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Soft tissues mostly exhibit strongly nonlinear behaviour while undergoing large strains.
New macroscopic models for both isotropic and transversely isotropic soft tissues have been
proposed. The models developed are suitable for finite element formulation. It the first part
of the paper isotropic models have been proposed. Implementation in the FEM programme
ABAQUS has been discussed. Muscle contraction models have also been concisely reviewed.

1. INTRODUCTION

Common feature of soft tissues is their nonlinear behaviour in the range of
moderate and large deformations, cf. [6, 15 - 17, 23, 25 — 29, 38 - 40, 42, 44,
45, 48, 50 - 53, 61, 69, 73, 74, 77] and Part II of our paper. Anyway, at the
macroscopic level, the behaviour of such tissues involves hyperelasticity. Only
this aspect will be examined in the present paper. We shall not examine the cycle
loading-unloading and the influence of fluids, cf. [63 — 65]. In our opinion, prior to
study the macroscopic behaviour of soft tissues treated as poroelastic material one
has to elaborate appropriate hyperelastic models. Another challenging problem
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which arises is due to the presence of residual stresses and strains, cf. {2, 12,
16] and the second part our paper. This fact implies that, rigorously speaking,
the natural configuration for soft tissues is not easily accessible. Nevertheless, in
our subsequent considerations the natural configuration is defined in a standard
manner.

The aim of the present contribution is twofold. First, we provide a concise
overview of muscle contraction models. Second, we propose new isotropic hyper-
elastic models suitable for modelling the macroscopic behaviour of soft tissues.
Our models generalises the one elaborated by FUNG [15], see also the relevant ref-
erences therein. We observe that the computational framework for finite element
implementation of isotropic hyperelastic models was developed in ABAQUS [1].
The interface UHYPER with Fortran codes of the stored energy function (5.5),
(5.6) with their derivatives, with respect to the strain invariants, is also available
[36, 38]. Tests problems were solved to demonstrate the utility and accuracy
of the implementation. The material constants were taken from experiments on
rabbit aorta [65]. For others models of soft tissues the reader is referred to the
papers already cited and to Part II.

We observe that in modelling muscles one may distinguish three main ap-
proaches. The first approach, at the lowest (molecular) level of modelling is
focussed on muscle contraction, as viewed from the point of biophysics, cf. [15,
31 — 35, 66 — 68]. The second approach to muscle contraction modelling was
initiated by HiLL [19], cf. also FUNG [15] for historical comments on earlier in-
vestigations. The third approach is purely phenomenological, typical for solid
mechanics. In this paper we follow the third approach. It seems that with the
advent of the so-called formation theory [62], it will be possible to incorporate
the basic structural units of skeletal muscles or the sarcomeres into macroscopic
models. More precisely, in our opinion the sarcomeres can be treated as microac-
tuators. However, this is a program for the future.

The class of soft tissues comprises not only striated and smooth muscles but
also the heart muscle, eye tissue, blood vessels, skin, lungs, ligaments, tendons,
cartilage, etc. For details the reader is referred to [5, 13, 17, 30, 40 — 45, 49, 78,
79]. The remarkable book by YAMADA [80] gathers in one volume the data on
strength of tissues and mechanical properties of organs up to 1970.

2. MORPHOLOGY OF SKELETAL MUSCLE

There are three kinds of muscles: skeletal, heart, and smooth muscles, cf.
[15]. Skeletal and heart muscles are striated muscles. Muscles in which striations
cannot be seen are called smooth muscles, cf. [59]. Among them are vascular
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smooth muscles and intestinal smooth muscles. Muscles are soft tissues. The
class of soft tissues is large; it also comprises tissues so different as skin, ureter,
blood vessels, lung parenchyma, kidney, eye tissue, cartilage, etc. Except the
cartilage, all these tissues reveal strongly nonlinear behaviour in the range of
large deformations. The cartilage is often treated as a linear material, though
in the range of large deformations its response is also nonlinear though not so
strongly as say skeletal muscles. We recall that a tissue is a collection of cells
and extracellular matrices, that perform specialized functions. The extracellular
matrix consist of fibers (e.g., the proteins collagen and elastin) and a ground
substance (e.g., proteoglycans in cartilage). Animal tissues are classified into
four main groups: connective, epithelial, muscle, and nerve, cf. [11] and the
references therein. A connective tissue is defined as any tissue in which the
proportion of extracellular matrix occupies a greater volume than the cellular
component. Connective tissue include cartilage, tendons, ligaments, the matrix
of bone, and the adipose (fatty) tissues as well as skin, blood, and lymph. Blood
and lymph are special connective tissues where the extracellular matrix is a fluid
component.

