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New constitutive relationships for hyperelastic transversely isotropic materials have been
proposed. The well-known isotropic hyperelastic model due to OGDEN [I.58] has been extended
to transverse isotropy. It has been shown that some models intended to describe the nonlinear
elastic behaviour of soft tissues are oversimplified and lead to incorrect results. An overview of
soft tissue modelling, being a continuation of the one started in [48], has also been given.

1. INTRODUCTION

In the first part of the paper [48], new constitutive relationships applicable
to isotropic, hyperelastic soft tissues have been proposed. Molecular and macro-
scopic models of skeletal muscle contraction have also been reviewed.

It is well-known that soft tissues usually exhibit anisotropic behaviour, see
the next section for a brief review. For instance, the anisotropy may be due
to the presence of oriented fibres like in skeletal muscles. Hence a natural need
for studying transversely isotropic soft tissues. Other factors like the porosity,
poroelasticity, and viscoelasticity also play a role in macroscopic behaviour of
soft tissues, see the relevant references cited in Part I of our paper [48]. Similarly
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to bone tissue, the mechanical behaviour of soft tissue is influenced by age and
drugs. As in [48] we shall mainly focus on elastic behaviour of soft tissue though
papers dealing with inelastic properties will also be mentioned.

Our aim is also to show that the anisotropic models proposed in [1.50, .53,
1.69] are insufficient to describe properly soft tissue behaviour, particularly in
the range of small strains. Similar criticism applies to many oversimplified mod-
els where some invariants are absent and consequently, the number of material
parameters is too small. Prior to the presentation of our original results, in
Sec. 2, we shall complete the review started in the first part of the paper. Roman
numerals refer to Part I of our paper.

2. BRIEF OVERVIEW OF SOFT TISSUE BEHAVIOUR: CONTINUATION

This section is confined to phenomenological (macroscopic) behaviour of soft
tissues. However, let us mention also the paper by HAJJAR et al. [33] where a
direct method of estimating the sarcomere length was proposed. In a series of
papers [18 - 20], the formation of the power spectrum of extracellular potentials
produced by a skeletal muscle fibre of finite length was analysed.

2.1. New experimental devices

ORTT et al. [70] described the design and construction of a new device capable
of both in-plane biaxial testing and measurement of the spatial thermal diffusivity
tensor, cf. Fig. 1. This device enables to investigate elastomers and planar soft
tissues.

Dokos et al. [21] described a shear-test device for soft biological tissues
capable of applying simple shear deformations simultaneously in two orthogonal
directions, while measuring the resulting forces generated in three directions. The
system was designed to apply shear in more than one principal direction so that
the degree of anisotropy of the test specimen could be directly addressed.

Experimental data on certain soft tissues will be occasionally mentioned in
the sequel. Here we only mention the investigation by DERWIN and SOSLOWSKY
[17]. These authors investigated the hypothesis that mean collagen fibril diameter
in the mouse tail tendon fascicle model is correlated with mechanical properties.
The fascicle model was chosen in that it addresses the limitations of many previ-
ous structure-function models by providing a well-defined “representative volume”
of tendon extracellular matrix such that direct quantitation and comparison of
structure-function parameters is possible. The results obtained showed that fas-
cicle stiffnes and maximum load are positively and moderately correlated with
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mean fibril diameter. On the other hand, fascicle material properties, modulus
and maximum stress, were only weakly correlated with mean fibril diameter.

(b)

Fic. 1. Biaxial extension device. Panel (a) is an oblique view of the device where (1) camera,
(2) load carriage, (3) environmental chamber, (4) heater, (5) Kevlar threads, (6) load frame,
(7) motors, (8) motor supports, and (9) limit switches; in plane directions defined as 1 and 2.
Panel (b) is a schema of (1) the specimen with centrally placed tracking markers, (2) Kevlar
threads, (3) T-bar, (4) coupling bar, (5) load cell and (6) flash-bulb and reflector, as seen from
below, after ORTT et al. [70].

MYERS et al. [64] determined the effect of average strain rate on the en-
gineering stress-large strain properties of simulated and passive rabbit skeletal
muscle (21 New Zealand white rabbits). Statistically significant effect of rate of
loading (1/s, 10/s, 25/s) on the stress-strain responses of passive skeletal mus-
cle was assessed. In the case of simulated muscle, the rate dependence was less
pronounced.

VAN EE et al. [94] studied the time-dependent properties of skeletal muscle
through the perimortem and postmortem periods using an animal model (12
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New Zealand white rabbits). In addition, these authors examined the effects of
preconditioning and freezing on the postmortem properties of skeletal muscle.
In the previously published papers it is claimed that while the tissues of bone,
ligament, tendon, and skin undergo small changes in mechanical properties post-
mortem, skeletal muscle stiffness and failure load have been reported to vary on
the order of 50 percent, cf. the references in [94]. However, according to the last
authors, of general importance is to quantify the temporal changes and the effect
of freezing.

Indentation using the atomic force microscope is evolving as a powerful tool
for studying the dynamical regional micromechanical properties of a variety of
biological materials, including living cells, cf. the relevant references cited in [14].
In the last paper the finite element methods was applied to examine large inden-
tations, relative to the sample thickness and probe dimensions, using an acute
conical indenter, and including nonlinear and heterogeneous material properties
of the sample. The response of three different types of isotropic materials char-
acterized by very simple strain energy functions were investigated, see also [1.48]

(2.1) W = Ci(I; - 3) + C2(I2 - 3),
(2.2) W = Dy(I; - 3) + Do(I; - 3)2,
(2.3) W = By(eP2(i-3) 1),

Function (2.1) represents the strain energy density of Mooney-Rivlin model [I.
10], applicable to moderately large deformations of rubber. Function (2.3) was
discussed in Part I, cf. Eq. (I1.5.5). We observe that in the above strain energy
functions the incompressibility constraint (J = 1) has been taken into account.
It means that arguments of these strain energy functions are the invariants of iso-
choric deformation, see Egs. (1.4.7);,2, and Egs. (5.10)1 4 in Sec. 5 of the present
paper. It seems that only function (2.3) is applicable to modelling elastic be-
haviour of soft tissues. The two remaining strain energy functions do not predict
significant stress increase in the range of relatively large deformations. We observe
that polynomial strain energy functions for soft tissues should usually include the
first invariant of isochoric deformation in the power higher than two.

2.2 Heart

An important problem in soft tissue mechanics is obtaining a mathematical
description for the material properties of such tissues. Particularly, the material
properties of the heart wall (myocardium) constitute a great problem in cardiac
mechanics. The papers [32, 41, 59, 62, 65, 80, 86, 98] may be viewed as the-state-
of-the-art in cardiac mechanics up to the year 1990. More precisely, SMAILL and
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HUNTER [80] describe the structural arrangement of the cardiac muscle cells
in the ventricular wall and the complex connective tissue matrix. For a brief
description of geometry and materials of the heart, the reader is referred to FUNG
[I.15, 1.16]. Figure 2 schematically represents the blood flow through the heart
and papillary muscle. The adult human heart has four chambers: two thin-
walled atria separated from each other by an interatrial septum. As is shown
schematically in Fig. 2, the venous blood flows into the right atrium, through the
tricuspid value into the right ventricle, and then is pumped into the pulmonary
artery and lung, where the blood is oxygenated. The oxygenated blood then
flows from veins into the left atrium, and through the mitral valve into the left
ventricle, whose contraction pumps the blood into the aorta, and then to the
arteries, arterioles, capillaries, venules, veins, and back to the right atrium. The
heart is wrapped in a thin collagenous membrane called pericardium.

