .

Table 2. Multipoint Padé approximants 1 + [3/3] and 1 + [2/2] to torsional modulus Q(X)/p1
of a hexagonal array of elastic cylinders embedded in an elastic beam; w-volume fraction.

¥ 1+ [3/3](X) 1+ [2/2](X)
0.76 1+ 1.7328X + 0.9159X2 + 0.1476 X 3 1+ 1.3460X + 0.4066X2
) 1+ 0.9728X + 0.2678X2 + 0.0190.X3 1+ 0.5860X + 0.0524X2
0.80 1+1.8655X + 1.0787X2% 4+0.1910X3% | 1+ 1.3364X + 0.3881X2
) 1+ 1.0655X + 0.3063X2 +0.0192X3 | 1+ 0.5364X + 0.0390.X2
0.84 1+ 1.8901X + 1.0865X2% +0.1816X3 | 14 1.3048X + 0.3481X?
) 1+1.0501X 4 0.2717X2 + 0.0130X3 | 1+ 0.4648X + 0.0249.X2
0.38 1+1.8582X + 1.0009.X2 + 0.1345X3 1+ 1.2331X + 0.2685X2
‘ 1+0.9782X +0.1929X2 4 0.0053X3 | 1+ 0.3531X + 0.0106X2

Figure 2 depicts: a) the Padé bounds 1 + [3/3](X) and 1 + [2/2](X) on
torsional modulus Q(X)/u1, b) the approximation error & = 100% x {[3/3](X) —
[2/2](X)}/{1 + [3/3](X)}, X = pa/p — 1 for Q(X)/p.

From Fig. 2 we conclude that the torsional modulus Q(X)/u; differs from the
multpoint Padé approximants 1+ [3/3](X) and 1 + [2/2](X) by less than 0.3%.
On account of that we assume that the function

(6.7) QX)/m =1+[3/3)(X), X =(p2/m1) -1, <088

provides a good estimate of the effective torsional modulus.
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F1c. 2. Hexagonal array of elastic cylinders with volume fraction ¢ and physical param-
eter X = (p2/p1) — 1; (a) multipoint Padé bounds 1 + [3/3)(X) (conventional lines) and
1+[2/2](X) (scattered line) on the torsional modulus Q(X)/u1; (b) error £ = 100% x {8/31(X)~

(2/2)(X)}/{1 + [3/3](X)} for Q(X)/pa.

7. HEXAGONAL ARRAY OF FLUID CYLINDERS

Consider now a hexagonal array of cylinders filled with viscous fluid embedded
In an elastic beam. For such a case the parameters w11, #5 and consequently
z = p3/pui — 1 take complex values. On account of Remark 5, by replacing X in
(6.7) by 2 one obtains the complex torsional modulus Q*(z) Jpt

(7.1) Q*(2)/p1 =1+ [3/3](2) for < 0.88, z = Twps/p; — 1.

Here p; is the shear modulus of the elastic matrix, while up denotes the
viscous coefficient of a Newtonian fluid. Table 3 depicts formulae for complex
moduli @*(2)/p1 and complex compliances p1/Q*(2), z = (Iwua/pu1) — 1 of the
hexagonal array of fluid cylinders. Figures 3 and 4 present complex modulus
@*(z)/p1 and the real and imaginary parts of it, respectively.

Note that the modulus Q*(2)/(u1) and compliance u1/Q*(2), z = (Iw/k)—1,
K = i1/ pg divided by Iw are the Fourier transforms of the torsional creep function
®(t) and torsional relaxation function ¥(t), respectively, cf. [6]. Hence we can
write

FNEPY P Y(w) _ Q*(2) Twpg
7.2 B(1w) = : - = _
(7:2) () Tw@Q*(z)” Twpy [0

The inverse of the Fourier transformations of ®(Jw) and ¥(Iw) take the
forms, cf. Table 3 and Eq. (7.2)

1.
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3
bc
me(t) = d°+ Y = (1- (1 +asnt) ™),
n=1""N

(7.3) .
W _p g (1~ (1 +apst)e™).
n=1

r
1 —1 9n

Here the coefficients d¢,d", b<, bh,, aS and af, take values listed in Tables 4 and 5.

Table 3. The torsional moduli Q(z)/p1 and Q~'(2)p1 for the inhomogeneous beam filled with
the viscous fluid distributed in hexagonal array of cylinders: Q(z)/p1 = 1+ [3/3)(2),
z=1— (Iw/K), & = p1/p2;3 p — the volume fraction.

R [ _Iw_,  _m B o dw om
"2 —, 2= — =1, - = ’—‘——,Z-— -y K=
B1 K B2 Q*(2) K B2
_ _60.980x __ _0.0974x _ __0.0431x 0.0146k 0.0655x 0.9348x
0.76 7.760 10.09x—Jw 4,157k ~Tw 2.831x~-Tw 0.129 + 4,196k~ ITw + 2.887k—Iw + 2.124x-Iw
_ _102.62x __ _0.1831x _ __ .0218x 0.0476x 0.0666x 0.9226x
0.80 {9.957 12.56x~Tw 3.814x~Tw 2.603k—Jw 0.100 + 3.911k—Iw + 2.643x~Tw + 2.095x—Tw
_ _209.39x __ _0.4192x _ __ _0.0192x 0.07551x 0.0925x 0.9011x
0.84 |14.01 17.27x—1w 4.210x—Jw 2.47Tk—1w 0.071 + 4.397Tk—Iw + 2.521x—ITw + 2.066Kx—Jw
_ _737.96x __ _1.6569x __ .02234x 0.1339« 0.1471x 0.8608x
088 25.45 31.67x—Iw 5.446k - Iw 2.388x—Tw 0039 + 5.956x —Tw + 2.450k—Tw + 2.034k~Tw