Different organs have different smooth muscles: there are sufficient difference
among these muscles anatomically, functionally and in their responses to drugs.
However, there are also common features. All muscles, skeletal, heart, and the
various smooth muscles, contain actin and myosin, see below. All rely on ATP
(adenosine triphosphate) for energy.

In the first part of the paper we shall be concerned with isotropic models of
soft tissues. In the present section we shall be deliberately concerned with the
morphology of skeletal muscle. It is not possible to discuss the morphology of all
important soft tissues in one paper. This section will also reveal important for the
second part of the paper. Skeletal muscles are inherently anisotropic. However,
in Part II of our paper we shall see that constitutive relations for anisotropic soft
tissues usually contain an isotropic part. Also, some soft tissues are sufficiently
accurately modelled as isotropic materials, for instance, see [40, 41, 74].

Let us pass now to the presentation of skeletal muscle morphology. The skele-
tal muscle, similar to other tissues, exhibits a hierarchical structure, cf. Fig. 1. A
brief look into an anatomical atlas reveals an enormous diversity in muscle archi-
tectures. However, the units of skeletal muscle are the muscle fibres, each of which
is a single contractile muscle cell provided with many hundreds of nuclei {9, 15,
68]. These fibers are arranged in bundles or fasciculi of various sizes within the
muscle. The muscle fibers are also referred to as myocytes. Macroscopically, the
other main constituents of a skeletal muscle are the passive stiff nonlinear elastic
collagen tissues: aponeuroses and tendons. Aponeuroses or tendinous sheets are
macroscopically organised as membranes to which muscle fibers are attached.
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Fic. 1. The organizational hierarchy of skeletal muscle, after [15].
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Aponeuroses and muscle fibers connect to bone directly or via tendons, bundled
continuations of aponeuroses. Connective tissues run parallel to the active muscle
components at each level of detail. The epimysium or fascia, a strong connective
tissue layer, completely surrounds the muscle, whereas perimysium separates bun-
dles of fibers and endomysium covers and electrically isolates individual fibers.
Epi-peri- and endomysium interconnect and continue in aponeuroses and tendons.
They are important for serial as well as for lateral force transmission.

Some muscles, like human sartorius muscle, are slender and contain long fibers
in series with short tendons. The fibers of this muscle are oriented parallel to
the line of pull of the muscle. Muscles like sartorius muscle generate low forces.
However, due to the length of their fibers they can exert force over a large length
range. Other muscles, like human gastrocnemius muscle, have many short fibers
in parallel that make a considerable angle with the line of pull of the muscle.
In the gastrocnemius muscle the fibers are attached to the long and compliant
Achilles tendon. Muscles like the gastrocnemius muscle are particularly suitable
for generating high forces, albeit over a small length range.

A skeletal muscle fiber is elongated, having a diameter of 10 — 60 pum, and
a length usually of several millimeters to several centimeters; but sometimes the
length can reach 30 c¢m in long muscles. The fibers may stretch from one end
of the muscle to another, but often extend only in tendinous or other connective
tissue intersections.

The flattened nuclei of muscle fibers lie immediately beneath the cell mem-
brane. The cytoplasm is divided into longitudinal threads or myofibrils, each
about 1 — 2 pm in diameter, that extend over the entire length of the fiber.
These myofibrils are striated when they are stained by dyes and when they are
examined optically. Some zones stain lightly with basic dyes such as hematoxylin,
rotate the plane of polarization of light weakly, and are called isotropic or I bands,
cf. Fig. 2. Others, alternating with the former, stain deeply with hematoxylin
and strongly rotate the plane of polarization of light to indicate a highly ordered
substructure. They are called anisotropic or A bands. The I bands are bisected
transversely by a thin line also stainable with basic dyes: this line is called the
Zuwischenscheible or Z band. The A bands are also bisected by a paler line called
the H band. All these bands are illustrated in Fig. 2.