§vC

Pulmonary
veins

VG

Fic. 2. Blood flow through the heart. The arrows shows the direction of blood flow; SVC-

superior vena cava, IVC-inferior vena cava, RA- right atrium, RV- right ventricle, PA- pul-

monary artery, LV- left ventricle, T- tricuspid, P- pulmonary, AO- aortic, M-mitral, after
Fung [1.16].

The cardiac muscle cell or myocyte is the main structural component of my-
ocardium occupying around 70% of ventricular wall volume under normal cir-
cumstances. Cardiac myocytes resemble ellipsoid cylinders with a major-axis
dimension of 1 to 10 um and a length of 80 to 100 um. Myocyte insert end
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to end and each is connected with several others to form a three-dimensional
network of cells. The interface between adjacent cells is referred to as the inter-
calated disc and the structure and properties of this region are of considerable
importance.

ROBINSON et al. [74] classified the hierarchy of cardiac connective tissue or-
ganisation as “endomysium”, “perimysium” and “epimysium”, using terminology
more commonly associated with skeletal muscle, cf. [48]. The cardiac endomy-
sium incorporates the system of radial collagen cords together with a pericellular
network of fibres that encompass the myocyte and a lattice of collagen fibrils and
microthreads. In the context of heart, the term perimysium is used to describe
the extensive meshwork of connective tissue that surrounds groups of cells and
connections between contiguous cell bundles. The epimysium is defined as the
sheath of connective tissue that surrounds entire muscles, for instance, papillary
muscle and trabeculae.

ROBINSON et al. [74, 75] proposed specific mechanical roles for the cardiac
connective tissue matrix, cf. also [80]. The collagen network was seen as a “strain-
locking” system, which resists the extension of myocytes beyond sarcomere length
of 2.2 um while allowing relatively free extension up to this length. Cardiac
microstructure influences the material properties of (passive) myocardium. One
such model, presented in Fig. 3, is due to ROBINSON et al. [75]. The myocardium
is represented as an assembly of parallel myocytes cross-linked by a uniformly
distributed array of radial collagen cords.

F1G. 3. Schematic representation of cardiac microstructure incorporating the collagen network
surrounding myocytes and the radial collagen cords that interconnect myocytes, after ROBINSON
et al. [75].
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Various mechanical tests have been performed on specimens excised from
various part of cardiac muscle. Here we deliver only two results depicted in
Figs. 4 and 5. The experimental procedure leading to these results is described
in [80]. The specimens were excised from six dog hearts. In Fig. 5 we present
results for a specimen taken from the middle of the left ventricular wall subjected
to 10 cycles of equibiaxial force loading with a cycle period of 30 sec. For other
experimental data the reader is referred to the sequel of our paper and to [5, 48,
77). The aim of papers [5, 77] was to specialize biaxial testing techniques for both
the natural and glutaraldehyde-treated porcine aortic valve, and to apply these
methods to generate sufficient planar mechanical property data for constitutive
modelling.
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FIG. 4. Stress-extension relations for left ventricular midwall specimen during 1%, 9*® and 10"
cycles of equibiaxial loading. Cycle period 30 sec. and specimen thickness 1.83 mm. The solid
lines indicate the order of loading in the cross-fibre directions, after SMAILL and HUNTER [80].
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F1G. 5. Mean stress-extension relations for ventricular midwall specimens undergoing equib-
iaxial loading. Cycle period 10 sec., n-4, and mean specimen thickness 2.06 mm. The bars
indicate +1 standard deviation, after SMAILL and HUNTER [80].
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HoRwITZ [41] presented a microstructural model for the mechanical proper-
ties of the myocardium based on this type of information. It is assumed that the
main structural elements of the myocardium are the interconnected networks of
muscle fibers and collagen fibers, and the fluid matrix that embeds them. LANIR
approach [1.44] was followed in order to derive a material law. HUMPHREY et al.
(see their paper in [I.17]) outlined a formalism for identifying the constitutive
law for the resting heart muscle based on an extensive program of mechanical
testing, cf. also [[.28]. The mechanics of the myocardium as a muscle capable
of active contraction and relaxation was outlined by NIELSEN and HUNTER [65].
These authors presented experimental and analytical methods for identifying the
time-varying properties of active cardiac muscle. MCCULLOCH and OMENS [62]
described the regional mechanics of the intact heart during passive filling and
compared the predictions of a simple model of the left ventricle with experimen-
tal measurements of wall strains. If a model is supposed to represent accurately
the complex geometry and architecture of the heart wall, however, computa-
tional techniques are required. The use of finite element methods in cardiac
mechanics modelling is reviewed by GUCCIONE and MCCULLOCH in [32], cf. also
MACKERLE [101]. The complex three-dimensional structure and time-varying
mechanical properties of the intact ventricular wall give rise to significant hetero-
geneities of mechanical function in the normal heart. This can pose substantial
difficulties to the cardiologist trying to diagnose regional disorders from radio-
graphic images. WALDMAN [86] discussed the theoretical framework of kinemat-
ics as the basis for three-dimensional strains throughout the wall of the beating
heart — both normal and diseased. These methods rely on the use of radiopaque
implants in experimental animals, but natural landmarks on the heart offer the
prospect of measuring regional mechanics in patients using conventional clinical
imaging techniques. YOUNG [98] described an approach for analysing ventricular
strains using coronary arteriograms obtained by catheterization. The functional
consequences of the regional heterogeneities in mechanics that occur in the heart
disease were discussed by LEW [59)].

OKAMOTO et al. [68] developed a new approach to the mechanical testing
of the ventricular wall and made the estimates of material properties for passive
myocardium under significant shear stress. According to the authors, their study
is the first where anisotropic myocardial material properties were determined
from MR (magnetic resonance) tagging using a three-dimensional FE model.
The MR tagged images provided a reference configuration and multiple deformed
configurations for each image plane. The strain potential was assumed in the
following form

(2.4) W(E) = C(e? - 1),
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where

(25)  Q=0bsE}; +b(B2 + E, + E% + E%) + byo(E%, + B + E}, + E2).

Here Eyy is fiber strain, E. is cross-fiber in-plane strain, E,, is radial strain, E,,
is shear strain in the cross-fiber-radial coordinate plane, and E¢c and Ey, are
shear strains in the fiber-cross-fiber and fiber-radial coordinate planes, respec-
tively. Thus the anisotropic model considered involves four material constants:
C, by, by, and by,.

ZAHALAK and DE LABORDERIE [99] incorporated a three-dimensional gen-
eralization of the HUXLEY [I.31] cross-bridge theory in a finite element model of
ventricular mechanics to examine the effect of nonaxial deformations on active
stress in myocardium, cf. also [I.83, 1.84]. General conclusion resulting from the
performed calculations reads: “the influence of nonaxial deformations on active
muscle stress should be considered in future studies of cardiac mechanics”.

The interaction of the blood and cardiac structures was investigated in [44, 57,
58]. In the first of these papers the incompressibility condition, usually assumed,
is questioned.

TANAKA et al. [84] developed a transversely isotropic model of ventricular
walls, taking into account the excitation-contraction coupling. The phenomenon
of excitation-contraction may be summarized as follows:

a) The generation of tension or contraction of the cardiac muscle is controlled
by the concentration of Catt in the cell.

b) There are threshold and saturated values in the response for the concen-
tration of Ca*+.