Table 4.

e | & 5 23 b5 @ P as
0.76 | 0.1289 | 0.0146 | 0.0655 | 0.9348 | 2.1958 | 0.8867 | 0.1238
0.80 | 0.1004 | 0.0476 | 0.0666 | 0.9226 | 1.9109 | 0.6432 | 0.0948
0.84 | 0.0714 | 0.0755 | 0.0925 | 0.9011 | 2.3972 | 0.5213 | 0.0656
0.88 | 0.0393 | 0.1339 | 0.1471 | 0.8608 | 3.9565 | 0.4500 | 0.0344

Table 5.

© dr by b5 b3 al a3 a3

0.76 | 7.7600 | 60.980 | 0.0974 | 0.0431 | 8.0939 | 2.1575 | 0.8312
0.80 | 9.9586 | 102.62 | 0.1831 [ 0.0218 | 10.557 | 1.8143 | 0.6035
0.84 | 14.009 | 209.39 | 0.4192 | 0.0192 | 15.275 | 2.2101 | 0.4768

0.88 | 25.451 [ 737.96 | 1.6569: | 0.0223 | 29.669 | 3.4456 | 0.3877

The torsional creep function ®(t) and torsional relaxation function ¥(t) given by
relations (7.3) and the values listed in Tables 4, 5 are depicted in Fig. 5.
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F1G. 4. Real and imaginary parts of the effective torsional modulus for the elastic beam filled
with viscous fluid, ¢ = 0.76, 0.80, 0.84, 0.88.
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F1G. 5. The torsional creep function ®(t) and torsional relaxation function ¥(¢) for a porous
beam consisting of hexagonal array of viscous fluid cylinders spaced in a linear elastic matrix.

8. TORSIONAL RIGIDITY OF PRISM-LIKE CANCELLOUS BONE

Most bones in the body have the dense compact bone forming an outer shell
surrounding a core of spongy cancellous bone immersed in marrow, see Fig. 1b.
In previous sections the macroscopic torsional modulus, torsional creep function
and torsional relaxation function have been evaluated, cf. Tables 3 — 5 and
Eq. (7.3).

cancellous bone
R I (viscoelastic core)

compact bone
= (elastic shell)

F1G. 6. An idealized model of typical human bone after the homogenization of cancellous bone
process.
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Consider now a homogeneous viscoelastic material surrounded by an elastic
one. Such a composite models a prism-like human bone, see Fig. 6.

Two equivalent relationships between the torsional angle a and torsional mo-
ment M are commonly used for the torsional problem:

(8.1) M(Iw) = Iw PP (Jw) a(lw) or a(lw)= Iwd3P(Jw) M(Iw),

where

ap
U1 151
S; Sa

2 9 0Bf(Iw) 0f(Iw)
(a: +y°+y oz -z By )

Here Jw¥(Jw) and Jw®(Iw) denote the torsional rigidity and torsional compli-
ance of an inhomogeneous beam, respectively. The parameter ug is the elastic
modulus of the surrounding shell while Jw¥(Iw) denotes the effective shear mod-
ulus of the viscoelastic core, cf. Fig. 8. For a circular cross-section (see Fig. 8)
we have S(z,y,t) = 0, thus f(Jw) = 0. Formulae (8.1), (8.2) take the form
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FiG. 7. Three-dimensional graphs of the torsional complex rigidities of bone showing the
hydraulic stiffening due to the presence of marrow versus po/p1, wpz/u1 and p, wpa/p:.
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2IwTeP(Iw) o, 5 Tw¥ar(Iw) R%
— =2 -+ ——,  p=32E21,
R ' b 1 TR
(8.3)
TR Jw®P(Tw) 1 o R2 > 1
2 R T, TR
(;ﬂ) (2 —1)+ Tw¥ar(lw) 1
Ho p1

The influence of the parameter p and ratios po/p1, wue/u1 on the nondi-
mensional torsional rigidity 2Jw¥3P(Iw)/mu1 Rt and nondimensional torsional
compliance mR}u; Iw®3P(Iw)) have been investigated. The results are depicted
in Figs. 7 and 8.
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FiG. 8. Three-dimensional graphs of totsional complex compliances of bone showing a hydraulic
stiffening due to the presence of marrow versus po/u1, wye/p1 and p, wpa/p.

9. FINAL REMARKS

In this study we have developed an idealized model of prism-like compact-
cancellous bone structure. The cancellous bone is filled with marrow modelled
as a viscoelastic fluid. The model predicts the mechanical response of prism-
like cancellous structure loaded by torsional moments. The analytical formulae
relating the torsional rigidity, compliance, creep function and relaxation function
with apparent density, viscosity of marrow and elastic parameters have been
obtained. Those formulae predict the hydraulic stiffening of a human bone due
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the presence of bone marrow. The next step will consist in the elaboration of

a

three-dimensional model. A challenging problem is to investigate the aging

effects of bone and marrow.
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