Each myofibril is composed of arrays of myofilaments. These are divided
transversely by the Z bands into serially repeating regions termed sarcomeres,
each about 2.4 um long, with the exact length dependent on the force acting in the
muscle and the state of excitation. Two types of myofilament are distinguishable
in each sarcomere, the fine ones about 5 nm in diameter and the thicker ones
about 12 nm across. The fine ones are actin molecules about 1.0 um long, having
a helical structure. The thick ones are myosin molecules about 1.6 pm long, also
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having a helical structure. The actin filaments are each attached at one end to a
Z band and are free at the other to interdigitate with the myosin filament. The
spatial arrangements of these fibers are shown in Figs. 1, 2. It is seen that the A
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F1G. 2. The structure of myofilament showing the spatial arrangement of the actin and myosin
molecules, after [15].

band is the band of myosin filaments, and the I band is the band of the parts of the
actin filaments that do not overlap with the myosin. The H bands are the middle
region of the A band into which the actin filaments have not penetrated. Another
line, the M band, lies transversely across the middle of the H bands, and close
examination shows this to consist of fine strands interconnecting the adjacent
myosin filaments. The hexagonal pattern of arrangement of these filaments is
shown in Fig. 3a, b. Each myosin filament consists of about 180 myosin molecules.
Each molecule has a molecular weight of about 500 000 and consists of a long tail
piece and a “head”, which on close examination is seen to be a double structure, cf.
Fig. 3c. On further treatment the molecule can be broken into two moieties: light
meromyosin, consisting of most of the tail, and heavy meromyosin representing
the head with part of the tail. The myofilament is formed by the tails of the
molecules which lie parallel in bundle, with their free ends directed toward the
midpoint of the long axis. The heads project laterally from the filament in pairs,
at 180° to each other and at 14.3 nm intervals. Each pair is rotated by 120° with
respect to its neighbours to form a spiral pattern along the filament. These heads
seem to be able to nod: they lie close to their parent filament in relaxation, but
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stick out to actin filaments when excited. They are called cross-bridges, cf. [15,
31, 66}, and the next section.
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F1G. 3. (a) Cross section of myofibral, as seen from the end. The thick filament myosin, and thin

filament, actin, lie beside one another in a hexagonal array (June beetle); (b) Schematic drawing

of how the actin and myosin are arranged, as visualized from the electron micrograph (a); (c)

Schematic drawing of the longitudinal section, showing actin associated with tropomyosin and
myosin. These are three major proteins of muscle myofibrils, after [9].

As we already know, sarcomeres are organized in series into structures called
myofibrils. Myofibrils of a typical muscle fiber contain thousands of sacromeres
in series. Just to give an impression, fibers of the human quadriceps muscle have
over 40000 sarcomers in series, cf. MEIJER [54].

The signal that initiates the event of muscle contraction is the release of cal-
cium ions from the membrane-bound storage sites by the arrival at the muscle
of a nerve impulse. The signal is detected and acted on by two additional pro-
teins, tropomyosin and troponin, which are positioned along the actin filament, cf.
BROWN and WOLKEN [9]. It is believed that the calcium ions bind to troponin,
which then modifies the positions of the tropomyosin molecule, so that myosin
can make contact with the actin molecules.
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Another interesting feature of striated muscle was suggested by Nedham in
1950, cf. BROWN and WOLKEN [9]. This author claims that such a muscle is
similar to a smectic liquid crystal structure. Later, in 1975 April (see BROWN and
WOLKEN [9]), put forth the idea that the myofilament lattice of striated muscle
can exist in moreé than one liquid crystalline state. This was based on X-ray
diffraction studies of the muscle fibers of the walking legs of the crayfish (Or-
conectes), which supported his suggestion that the resting myofilaments form a
smectin-like liquid crystalline packing of molecules. The liquid crystalline lattice
of striated muscle would apper to be a necessary adaptation whereby the lattice
provides rigidity for the transmission of contractile forces and for the anchoring
of the flexible cross-bridges, which at the same time enables shortening to occur
by the mechanism of sliding filament, cf. Fig. 3c. As far as we know, the idea of
similarity of striated muscle to that of smectic liquid structure has not penetrated
into the relevant biomechanical literature.

3. MODELLING MUSCLE CONTRACTION

The basic event that underlies muscle contraction has been elucidated as a
cyclic interaction of cross-bridges (myosin head) between the myosin and actin
filaments, because muscle is a molecular machine that transfers chemical energy
to work with high energy efficiency, cf. [15, 31 - 35, 54, 57, 66 — 68, 72]. However,
the nature of the exact molecular process that generates the interfilamentary force
by attached cross-bridges is not fully clear. The functional formulation employ-
ing state variables as the viscoelasticity model was adopted for the constitutive
equation of living tissues in [46]. In such a model the generation and dissipa-
tion processes of energy and the zero-stress state were not made clear. A muscle
contraction model based on molecular structure was proposed by HUXLEY [31],
cf. also [35] and ZAHALAK and MA [83]. Such models owe much to electron
microscope observations of the cross-bridge [18, 61}, and tension response to sud-
den length change [14]. However, recent experimental results of the sliding length
during one adenosine triphosphate (ATP) hydrolysis do not confirm these models
[71, 81].