¢) In the process mentioned, the subsequent stage is caused by the preceding
one, and time is needed for the reaction in each stage. In other words, a time
delay is induced in each stage. Consequently, it may be supposed that the con-
centration of Ca*™ influences the rate, or higher time derivatives of the tension
or contraction.

The mechanical behaviour of ventricular walls was simplified as follows:

i) Ventricular walls are incompressible.

ii) Mechanical properties in the plane perpendicular to the muscle fiber are
isotropic, i.e., ventricular walls are transversely isotropic.

iii) Mechanical properties of ventricular walls are passive in the directions
perpendicular to the muscle fibre. Thus the active properties are observed only
in the muscle fibre direction.

iv) Viscoelastic properties of ventricular walls can be neglected.

v) The stress acting on the ventricular walls is expressed as the sum of passive
stress T? and active stress T?%; that is the second Piola-Kirchhoff stress tensor T
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is given by v
(2.6) T =T+ TP.
The passive stress TP may be expressed by
9(poW)
2.7 T? = .
(2.7) 3

The strain energy density function poW is a particular case of formula (7.3) below
and is assumed in the form

(2.8) poW (E) = aexpy(E) + p[det(2E + I) — 1],

where py denotes the mass density in the undeformed configuration, a is a ma-
terial constant, and p denotes the Lagrange multiplier (the pressure). Following
CHUONG and FUNG [11], in [84] it is assumed that 9 is the quadratic form of the
Green strain tensor E.

According to the previous assumption (iii), the active stress T can be ex-
pressed by

(2.9) T = 7°M,

where M = m ® m is the structural tensor (see Sec. 4), and 7¢ is the activated
stress caused by the activation. The maximum value of 7* depends on the length
of the cardiac muscle because the maximum number of cross-bridges between
myosin and actin filaments, which determines the maximum value of the tension,
changes with the length of the muscle, cf. Part I of our paper. The magnitude
of tension is also governed by the activity that expresses the ratio of bonding of
troponin with Ca*t, that is, the ratio of active filaments. The activity and the
strain of muscle fibres are denoted by « and Ej, respectively. It can be shown
that

(2.10) E;, =Em-m.

Suppose that the cardiac muscle is soaked in Ca** solution of a constant con-
centration for a sufficiently long time under the condition of constant length.
Consequently, the active stress 7¢ will tend to the asymptotic value 7%°. It may
be assumed that

(2.11) 79 = 795 (E}, a) = Toe F (Ep)A(a).
The current value of active stress is a solution of the following simple evolution

equation

_dr®

(2.12) 70 = - = b(r% — 719),



MODELLING ELASTIC BEHAVIOUR OF SOFT TISSUES. Part II 251

where b is a material constant specifying the rate of change. We observe that
the last equation has to be completed by the initial condition, say 7%(0) = 7.
Equation (2.12) is a particular case of more general relation

(2.13) 7% = f(t,7* - 19).
The functions F, A are assumed to be specified by

— Ep12
(2.14) F(Eh) = <(1 +F0)exp {—— [%A—E;hE’l-g] } - F0>,

(2.15) A(a) = (1 — exp[—m(a — ams)]),

respectively. Here Ejpg is the value of Ej, at the maximum tension, AE}, is one

half of the range of Ej, generating the tension, and Fj is the material coefficient.

The symbol (-) denotes the Macauley bracket. Equation (2.15) was formulated

with reference to the relationships between the tension and the concentration of

Catt at the saturated state. Moreover, m is the material constant and a; is

the value corresponding to the threshold of Ca** that can generate the tension.
The evolution equation

(2.16) & = c(f —a),

yields satisfactory predictions for the experimental data. Here 8 denotes the con-
centration of Ca™*, and c is the material coefficient. The last equation is viewed
as describing the diffusion of Ca** and the bonding of troponin. Exploiting the
experimental data, due to CANNEL et al. [7], for cardiac muscle of mice, the
concentration 8 was assumed in the following form:

(2.17) B = Bot*exp(~1t),

where (g, &, and | are material constants.

The calculations were performed by assuming that 1(E) is given by the Saint-
Venant Kirchhoff isotropic model (this fact was not explicitly stated), cf. [L.10, 4],
(2.18) Y(E) = AtrE)? + 2utrE2.

Further, it was assumed that A = 34.0, u = 5.0, @ = 0.2 [kPal, 725, = 107.9 [kPa],
1
Eny = 0.322, AE, = 0.205, Fy = 0.032, m = 0.16 [m , oagps = 0.56 [mM],
mM 1 1

0.018 [é] Typical results for A(a) =1 are presented in Fig. 6.
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F1G. 6. Passive stress versus cardiac muscle fibre strain relationship (solid line calculated result;

solid circles experimental data) and relationship of maximum of the isometric tension versus

cardiac muscle fibre strain (solid line calculated result; open circles experimental data of the
papillary muscles of a cat, after TANAKA et al. [84].

2.8. Arterial walls

One of frequently studied soft tissue are arteries (arterial walls) since their
biomechanical properties are crucial for understanding the changes in the cardio-
vascular system due to age, arteriosclerosis and hypertension; cf. [15, 35 - 40] and
the references therein. Figure 7 presents an idealized model of the arterial wall.
The intima I is the innermost layer consisting of a single layer of endothelial cells
that rests on a thin basal membrane and a subendothelial layer whose thickness
varies with topography, age and disease. The media M is composed of smooth
muscle cells, a network of elastin and collagen fibrils and elastic laminae which
separate M into a number of fiber-reinforced layers. The primary constituents
of the adventitia A are thick bundles of collagen fibrils; A is the outermost layer
surrounded by loose connective tissue. Thus a vascualar tissue is a highly com-
plex material containing collagen, elastin and smooth muscle, cf. [1.27] and the
references therein. For the literature related to experimantal studies of blood ves-
sels the reader is referred to many references cited by VOSSOUGHI and TOZEREN
[[.75]. Also, these authors performed ingenious shear tests which provide useful
information on material parameters and described the experimental procedure.
Of interest is the fact that rectangular aortic and rubber specimens were inves-
tigated. Figure 8 shows typical shear stress versus shear strain curves for three
aortic rectangular specimens from aorta No 1. Each data point corresponds to
externally applied stress level. It was found that the relationships between shear
stress and shear strain for all the aortic specimens tested were linear, cf. Figs. 8,
9. This is despite the fact that the relationships between the normal stress and
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FiG. 7. Diagrammatic model of the major components of a healthy artery composed of three
layers: intima (I), media (M) and adventitia (A), after HOLZAPFEL et al. [38].
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Fi1G. 8. Typical shear stress versus shear strain diagrams for aorta No 1 for both 6 and 2-
specimens. Slopes of the least squared lines provided the effective shear modulus for the material
of the aorta, after VossouGHI and TOZEREN [L.75].
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normal strain is highly nonlinear, cf. Fig. 10. This simply indicates that although
the aorta has a highly varying modulus of elasticity (as a function of applied
stress or strain), its shear modulus is fairly constant. For more experimental
data related to arterial wall, the reader is referred to [I.15, 1.16, 3, 53, 56] and the
references cited therein. We observe that in Sec. 5 of Part I of our paper [48] the
simple shear for a model of soft tissues with the strain energy (I.5.5) has been
investigated. In the range of strains up to 0.6 the plot of d;2 is practically linear,
cf. Fig. 1.6. This result qualitatively agrees with the results depicted in Figs. 9