TORELLI [70] developed a mathematically rigorous model related to muscle
contraction and based on Huxley’s sliding filament theory. Though being mathe-
matically complicated, the model is strongly simplified. For instance, the myosin
filament was assumed to remain rigid. The myofilaments are also rigid in the
model developed by ZAHALAK and MOTABARZADEH [84]. In fact, the last model
is a refinement of the model previously proposed by ZAHALAK and MA [83] for
providing a relation between calcium-activation kinetics and Huxley-type cross-
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bridge models. The generalized Huxley equation obtained in (83, 84] with calcium
activation has the following form:

on on
(3.1) E——I/E—rf(a——n)—gn,

where n(z,t) denotes the distribution of cross-bridges bonded to actin, « is the
fraction of participating cross-bridges, v(t) is the relative sliding velocity between
actin and myosin filaments, r is a function of the sarcoplasmic free calcium con-
cetration [Ca] (its form is given in [84]), f(z) is the bonding rate function while
9(z) denotes the unbonding rate function, and ¢ denotes time. The standard
Huxley equation is recovered if o = 1 (all the cross-bridges participate) and
r =1 (high activation, meaning high sarcoplasmic free calcium). The function
7([Ca)) is called the “activation factor”, as it couples the calcium dynamics to
the contraction dynamics. In [84] a cross-bridge is said to be “participating” if it
can interact with an actin site when the latter has been activated by calcium. A
cross-bridge or MAT (myosin-actin-troponin) complex is said to have bond length
z if the distance between the neutral equilibrium position of the cross-bridge and
the nearest actin site is z, whether or not the cross-bridge is actually bonded to
that site. It is worth noting that various calcium activation mechanisms lead to
the same form of generalized Huxley rate equation governing the actin-myosin
bond-distribution function, i.e. to Eq. (3.1), if it is assumed that calcium binding
dynamics are fast compared to the rate of cross-bridge transition to and from the
force-generating states.

A different approach to modelling skeletal muscle contraction was used by
NAKAMACHI et al. [57]. These authors exploited an idea primarily developed
in [56]. This theory is based on three macromolecular potentials defined by
a one-dimensional function along the sliding direction, cf. Fig. 4a. The peri-
odic potential Uy along the actin filament has the period of G-actin alignment.
Simplifying the noncovalent bonding potential between myosin heads and actin
filaments as a sinusoidal relationship we write

(3.2) Uo(z) = %2 [cos (?) - 1] ,

where z is the coordinate along the actin filament, L is the helix period of the
actin filament (5.46 nm in frog skeletal muscle), and Hy denotes the amplitude
of this potential.

The self-induced potential Uj; is generated by ATP hydrolysis, which is acti-
vated by the increasing concentration of ionized calcium emitted from the sar-
coplasmic reticulum. This potential forces myosin heads to slide along the actin
filament, causing muscle contraction and is assumed in the following form:
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(33) Ui = w(t)u(X),

where

(3.4) w(t) = woexp(—kit)[1 — exp(—kat)],
1 xX*

(3.5) w(X) = \/2_7r7‘_exp (_50—2) :

Here X denotes the coordinate of myosin heads, and o is the standard deviation
of normal distribution.
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The elastic potential U, is associated with heavy meromyosin. U, works as the
spring that transmits the force generated on the myosin heads by ATP hydrolysis
to the thick myosin filament. The potential U, was assumed in the form

{ A1AIZ + AAL i Al >0,
e =

3.6
(36) A3Al? if Al<0,

where A;, Ay and A3 are constants and Al is the deviation from the zero tension
position.
The total potential U on a myosin head is the sum of these three potentials:

(3.7 U=U+U;+U,.

NAKAMACHLI et al. [57] also introduced an atomic potential energy to study the
atomic mechanical properties of protein, which constitutes the skeletal muscle.
The minimum conformation energy search was performed to find the 3D atomic
structure under the defined conditions of the molecule and its environment.

In a series of papers [66 ~ 68], on the basis of available experimental data, a
new model of actin-myosin interaction has been developed. In essence, this new
approach uses computer modelling and simulation. However, mathematically
rigorous analysis supporting this type of modelling is still lacking. Nevertheless,
the simulation results are impressive. The main difference with more traditional
approaches consists in assuming that the tail is arranged along a helical track and
the configuration of three-cross bridges is not symmetrical as is conventionally
assumed.