and 10.
10
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FiG. 9. An average shear stress versus shear strain curve for bovine aorta. The average covers
5 specimens in #-direction and 13 in z-direction, after VossouGHI and TOZEREN [L.75].
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F1c. 10. A typical normal stress versus normal strain curve for bovine aortic tissue exhibiting
highly nonlinear behaviour. In addition, such stress-strain curve for polyurethane rubber is
also shown, after VossouGHI and TOZEREN [1.57].
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In Part I we briefly reviewed modelling of biomembranes as membranes, cf.
[I.26, 1.29]. In the book by Fung [I.15] two approaches to mechanical modelling
of arterial walls have been discussed; the first simplified approach consists in
considering the arterial wall as a membrane, cf. also {36, 66]. DEMIRAY and
VITO [15] have proposed a two-layered cylindrical shell model for an aorta (the
shell equations are not given in terms of generalized forces, as is usually the
case in structural mechanics). In elaboration of the model the authors exploited
their results conducted on a dog’s upper thoracic aorta. An orthotropic elastic
model for media and an isotropic model for adventitia have been used. For
both (incompressible) layers the strain energy functions are exponential. Since
in large arteries the intima is usually thin, in [15] the authors have assumed that
the essential load carring elements are the media and adventitia.

In essence, there are three forms of strain energy density function for the
description of arterial tissues: (i) polynomials [I.15, I.16, 100], (ii) exponential
functions [I.15, 1.16, 5, 43, 78, 100] and (iii) logarithmic expressions [43, 88, 89].
In addition to the above functions, other functional forms also exist. For instance,
KAs’yANOV and RACHEV [50] proposed a combined polynomial-exponential form
of the strain energy function. In the subsequent sections we shall discuss functions
of type (i) and (ii) for transversely isotropic soft tissues. We observe that the
above classification of hyperelastic strain energy functions applies likewise to
other soft tissues, for instance to the myocardium characterized by the stored
energy functions of type (i), and more frequently, of type (ii).

The logarithmic strain energy function used in [43, 88, 89] has the following
form

(2.19) W = —cIn(1 — ¢),
where
1
(2.20) Y= 5(alEg,e + a2E2,) + a3EeoE.,.

Here Ege and E,, are the normal components of the Green'’s strain tensor in
the circumferential and axial directions, respectively. The constants c, a1, a2, a3
characterize the mechanical properties of the material of arterial wall.

In a serious of papers [1.24, 35 — 40] the strain energy density function is
written in the form

(2.21) W = Wiso + Waniso-

Here the first term represents the isotropic contribution whilst the second one de-
scribes the anisotropic contribution. The function Wy, is assumed in the form
similar to the classical approach of fibre-reinforced materials, since anisotropic
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soft tissues possess fibres. In the papers mentioned, currently used forms of W
were discussed, and results of many numerical calculations were provided.

As we already know, soft tissues often reveal a hysteretic behaviour, modelled
by a pseudo-elastic response, cf. [I.15, 1.16, 84]. However, no general approach
to pseudo-elastic modelling of such tissues seems to be available. It seems, that
the paper by OGDEN and ROXBURGH [67], developed for isotropic rubber-like
materials offers new insight into modelling of pseudo-elastic response of soft tis-
sues. In [67] the energy function W(F,n) depends on an additional variable 7,
interpreted as a damage parameter. It seems reasonable to assume that

. dn

plus an initial condition. Treated as a damage parameter, n assumes values
between 0 and 1.

An important, and still weakly recognized, is the interaction blood-arterial
wall (fluid-solid interaction). Usually, one assumes that the blood is a Navier-
Stokes fluid while arterial walls are supposed either to be isotropic and hypere-
lastic [2, 85] or anisotropic [100]. Blood-arterial wall interactions are important
in investigation and modelling of atherosclerosis (stenotic tubes), cf. also [3, 8].

Finally, we should mention inelastic behaviour of arterial walls, both vis-
coelastic [37, 100] and viscoplastic [84].

3. RESIDUAL STRESSES IN STRAINS IN SOFT TISSUES

As a rule, both the bone tissue and soft tissues are inhomogeneous and
anisotropic and change during their lifetime. Hence it is not surprising that
in such tissues residual stresses have been discovered. According to FUNG [1.16],
residual stresses were discovered independently by VAISHNAV and VOSSOUGHI
[92], who found them in blood vessels, and his former student P. Patitucci jointly
with him, who discovered such stresses in the left ventricle of a rabbit in 1982.

In this section we shall review the papers on residual stresses and strains in
soft tissues. Their role in tissues is not quite clear. In 1983 FUNG [I.16] formulated
the “principle of optimal operation” stating that each organ operates in such a
manner as to achieve optimal performance. Unfortunately, no mathematical
model of this principle is available, at least as far as we know. On the other
hand, TAKAMIZAWA and HAvAsHI [89, 90] and TAKAMIZAWA and MATSUDA [9]]
proposed the “uniform strain” theory.

OMENS and FUNG [69] quantitatively described the two-dimensional residual
strains in the equatorial slice of the rat left ventricle. In this paper five adult male
(200 — 300g) Sprague Dawley rats were anesthetized. Their left ventricles were



MODELLING ELASTIC BEHAVIOUR OF SOFT TISSUES. Part II 25¢

cut into 2 — 3 mm thick equatorial slices. Next, radial cuttings were performed,
cf. Fig. 11. A simple quantitative measure that reflects the residual strain distri-
bution in a slice of the left ventricle is the opening angle, see Fig. 12C. The mean
initial opening angle from 11 of these slices was 45 & 10°. However, the opening
angle was inreasing during the entire data acquisition period, presumably due
to ischemic contracture. OMENS et al. [102] continued this study by measuring
left ventricular geometry and opening angles in rats spanning a large range of
ventricular size and shape, and relatively small alterations in passive myocardial
material properties (79 Sprague Dawley rats of either sex ranging from 32 to 492
grams). These authors showed that physiologic left ventricular remodelling in
rats decreases myocardial residual strain in proportion to the relative reduction
in wall thickness-radius ratio. SUMMER et al. [81] found that opening angles were
significantly higher in ischemic hearts than in sham-operated or strain-softened
hearts, suggesting that acute coronary artery occlusion may significantly increase
residual stress and strain in the left ventricles of rats. A total of 47 rats were used
and divided into three groups: ischemic, sham-operated, and strain-softened.

i
¥

adhar

iem

Fic. 11. Equatorial slices of a rat heart showing imbedded microspheres. The photograph
on the left is before radial cutting (no-load state) and that on the right is after radial cutting
(stress-free state), after OMENS and FunG [69].

TAKAMIZAWA and MATSUDA [91] developed a general theory employing the
uniform strain hypothesis and applied it to the left ventricle.
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F1G. 12. Definition of the center of a stress-free slice and opening angle. A: Drawing of a slice
in the no-load state. The chamber center (3) of this configuration is estimated by constructing
a diameter through the epicardial edge of the cut (1) and the most distant epicardial point (2),
crossing the right ventricular chamber. The center is chosen to be a point along this diameter
midway between the two endocardial intersections, and segment (3-4) is the no-load radius. B:
Same slice in the stress-free state. The center of a line connecting the epicardial corners of the
two cut edges is found (line 1’-1”). A diameter is constructed through the center of this line,
intersecting the most distant epicardial point (2’). Using the radius defined in the no-load state,
the center of the stress-free configuration (3’) is chosen to at be the same distance from the
septal endocardium along its diameter. Papillary muscles were ignored in these measurements.
C: Opening angle, defined as the angle between the two radial lines connecting the center of
the ventricular chamber and the centerlines of the walls at the cut edges. Note the asymmetry
of the posterior and anterior free walls, after OMENS and Funa [69)].