In muscle mechanics very famous is the following Hill’s equation [19 - 22], cf.
also FUNG [15],

(3.8) (v +b)(P + a) = b(Py + a),

where P represents tension in a muscle, v represents the velocity of contraction,
and a,b, Py are constants. Equation (3.8) reveals only one aspect of the muscle
behaviour, namely the ability of tetanized muscle to contract. It is an empirical
equation based on experimental data on frog sartorius muscle. Hence the need for
more comprehensive approach. Earlier attempts in this direction were critically
reviewed by FUNG [15], cf. also [68]. Particularly, very popular is the Hill’s
three-element model [15]. This model represents an active muscle as composed
by three elements. Two elements are arranged in series: (a) a contractile element,
which at rest is freely extensible (i.e., it has zero tension), but when activated,
it is capable of shortening; and (b) an elastic element arranged in series with the
contractile element. To account for the elasticity of the muscle at rest, a “parallel
elastic element” is added.
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One of muscle characteristics is the three-dimensional relationship between
muscle length, velocity and force. According to experimental data, muscle force is
not a simple function of instantaneous length and velocity. Instead, muscle force
also depends on how the muscle arrives at a certain length or velocity [54, 55]. A
simple Hill-type model accounting for such interdependance has been proposed
in [54, 55]. The parameters for contractile elements, involved in the model, were
determined from experiments performed on in situ medical gastrocnemius muscle
of 10 male Wistar rates.

An inspection of muscle contraction models reveals one specific feature: spa-
tial effects of contractions usually neglected. More profound study was under-
taken by VAN DONKELAAR [72] with respect to deformation and perfusion. More
precisely, the three-dimensional deformations of skeletal muscle during contrac-
tion were determined. The second aim in [72] was to study the interaction be-
tween contraction and perfusion and to explore spatial effects that interfere with
this interaction. VAN DONKELAAR’S study [72] is confined to the presentation
of numerical results and some experimental data. Unfortunately, mathematical
models were not given.

4. BASIC RELATIONS AND GENERAL FORM OF THE STORED ENERGY
FUNCTION FOR ISOTROPIC HYPERELASTIC MATERIALS

As usual, by F we denote the deformation gradient and C = FTF is the right
Cauchy-Green strain tensor, cf. [7, 8, 10, 58]. We recall that F” stands for the
transpose of F. We assume that J = detF > 0. The objectivity principle yields
the stored energy function in the form [10, 58]

(4.1) W =W(C).

Let us denote by T, o the second (symmetric) Piola-Kirchhoff and Cauchy
stress tensors, respectively. We have

_aw(C) , aW(C)
(4.2) T= 3C + 50T

The first (unsymmetric) Piola-Kirchhoff stress tensor 8 is related to T by S = F'T.
For isotropic hyperelastic materials satisfies [10, 37, 58]

1
= ~FTFT.
=7

(4.3) W(C)=w(QCQT), VvQeO(3).

Here O(3) denotes full orthogonal group in space dimension 3.
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We assume the existence of a stress and strain-free state (natural configura-
tion) such that

(4.4) WI)=0, T=T®I) =0,

where I is the idenity tensor.

By now it has been well-established that in many soft tissues residual stresses
and strains are present [2, 12, 16] and Part II of our paper. Consequently, as-
sumption (4.4)2 for such tissues is, in a general case, a simplification. Fortunately,
an isotropic body can support no residual stress [24]. Thus for an ideal case of
isotropic soft tissues assumption (4.4) remains valid.

Having in mind FEM it is convenient to choose the invariants of C compatible
with the multiplicative decomposition of F in parts related to volumetric and
distortional deformations as well as with the polar decomposition, the last being
expressed by the well-known relation F = RU = VR. In this manner one can
formulate in a uniform manner the constitutive relationships for compressible
and incompressible materials. Accordingly, we write

(45) F=JVF=JPRU=JPVR, detF = detU = detV = 1.

Consequently, the stored energy function (4.1) satisfying (4.3) can be written as
follows [37]

(4.6) W =W(C)=W(B)=W(,T,J),
where

(47 T =ttB=trC, L=tB '= trﬁ_l,

J = v/detB = v/detC = detF.
and
(4.8) B=FF, B=FF, C=FF
We observe that
49) T =J7%n, L=tC=tB, L=J1L,

I, = %(If — trC?), trC? = trB2.

We also recall that the invariants I;, Iy and J? are the so-called basic invariants,
well-known in the theory of tensor functions representation, cf. [37].
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After standard calculations, from relationships (4.2) and (4.6) we get the
general constitutive equation for isotropic hyperelastic materials in the Eulerian
description

oW oW — oW — — —
(410) o= aJI i (811 Bp - o, BD) = Bol + AiBp +B_1Bp
where
- = 1= —1 =1 1=
(4.11) BD=B—-§I11, B, =B —5121.

The form (4.6)3 of the stored energy function enables to classify hyperelastic
isotropic materials as follows:
(i) incompressible materials (J — 1 = 0) where

(412) W= WD(TlaTQ)a

(ii) nearly incompressible materials described by

(4.13) W = Wp(Th,I2) + Wi(J),

(i) compressible materials described by the elastic potential (4.6)s.
More precisely, the function W; has the following form, cf. [10, 47],

Wi(J) = %h(detF).

The function h satisfies:
(H;) h:R* - R is convex,

(Hs) lim h(6) = lim h(d) = +oo, and h(f) =0 if and only if 6 =1.
§—0+ d—=+00
Obviously, in the case of incompressible materials the stored energy function
(4.12) is not an elastic potential, since the hydrostatic part of the Cauchy stress
tensor is not defined and the constitutive relationship is given by

1

(4.14) o=-pl+B,B+B_B ",
where oW oW
4.15 —o—2 B, =-—2222
(4.15) By = o7, B_1 a7,

The above classification is convenient when FEM ABAQUS [1} is used as in our
case. Obviously, in the case of incompressible materials the coupling between
distorsional and volumetric stored energies is absent.
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Let us denote by A;, X; (i = 1,2,3) the eigenvalues of U and U respectively,
or of V and V. We have

(4.16) Xi=JY3; i=1,2.3.

In general, only two eigenvalues of \; are independent. We may write
- SN |

(4.17) o= (M%)

Consequently, we have, cf. Eq. (4.6),

(418) W(II’T27J) = W(’\17X27J)'

The function W is symmetric in the variables X;, Xy. For the notion of symmetric
function in the context of nonlinear hyperelasticity the reader is referred to [10].

5. STORED ENERGY FUNCTIONS FOR ISOTROPIC HYPERELASTIC SOFT TISSUE

The aim of this section is to provide several specific stored energy functions
as well as numerical examples.

5.1. General developments
Let us consider the following stored energy function, being a generalisation

of FUNG’S proposal [15]

(5.1) w (Tl,fz,J) _¢ (ea¢(71’72’J) - 1) ,

a
where C' and a are material coefficients while the invariants T;,T, and J have

been defined in the previous section. Now the Cauchy’s stress tensor is expressed
by (4.10) and

oY 2 o 2 oy
= aw_— = = a¢—_' ] = - awT.
(5.2) ﬁo Ce 8.]’ ,81 JCe aIl y ,3 1 JC’e 312

According to relation (4.4), we assume

(5.3) ¥(3,3,1) =0, T=T®)=0.
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In other words, in the undeformed configuration the hyperelastic solid is stress-
free. The function appearing in Eq. (5.1) has one of the following forms

(a) ¥ = (11, 1),
(b) ¥ =1(I1,12) + ¥2(J),
(c) P = 1(I1,Ia, J).

It is reasonable to consider the following form of :
(5.4) P = al(fl -3)+ a2(72 -3)+a3(J - 1)+ 047172 -9)+..,

where the parameters are material coeflicients.

In the present section we will discuss only the models (a) and (c) of soft
tissues. For such models the material parameters are known. Also, an implemen-
tation in the finite element programme ABAQUS will be discussed.

In the case of incompressible materials the following particular form of the
function (5.1), now denoted by W, is assumed:

(5.5) w(T) = ;‘—3 @9 1],

where uy denotes the shear modulus and 7 is a positive material parameter.
For compressible materials we consider the following stored energy function

(5.6) W(Tl,TQ, J) = % [601(71—3)+C2(72—3)+03(J_1)2 _ 1] ,

where Cp, C;(i = 1,2,3) are positive material parameters, see [64, 65].

We observe that material parameters appearing in Egs. (5.5), (5.6), and
more generally in (5.4), can be determined by performing simple tests (one- and
two-dimensional) and next by minimizing the approximation error (similarly to
the case of other hyperelastic materials, cf. [58]).

Also, function (5.5) is a particular case of (5.6). However, from the numerical
and mechanical point of view it is convenient to treat both models as independent.
For the sake of simplicity, models (5.5) and (5.6) will be denoted by IM and CM,
respectively.

In the case of the model IM the constitutive relationship is given by

(5.7) o = —pI + poe? T "IB.

For three-dimensional and plane strain problem, an application of FEM to incom-
pressible materials requires hybrid finite elements (or a modification of models
(a) and (b)).