[258]
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Let us pass to residual stresses and strains in arteries. In the seminal pa-
per by VAISHNAV and VOSSOUGH!I [92] nine aortas (3 bovine and 6 porcine)
were investigated. The maximum magnitudes of the circumferential engineering
strains through the wall thickness varied from 0.044 to 0.124, and the corre-
sponding stresses varied from 44 to 12 G/cm?, where an approximate value of
the Young modulus of 103 G/cm? was used. For further developments and re-
sults the reader is referred to [12, 13, 26, 30, 34, 60, 61, 71, 93, 96]. Particularly,
L1u and FUNG [60] performed experimental investigations of Sprague Dawley rat
heart and aorta, see Fig. 13. The thickness of specimens was 1 mm. Figure 14
represents photographs of some typical cut specimens.

TAKAMIZAWA and HAYASHI [90] showed, on the uniform strain hypothesis,
that when an arterial wall is unloaded and cut longitudinally, its cross-section be-
comes a sector and the strain and stress remaining before cutting are completely
relieved, cf. also [89].

DELFINO et al. [I.12] performed observations on 10 pig carotid bifurcations
arteries. The results showed that the effect of residual strain is to make the stress
distribution uniform throughout the carotid bifurcation artery. Especially at the
apex, where, in the absence of residual strain, stresses are extremely high, the
introduction of residual strain lowers the stresses down to levels comparable to
other locations.

OGDEN and SCHULZE-BAUER [66] performed an analysis of extension and
inflation of a tube, modelling an aorta, including residual stresses. The results of
calculations yielded results different from those obtained by CHUONG and Fung
[13] and TAKAMIZAWA and HAYASHI [89]. It seems that one should adopt the
combined assumption of uniform circumferential stress and strain.
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F1G. 13. Left: Nomenclature for sites: “anterior”, “posterior”, “inside”, and “outside”. Right:
Definition of the opening section angle 8 and the sum of the angles between the tangents to the
vessel section at the site of the cut and the z-axis, o; after Liu and FuNG {60].
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F1G. 14. Photographs of the zero-stress configurations of short segments of aorta along the aortic
tree. The symbols A, P, I, O stand for anterior, posterior, inside and outside, respectively, see
Fig. 13; after L1u and Func [60].

GREGERSEN et al. [31] investigated esophagi of guinea pigs. The experimen-
tal procedure used was similar to that used previously for arteries; we recall that
the esophagus is a tube. The opening angle was found to be a function of time
and location. At the no-load state, a tight buckling pattern was seen at the inner
wall, indicating that the inner wall of the esophagus is compressed. Upon reduc-
ing the no-load state to the zero-stress state by cutting the ring, the opened ring
expanded itself into a sector with an opening angle of about 80°. The buckling
in the inner layer was still observed, though to a lesser degree. The buckling in
the zero-stress state indicated that compression in the inner wall and tension in
the outer wall were not completely relieved.

Upon removal of articular cartilage from the underlying subchondral bone, a
“curling” of the cartilage sample is observed, cf. SETTON et al. [79] and the ref-
erences therein. This behaviour was also observed in strips of human costal and
nasal septum cartilage, cf. the references in [79]. This warping is attributed to
residual stresses. SETTON et al. [79] defined parameters associated with cartilage
curling and swelling ex situ that may be used to determine the magnitude and dis-
tribution of the swelling-induced residual strains in articular cartilage. Moreover,
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the contributions of anisotropy and inhomegeneity for the surface zone cartilage
to these swelling-induced residual strains were determined.

4. GENERAL RELATIONS

Let F denote the deformation gradient, J = detF and E = (C — I)/2, where
C = FTF is the right Cauchy-Green tensor, cf. [I.10, 1.58]. By S, T we denote
the first (unsymmetric) and second (symmetric) Piola-Kirchhoff stress tensor,
respectively. We have

(4.1) S =FT.

The Cauchy stress tensor o in the deformed configuration is defined by
1

4.2 : = =SFT.

(4.2 o=

To describe the transverse isotropy we introduce a parametric tensor M = m ®
m. The tensor M is prescribed in the initial (Lagrangian) configuration. The
unit vector m(X) coincides with the direction of material fibres in the initial
configuration; X denotes the Lagrangian variable of a material point. Let

(4.3) S ={Qe€0(3)M=QMQ"},

where O(3) stands for the full orthogonal group in the three-dimensional case,
cf. [1.37]. The stored energy density function W satisfies

(44)  W(E,M,r) = W(QEQT,M,r) = W(C,M,r) = W(QCQT,M,r),
vQ e S.

Here the function 7(X) describes the inhomogeneity of the material. From the
point of view of tensor functions and constitutive equations, the variable r is not
essential. Therefore we shall only consider homogeneous materials.

The theory of representation of transversely isotropic functions yields,
cf. [1.37],

(4.5) W(E,M) =W (N;,) = W(C,M)=W(); i=1,..5.

Here {N;} and {I;} denote the so-called basic invariants of the tensors E and C,
respectively. The constitutive equations are

ow oW _li oW (8N,-+ BNi)

OE ' OET | 24 ON; \OE ' OET

i=1

(46) T=T(E)= % (

> E
= Z aiGg ),
i=1
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; oW oW _ oW (oL | dl
@0 T=TO) =35 +50r - L 7y, (ac 8CT) Zzﬁ’

The symmetric tensors of the second-order GZ(E) and ch) are the so-called gen-
erators, cf. [1.37].
We assume the existence of a natural state where

(4.8) W(O,M)=W(I,M)=0, T(0)=T(I) =0.
The basic invariants of the function W (N;) are well-known [1.37]. We write
(4.9) W(N;) = W (trE, trE, trE®, trEM, trE*M),  i=1,...,5.

The quadratic approximation of the last function leads to the Saint-Venant Kirch-
hoff stored energy function, in general anisotropic (transversely isotropic). We
denote this stored energy function by Wsyx. We have

(4.10) W(N:) = Wsyk(N:i(E)) + O(|E|®),  i=1,2,4,5.

Similarly to the isotropic Saint-Venant Kirchhoff model [I.10], the function Wgy g
is assumed to be convex with respect to E, i.e., the following fourth-order tensor

(4.11) hut 62WSVK(NZ'(E)) 62WSVK(N1;(E)) " 32W5VK(N3'(E))
' 4 O0E ® OE OET @ OE JOE @ 9ET

?Wsyk (N;(E))
OET @ OET

>$ i=172a4351

has to be positive definite. The stored energy function Wgy g is given by
(4.12) Wsyk(B) = Wsyk (N;(E)) = a1 (trE)? + aztrE? + az(trEM)?
+astrEtrEM + astrE2M.

For an isotropic material, the strain energy density (2.18) can be obtained from
relationship (4.12) provided that a; = A, ag = 2y, a3 = a4 = a5 = 0.

Substituting (4.12) into (4.6) we find the constitutive relationship for trans-
versely isotropic Saint-Venant Kirchhoff material in the Lagrangian description.
The reader is advised to find the classical relationship T = S - E = (S;;1Fy) in
arbitrary coordinates. We observe that for incompressible, transversely isotropic
Saint-Venant Kirchhoff materials only four material coefficients amongst ay, ..., a5
are independent.
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5. NEW CONSTITUTIVE RELATIONSHIPS FOR TRANSVERSELY ISOTROPIC
HYPERELASTIC MATERIALS

In this section we are going to present new models of transversely isotropic
hyperelastic materials.

The stored energy function W for compressible materials can equivalently be
written as follows:

(5.1) W(I;) = W (trC, tr Cof C, detC, tr(MC), tr(MCofC)),
where

(5.2) CofC = (detC)C™L.

Hence

(5.3) T = 28,1 + 285 (II — CofC)C™! + 2(B313 + BsI5)C~!

+ 284M — BsI3(MC~! + C™IM).

The scalar functions 8; depend on I;, i = 1,..., 5.
In the Eulerian description we have

I I 2 .
(54) o=2 (7% +JBs + 75[15) 1+ %B — 98,JB~! + 28, M

— JBs(MB~! + B~IM),
where
(5.5) B=FFT, M =FMFT.

According to (5.5)2 the material fibres are rotated and stretched. We now propose
two new stored energy functions for transversely isotropic materials:

(56) WEL) = Y Ayu(lh—3)%I—3)%I—1)%I5 — 1)% +T(I3),
i+j+H+k#0

5.7 WEI) = Y Byu(I¥ -3%)(Iy - 3%)(If - 1)(IF - 1) + T(I3),
i+j+H4k£0

Here the coefficients A;jx; and By are not the components of tensors but merely
material parameters. The coeflicients a;, bj, ¢x and d; are additional parameters
which have to be determined by using experimental data and nonlinear opti-
mization. The function I'(I3) with I'(1) = 0 is convex and tends to infinity for
I3 tending to zero and infinity.
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Having in mind applications and finite element algorithms [1, 46, 47, 97], it
is convenient to choose transversely isotropic invariants of C for incompressible
materials in a manner enabling to formulate the constitutive relationships in a
uniform manner. Recalling that F = RU = VR [1.10, 1.58] and performing the
multiplicative decomposition of F on volumetric and distorsional parts, we write

(5.8) F = J3F = J'/3RU = J'/AVR, detF = detU = detV = 1.

The stored energy function is postulated as follows:

(5.9) W(1;,J) = W(trC,tr CofC, tr(MC), tr(MCofC),J), j=1,...,4,

where

T, = trB=t:C=J"3I;, I =t:C=trB, B=FFT,

_ — 1

To =B ' =t1C ' =J 3L, I,=tr CofC = S (I} - trC),
(5.10) trC? = trB2,

Ts = tr(MC) = J~3tr(MC) = J~3trM,
Ts = tr(MCofC) = J~3tr(MCofC) = J~3tr(CofM), M = FMF”.

The invariants I1, I, and J? are the so-called basic invariants used for isotropic
materials, cf. [[.10, 1.58].

After standard calculations one can derive the corresponding constitutive
relationships in the Lagrangian and Eulerian descriptions. Details are left to the
reader.

We now propose two stored energy functions for incompressible and nearly
incompressible transversely isotropic, hyperelastic materials, cf. Egs. (5.5), (5.6),

(6.11) WTpN)= > Ay -3)%T-3)P(Is - 1) (T4 - 1)%
i+j+H+k#A0

+ T(),

(512)  WT,N)= S Byuy -3%)Ty -3%)TY - )7 - 1)
i4j+l+k#0

+ T(J).

For incompressible materials T'(J) = A(J — 1), where A denotes the Lagrange
multiplier associated with the condition J = 1.
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For incompressible and nearly incompressible transversely isotropic materials
like soft tissues one can use the following stored energy function, cf. formula (7.3)
below,

N
(5.13) Warr(T Z ( 1) +T'(J), a; > 0.

In the case of incompressible materials and vanishing invariants I3 and I, the
relation (5.13) reduces to the known models of incompressible soft tissues, cf.
Part I [48]. In a separate paper we shall discuss the form of the function T'(J)
used previously by various authors in the case of nearly incompressible materials.
One might mention here the penalty method.

6. GENERALIZATION OF ISOTROPIC OGDEN’S MODEL TO TRANSVERSELY
ISOTROPIC HYPERELASTIC MATERIALS

Our approach permits to extend the well-known Ogden’s model [I.10, 1.58]
to transversely isotropic materials. We propose the following stored energy func-
tion:

K L
(6.1)  Wog(C,M) =" ax(trC™ —3) + 3 by(tr CofCP - 3)

M
+ ) ém[(detC)X™ — 1] + Zdn (trMC% — 1)
m=1 n=1

Q
ép(trMCofC® — 1) + Y fo[(t(rMC%) (trMC¥2) — 1]
q=1

+
YL

S
+ 3 Gs[(trMCofC ) (tr MCof C™) — 1].
s=1

Ogden’s stored energy function for the isotropic hyperelastic materials is recov-
ered provided that d, = 0, e,,—qu—Ogs—O n=1.,N;p=1,..,P;
q=1..,Q; s =1,.,85, see [1.10, 1.58]. We observe that the stored energy
function (6.1) is not, in general, polyconvex in Ball’s sense (for the notion of
polyconvexity the reader is referred to the book by CIARLET [1.10]). The prob-
lem of polyconvexity of the function (6.1) will be studied elsewhere. Here we
only mention that for the anisotropic stored energy function involving fabric
tensor, more appropriate seems to be the notion of anisotropic polyconvex func-



266 S. JEMIOLO - and J. J. TELEGA

tions. For instance, in the case of transverse isotropy the stored energy function
W(F) = W(C, M) is polyconvex provided that there exists a convex function
g: M3 x M3 x M3 x M3 x [0,+00) > R
such that
W(F) = g(F, MF, CofF, Cof(MF'), detF),
for all F € M_?_. Here M3 denotes the space of real 3 x 3 matrices and M. 3 =
{F € M3|detF > 0}.

One can easily demonstrate, similarly to the case of isotropy, that the
strain energy (4.12) describing transversely isotropic materials, is not polycon-
vex. Morcover, this function is also not rank-one convex. We observe that the
convexity of the function (4.12) with respect to E renders the passage to the
classical Hooke’s law. The elastic moduli a;, 7 = 1,...,5, are the same as in the
linear theory.

For incompressible isotropic Ogden’s materials we have trCofC” = trC .
Consequently, for such materials the stored energy function is simplified.

In the Lagrangian description the constitutive relationship is given by

N
(62) T = 2[{,0_1 + Z &nam(MCJm_l + Clsm—lM)

n=1

+ Ze,,s,, (g (CofC?)) ™! + C7}((CofC1)M)]

+ S5, [dtrMO# (MCH1 4+ Ot 1)
g=1

+ gtrMC%(MC#e~! + C¥~1M)|

S
+ Y Ge7trMCofC™ [(M(CofC™))C™" + C1((CofC™)M))
s=1

S
+ 3 anstrMCofC™ [(M(CofC™))C™ + CH((CofC™)M)] ,

s=1
K
(6.3) Z aropCo* + Zb,ﬁ,[ (tr CofCP)I — CofCH] + Z EmXm(detC)Xm
k=1 =1 m=1

+ Z épep(trMCofC*?) + Z 3s(s + 15) (trMCofC"*) (trMCof C™).

p=1
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It is not difficult to pass to the constitutive relationship in the Eulerian descrip-
tion. This problem is left to the reader.