For the plane stress problem the situation is different, since then the incom-
pressibility constraint can easily be handled. We observe that for incompressible
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material in the state of plane stress, the stretch in the direction orthogonal to
the plane is determined from the equation J = 1; hence

(5.8) A3 =JL

Here the tilde refers to two-dimensional quantities. It means that J denotes the
determinant of plane deformation tensor. From Eq. (5.7), for the plane stress
state, we have

(5.9 p= uoe7(i+j—2_3)j_2.
Thus
(5.10) & = pge?d+I72-3) (-J?1+B).

where I = trB = trC.
The derivation of the constitutive relationship in the case of the stored energy
function (5.6) is left to the reader as an easy exercise.

5.2. Implementation of IM and CM models in the programme ABAQUS

The model IM requires programming, within the general structure of the
interface UHYPER (see [36]), of only the first- and second-order derivatives with
respect to the invariant I of the function (5.5). On the other hand, in the
FORTRAN code the model CM requires programming of the following derivatives
of the function (5.6):

%—-TV% = %C’oCuﬂ’, -gT—2 = %C'()Cze‘i’, %—Ij‘]/ = -;-0003e¢(J -1),
-3-5-% = %oﬂcfeﬂ 36%/ = %000226"’,
%2% = CoCae? [1+2C3(J - 1)7], %g—% = %COCIC2e¢a
(5.11)
66721ng = CoC1C3e?(J - 1), aa;zgfj = CyC2C3e?(J — 1),
;{;J = CoC2Chet(J — 1), 8%1 — CoC2C5et(J - 1),
BPW

—=— = CyC1CC ¢J—1,
0T,01,07 0C1C2C3e%( )
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5.11 >*w
o] 37,87 = GO0 4205 = 17
PwW
m = 0002036¢[1 + 203(J - 1)2],
PwW
575 = 2CoC32e?(3 + 2C3(J - 1)?)(J - 1),
where
(5.12) ¢ = 01(71 -3)+ CQ(TQ - 3)+ Cs(J — 1)2.

5.8. Numerical examples: model IM

The aim of this section is to provide illustrative example for the IM model.
We observe that, in general, it is more difficult to obtain satisfactory numerical
results for this model than for the CM model. As one can guess, the difficulty is
linked with the incompressibility condition.

EXAMPLE 5.1. Simple shear (plane stress problem)
Now we have

2 2 2
o11 = pot?e™, o9g = 0, 012 = poe™, 033 = 013 = 023 = 0.

For the notation the reader is referred to Fig. 5. Figure 6 represents a comparison
of analytical and numerical results. The last one has been obtained by using
interface UHYPER with the implemented IM model. Both the Poynting effect
(nonvanishing normal stress) and Kelvin effect (nonvanishing trace of the stress
tensor) are exhibited. The results presented in Fig. 6 are valid provided that the
state of simple shear is realized. This can be achieved if simultaneously the di-
X%}
g

p——r

X, x

Fic. 5. Simple shear.
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splacements and forces on the boundaries are controlled. Otherwise, the situation
depicted in Fig. 7 may happen. For instance, in Fig. 7a, only the displacements
on the upper boundary are controlled.

o, Oz
3000 3000
f /
2500 / 2500
2000 / 2000 /
1500 .. J 1500 )
1000 A - 1000 S Y
Y. ;‘;..--l‘"'
506 = 500 ‘ o
j - | 2 J 3
5.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

F1G. 6. Comparison of analytical and numerical results for simple shear (plane stress state);
po = 1000; the coefficient + for the curves 1, 2, 3 is equal to: y =1, v = 0.5, v = 0.01.

EXAMPLE 5.2. Thick cylinder subject to internal pressure (plane stress)

The internal and external radii of cylinder in Fig. 8 are equal to R; = 10 and
Ry = 20 (length units), respectively. The cylinder is subject to such an internal
pressure that its boundary undergoes the displacement equal to 5 length units.
The results of calculation are depicted in Figs. 9, 10.

5.4. Numerical ezamples: model CM

The results which follow have been performed for the following values of
coefficients: Cy = 8133 N/m?, C; = 0.907, Cy = 0.002475, C3 = 20. These
values are taken from paper [65] and characterize a rabbit aorta.

EXAMPLE 5.3. Simple shear (plane strain or 3D problem)
In this case, from Egs. (5.2) and (5.6) we get

o11 = Coet (C1+C2) [352(201 + Cz)] )
o019 = Coet (G (Cy + Oy,

099 = 006£2(01+CZ) [“%62(01 + 202)} 3

o33 = Coet (C1+C2) [—%52(01 - Cz)] .