The condition (4.8) yields two additional relations between the material co-
efficients:

K L M P S

Z droy + zzblﬁl + Z CmXm + z épep + ng(')'s +ns) =0,
k=1 =1 m=1 p=1 s=1

(6.4)

N P Q S
Z dndm — Z épep + qu(¢q + ‘Pq) + ng(')'s +ns = 0.
n=1 p=1 q=1 s=1

The hyperelastic stored energy functions have to be such that their quadratic
approximation with respect to E yields the Saint-Venant Kirchhoff model, in
general anisotropic. Since the following formulae are valid:

trC* = 3 + 20trE + 2a(a — 1)trE2 + ...,
tr(CofCP = 3 + 4BtrE + 26%(trE)? + 28(8 — 1)trE2 + ...,

(detC)X = 1+ 2x |trE + %(trE)z - trEz} +x(2x - 1)(trE)? + ...,

trMC® = 1+ 20trME + 26(5 — 1)trME? + ...,
trM(CofC?) = 1+ 2¢(trE — trE?) + 26 (trE)?

(6.5) - 2¢(1 + 2etrE)trME + 2¢(e + 1)trME? + ...,
(trMC?)(trMC¥) = 1 4 2(¢ + @)trME + 4¢p(trME)?

+ 2[(¢ — 1) + (9 — DtrME? + ...,

(trMCofC”) (trMCofC") = 1 + 2(y + 1) (trE — trE?) + 2(y% + %) (trE)?

=2[v(1 + 29trE) + n(1 + 2ntrE)trME + 2[y(y + 1) + n(n + 1)]trME?

—8yntrEtrME + 4yn[(trE)? — (ttME)?] + ...,

therefore in Eq. (6.2) one can assume only one term in each sum to obtain the
Saint-Venant Kirchhoff model. Taking into account (6.5) in (6.2) we obtain five
additional relations between the material coefficients:
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L

Z ,31 * Zcme+ZepE +ng ¥s + 1s) ],
m=1 p=1

=1

a1=2

L

5.

[ K M P
ag = 2| agax(ax — 1) Z BB —2) = D bmXm — Y épp
k=1 m=1 p=1

S
+3 sl + ﬂs)] )
s=1

S

Q ~
(6-6) a3 = 4 (Z fq¢q‘Pq 5 ng’)'s"ls) s

g=1 s=1

a4 = —4

a5=2
n

S
+qu[¢q )+‘Pq( = 1) +Egs[’)’s ’Ys+1)+"73("ls+1)]}

s=1

S
Z (vs +ms) :|a

1

3
I

Mw

~

Om (Om — 1) + Z épep(ep —

M=

1

Il

Let us provide an example of the stored energy function applicable to mod-

elling the incompressible and nearly incompressible transversely isotropic mate-
rials:

L
6.7 Wog(C,J,M) Zak (O™ - Z (tr CofC™ — 3)
N - P i
+ Y dp(trMC™™ — 1) + Y &, (trMCofC™ — 1)
n=1 p=1

Q
+ 3 F, [(trMTP) (t-MT**) - 1
g=1

S
+ 3, [((MCofC™) (trMCofC™ — 1] +T(J).
a=1
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7. COMMENTS ON MODELS PROPOSED IN [I.50, 1.53, 1.69]

ToNG and FUNG [1.69] proposed the following stored energy function for soft
tissues:

(7.1) W(E) = o(E) + aoB(E)e?®),
where
(72) ofE) = %E.u E, A(E)= —;-E .B-E,

$(E) = tr(AE) + %E-C-E-i—....

Here U, B and C are fourth-order tensors which are determined by materials pa-
rameters obtained from appropriate experiments. The function (7.1) is not, in
general, polyconvex, and it has too many material parameters with similar me-
chanical interpretation. Also, it can be shown that this model exhibits drawbacks
similar to the hyperelastic model of Saint-Venant Kirchhoff, cf. [I.10]. To yield
reasonable results, the function (E) should involve tensors of order higher than
four. The paper by ToNG and FUNG [I.69] has nevertheless played a role in
revealing the possibility of modelling the nonlinear behaviour of soft tissues by
means of exponential functions.

Our previous considerations suggest that a reasonable stored energy function
for transversely isotropic hyperelastic soft tissues can be assumed in the following
form

N
(7.3) Z (%) 1), a;>0.

We observe that if the functions ; are postulated as being independent of mate-
rial parameters, then a; can be determined by using linear optimization methods.
Also, the function (7.3) is polyconvex provided that each function %; is polycon-
vex.

Let us pass to the models proposed in [I.50, 1.53]. In [1.50] the stored energy
function is given by

(7.4) W = Ci(e¥ - 1),

where

(7.5) % = Co(Iy — 3)2 + Ca(I1 — 3)(Iy — 1) + Ca(ly — 1)%.
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Here C;, 1 = 1,...,4, are material coefficients and C; > 0. The constitutive
equation in Eulerian description expresses as follows:

(76) o= —-pI —+ 2ﬂ1B - 2ﬂ4M’
where p denotes the Lagrange multiplier (pressure) and
ow
Bi= 31 = C1e¥[2Cy(I1 — 3) + C3(I4 — 1)),
oW
By = 5 C1€¥[C3(I; — 3) + 2C4(Is — 1))

Obviously the material is incompressible. The quadratic approximation of (7.4)
yields

(7.7) W = C,Cy(trE)? + C,C3trEtrEM + C;C4(trEM)? + O(||E||?).

Function (7.7) does not contain a sufficient number of material parameters to
predict mechanical properties of incompressible, transversely isotropic material
in the range of relatively small deformations, in the case of 3D problems. From
the representation theory of so-called plane (two-dimensional) tensor function
follows that function (7.7) is an irreducible quadratic function of 2D tensor E,
cf. [1.37]. On the basis of the material parameters given in [I.50] for rabbit
myocardium we have found, among others, the level sets depicted in Figs. 15, 16,

Fi1G. 15. Comparison of level sets for the stored energy function (7.4), (7.5) (dotted curves)

with its quadratic approximation (7.7) (continuous curves) in the case of averaged values for 7

samples studied in [I.50]. The curves correspond to two-dimensional tests in the principal axes
of anisotropy.
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and the stored energy function for one-dimensional deformations presented in
Fig. 17. To construct these figures we exploited the data given in [1.50] and
gathered in Table 1. The scatter of the reported values is significant. Figure 17
shows that for relatively small values of stretches, the stored energy function,
constructed in [I.50], may even assume negative values. We conclude that the
constitutive modelling proposed in [I.50] is not sufficiently accurate.

F1G. 16. Level sets for three samples and the stored energy function (7.4), (7.5); A1, A2 are

principal stretches (two-dimensional tests) and the samples orientation coincides with the unit

vector m describing the orientation of fibres: a) sample 1, b) sample 2, c) sample 3. The dotted
lines correspond to “averaged” material parameters.
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FIG. 17. The stored energy function (7.4) with ¢ given by (7.5) and dotted line as previously
for one-dimensional deformation. For the sample 3 the function W assumes negative values in
a certain range of compression (inadmissible form of W).

Table 1. Material parameters of the stored energy function (7.4) with v specified by (7.5)
according to [L.50] (rabbit myocardium). The material parameters appearing in (7.7) are also

given

No. Ci Cs Cs | C4 Ci10, CiC3 | C1Chy
1. 1.01 | 3.05 | —2.24 | 1.92 | 3.0805 | —2.2624 | 1.212
2 242 1.12.13 0.63 | 1.05 | 29.3546 1.5246 | 2.541
3. 9.86 | 4.62 2.37 | 0.09 | 45.5532 | 23.3682 | 0.8875
4. 292 | 321 | —2.60 | 2.01 | 93732 | —7.592 | 5.8692
5. 2.62 | 2.40 [ —0.89 | 2.01 | 6.288 —2.3318 | 5.502
6. 1:67 | 170 1.90 | 0.38 | 2.839 3.173 | 0.6346
T 6.85 | 2.88 | —0.76 | 0.38 | 19.728 —5.206 | 2.603
8. 1.05 |- 9:18 2.32 | 0.08 | 9.5865 2.436 | 0.084

(averaged
values)

Similar conclusion applies to the model studied in [I.53], where
(7.8) W = Co(e® - 1),

and

79) P=C(L-32+C(I-1% I=yL=v&rCM=vVm:C-m.

The hyperelastic potential (7.8) was used to model the valve tissue of a pig, which
provides a good substitute for similar human tissue. The material parameters,
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taken from [I.53], are gathered in Table 2. Now the material functions 1nvolved
in constitutive relationship (7.6) have the following form:

ow 7 ow 20002 A

7.1 == =2 V(I - V(I -1)3
(7100 B oI, CoCre¥(I = 3),  Ba= -1 ° (I-1)
We observe that even for relatively large deformations the stored energy function
(7.8) with 1 specified by (7.9); can be approximated by the following polynomial

in I; and I:
4
(7.11) W = CoCy(trE)? + CoCs ( (rEM) — 1 — 1)

Here the independent material parameters CoC; and CyCs can be determined by
using linear optimization methods. For the model (7.8) and (7.9); the quadratic
approximation with respect to the measure E is useless since it yields an isotropic
stored energy function with the first term appearing in (7.11). Figure 18 depicts
typical relations between stresses and deformations in one-dimensional test.

Table 2. Material parameters of the stored energy function (7.8), (7.9): for the valve tissue of

a pig, after [I.53]. The material parameters appearing in (7.11) are also given

No. Co [kPa] Cl 02 CoCl [kPa.] C()Cz [kPa]
1 2 3 4 5 6
1. 1.010 2.59 1376.9 2.61590 1514.59
2. 0.079 1.25 1320.6 0.09875 104.3274
3. 0.181 7.01 626.5 1.26881 113.3965
4. 0.214 4.90 1602.9 1.04860 343.0206
5. 0.105 5.23 1991.6 0.54915 209.118
6. 0.203 1.76 833.0 0.35728 169.099
7. 0.053 6.31 1943.2 0.33443 102.9896
8. 2.171 2.19 1408.8 4.75449 3058.5048
9. 0.399 4.325 | 1446.5 1.725675 577.1535
(averaged
values)

In the paper [97] the following stored energy function has been implemented
in FEM

(7.12)  W(Ty, T, T3 = C1(T1 - 3) + Co(T — 3) + Cs|eTs=D — T,

where Cy, Cy and C3 are material coefficients whilst the invariants I;, 1 = 1,2, 3,
are defined by Eq. (5.10). This model constitutes a simple generalization of the
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well-known Mooney-Rivlin potential [I.10, 1.58], the last being valid for incom-
pressible isotropic materials. Since the formula (7.12) does not incorporate the
invariant T4 and there is no coupling between the invariants 1, and I, therefore
the model (7.12) cannot properly describe incompressible transversely anisotropic
materials in the range of small deformations. It seems that the stored energy
function (7.12) should be confined to plane problems. WEISS et al. [97] de-
vised their model to describe the mechanical behaviour of tendon and cartilage.
We observe that from the point of view of FEM, the paper [97] constitutes a
first attempt of numerical implementation of the model describing transversely
isotropic, hyperelastic and incompressible materials.

a) A b) adt o [kPa]
g o[kPa]
30
6
. 20 /
_ /
2 x 10 Jx
0906°95 | 1.051.11.151°2 105 1.1 1.15 127
c) d)
0.3 30d" o [kPa] '
0.3 / 250 :
0.25 / 200 :
0.15 /
— 100 I
0.1 s x
0.05 P 50 sk

—_ ~
1.021.041.061.081.1 1.051.11.151.21.25

Fic. 18. Cauchy stress-elongation relationships for the one-dimensional extension; the stored

energy function is given by (7.8), (7.9). The material parameters are taken from Table 2:

continuous line in (a) - (d) after row 9, (b) — sample 3 (dotted line), (c) and (d) - sample 2
(dotted line). The sample orientation coincides with m.

8. FINAL REMARKS

Soft tissue modelling ranges from molecular and microscopic levels to appli-
cation of the methods proper for the continuum mechanics (macroscopic level).
New constitutive models proposed in our paper pertain to hyperelastic, isotropic
and transversely isotropic soft tissues. The constitutive relations developed in
Part II can readily be extended to orthotropic materials.
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A striking feature of the models proposed by other authors is the lack of any
discussion of mathematical aspects of these models. For instance, such important
and well-known notions of mathematical elasticity as polyconvexity, quasicon-
vexity and rank-one convexity [I.10] of stored energy functions have not yet been
assimilated by biomechanical modelling of soft tissues. The notions mentioned
are not only mathematically elegant. On the contrary, we are strongly convinced
that good models of soft tissues should possess good mathematical properties.

Soft tissues, like bone tissues, are materials with hierarchical architecture.
It seems that homogenisation methods, particularly the reiterated homogenisa-
tion, could be applied to micro-macro modelling. By passage we observe that
the modelling “micro-macro” studied by WREN and CARTER. [87] is very crude.
These authors studied a geometrically nonlinear behaviour of soft skeletal tissues
by considering Voigt and Reuss bounds, well-known in the geometrically linear
micromechanics of composites, cf. [10, 63]. The model developed was applied to
rabbit tendon bovine menisci and bovine humeral articular cartilage. A poroe-
lastic model developed by VANKAN et al. [95] was applied to a simulation of
a blood perfused contracting skeletal muscle. Unfortunately, though the model
was intended to describe hierarchical media, yet no scaling had been primarily
introduced.

There are other interesting topics related to soft tissues, not discussed by
us. Let us mention a few, except those alluded to in Part I. First, heat-induced
changes seem to be seldom studied, cf. [9] and the references therein. Remod-
elling of soft tissues and particularly of skeletal muscles is not so frequently
studied as bone remodelling, see [I.15, 1.16, 42,73, 82, 83]. Soft tissues reveal
functional adaptation to loading. For instance, the thickness of arterial wall
depends on blood pressure and is larger in the case of the hypertension. The
class of soft tissues encompasses various tissues, with various microstructure and
fulfilling various functions. Important soft tissues, not discussed in the present
two-part paper, are:

(i) cartilage and meniscus, cf. [6, 25, 29, 54],

(ii) annulus fibrosus [22, 23, 45, 51],

(iii) lungs [16, 1.15, 1.16, 1.42, 1.45, 1.48, 1.51, 49, 52],

(iv) ligaments, tendons [1.5, 1.30, 1.43, 1.49, 1.78, 1.79, 28, 55, 72],
(v) skin [I.4, 1.15, 1.41, 24, 76].

In Part T we have briefly discussed biological membranes. Here, we addi-
tionally mention the papers by HOLZAPFEL et al. [35, 36]. Both isotropic and
anisotropic membranes were studied.

In the second part of the paper it has been demonstrated that some
anisotropic models of hyperelastic soft tissue cannot properly describe the re-
sponse of such tissues. Similar comment applies to many oversimplified models.
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