The results of calculation are depicted in Fig. 11. Numerical calculations were
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performed by using the interface UHYPER with the model CM implemented
according to Egs. (5.11), (5.12).

a)

Lacdtl i b Lo PN L S F
/\L//////‘///////

kil ]
7777777

INAL MESH DISPLACED MESH

ssg/ . grEP A - gNcRgdmNy 10 i
s . Lo/ 1.00
. 4 M

e %
1.3

b)

liiiiiiii!iiiii:] Y

F1G. 7. Shear: a) FEM mesh and the final configuration; b) level lines for the Cauchy stress
o12; po =108, y = 1.
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DISPLACEMENT MAGNIFICATION FACTOR = 1.00

RESTART FILE = cy_panl §TEP 1 INCREMENT &
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TIME COMPLETED IN THIS STERP 1.00 TOTAL ACCUNULATED TIMR 1.00

ABAQUS VERSION: 5.8-14 DATB: 13-MAR-2001 TIME: 15:18:36

F1G. 9. Thick cylinder in plane stress state: a) FEM mesh and boundary condition; b) initial
and final configurations.
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Fic. 10. Thick cylinder in plane stress state (10 or 20 finite elements); po = 10°%, v = 1.
Cauchy’s stresses 011 and 22 represent values averaged (centrally) over the finite elements.
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F1G. 11. Comparison of analytical and numerical results for simple shear (plane strain state or
3D problem).
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EXAMPLE 5.4.

Consider now the slab with a central hole with the unit thickness. The length
of the side of the square is 2 length units. The diameter of the hole is 0.2 length
units. The slab is subject to tension in one direction such that its length increases
fivefolds, see Fig. 12. The vertical displacement on AB and CD is constrained.
To get the numerical results, the slab was divided into 512 finite elements CPS4.
The results presented in Fig. 12 were obtained after 15 iterations.

2

DISPLACEMENT MAGNIFICATION FACTOR = 1.00 ORIGINAL MESH DISPLACED MESH
3 RESTART FILE = otw2 STEP 1 INCREMENT 15

TIME COMPLETED IN THIS STEP 1.00 TOTAL ACCUMULATED TIME 1.00

ABAQUS VERSION: 5.8-14 DATE: 06-JAN-2001 TIME: 15:21:39

F1G. 12. The initial and final configurations of square slab with a hole.

6. FINAL REMARKS

We have proposed several constitutive equations applicable to isotropic soft
tissues. Isotropy may be an acceptable assumption even for anisotropic tissues.
For instance, VAN KEMENADE [41] used the triphasic mixture theory for skin.
The three components are the solid, fluid and ionic phases. The solid phase was
treated as an isotropic Saint-Venant Kirchhoff material, though the skin exhibits
anisotropic behaviour, cf. [15]. ATKINSON [4] studied the skin stretched by the
silastic implant.

In order to simulate the eye response, JOUVE [40] also used the Saint-Venant
Kirchhoff model. This author also applied simple transversely isotropic models.
YEH et al. [82] developed a closed shell structured eyeball model for radial ker-
atotomy. The analysis of corneal collagen laminae required for the tissue to be
transversely isotropic. The cornea, as well as the limbus and sclera, was consid-
ered as homogeneous and isotropic. Only small displacements were considered in
the implementation.

HUMPHREY [26] reviewed biomechanical modelling of biological membranes
via a continuum membrane theory, cf. also [29]. There are many different mem-
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branes within the human body, including aneurysms which form in the vascula-
ture, cell membranes, the mesentery, the meninges which envelope the brain and
spinal chord, the pericardia which surround the heart, the pleura which covers
the lungs, skin, the urinary bladder, etc. The biomembranes have usually been
viewed as hyperelastic and possibly anisotropic membranes.

Some experimental procedures devised for testing soft tissues will be pre-
sented in Part II, cf. also [75] and the references therein. Here we only mention
the paper by VUskoviIC et al. [76]. These authors described the method for in-
vivo measurement of soft tissues. The method consist in putting a tube against
the target tissue and applying a weak vacuum. The organ remains fixed to the
tube, specifying well-defined boundary conditions, and a small deformation of the
tissue is caused inside the tube. The measurement process consists in varying
the applied vacuum over time and determining the function d(¢) and p(t), where
d(t) is a measure of the surface deformation under tube; ¢, the time from the
start of the measurement; and p(t), the negative relative pressure in the tube at
time ¢. Thus, we track over time the applied negative pressure and the resulting
deformation. Measurement of more than just one-dimensional force-displacement
information leads to more realistic parameter determination, whereas measuring
the deformation over time permits the estimation of time-dependent properties
such as viscoelasticity.
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