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Structural beams are important parts of engineering projects. The structural analysis of
beams is required to ensure that they provide the specifics needed to prevent and withstand
failure. Therefore, the numerical solution to analyze an Euler-Bernoulli beam with arbitrary
boundary conditions using sextic B-spline method is presented in this paper. A direct modeling
technique is applied for modeling the Euler-Bernoulli beam with arbitrary boundary conditions
on an elastic Winkler foundation. For this purpose, the effect of the translational along with
rotational support, the type of beam supports and the elastic coefficient of Winkler foundation
are assessed. Finally, some numerical examples are shown to present the efficiency of the sextic
B-spline collocation method. To validate the analysis of the Euler-Bernoulli beam with the
presented method, the results of B-spline collocation method are compared with the results of
the analytical method and the integrated finite element analysis of structures (SAP2000).

Key words: FEuler-Bernoulli beam, arbitrary boundary conditions, Winkler foundation,
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1. INTRODUCTION

Many geotechnical engineering problems can be studied by analyzing beams
on foundations. The various foundation models such as Winkler, Pasternak,
Kerr, Vlasov, Hetenyi and viscoelastic are applied in the analysis of structures
on elastic foundations [1]. Among these models, the Winkler foundation model
is the most common model used in such analyses. However, the modelling of
soil using the Winkler approach is inadequate in the handling of the various
problems [2]. The main weakness of the Winkler model lies in the fact that it
neglects the shear interaction between the spring elements [3].

Analysis of statically indeterminate beams is an important problem in civil
engineering. But this analysis is sometimes difficult or impossible if the degree of
static indeterminacy in the beam is high. Analysis of a beam is used to determine
the values of deflection, slope, shear force and bending moment. The fourth-
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(or fifth-) order differential equations must be solved to obtain the displacement.
The differential equations of the Euler-Bernoulli beam on the uniform elastic
foundation are as follows:

e for uniformly distributed load:

Y@ a2 _
(11) @)+ vl - L =0, we o)
e for linearly distributed load:
K dg(z) 1
y® = M\ 2
(12) @)+ py/@) - L =0, zelat],

where y(x) is the transverse deflection of the mid-surface of the Euler-Bernoulli
beam and ¢(z) is the external force function on the beam. In addition, I, E
and K are the second moment of area, the Young’s modulus of elasticity, and
the elastic coefficient of Winkler foundation, respectively. In the Euler-Bernoulli
beam theory, the boundary conditions are given below:

ViQzr =a:M(a) = Krrb(a), Q(a) = —Krrw(a),

ViQxr =1b: M(b) = —KRRH(Z)), Q(b) = KTR’LU(b),
where M and () are the bending moment and the shear force, respectively
(Fig. 1) [4]. K71, KTRr, Krr and Kgp are the transverse and rotational elastic
coeflicients at the supports at the left and right boundary ends, respectively. For

example, the boundary condition of the simple supports on both sides associated
with a uniformly distributed load can be defined as

Y@ =0, yB) =0, y'@=0 y')=0, y?a)+ py(a)=0.
M*yT——> M*

=

V+ V+

F1a. 1. Sign convention for shear forces, bending moments and slopes
of the Euler-Bernoulli beam.

Also, the boundary condition of the simple supports on both sides associated
with a linearly distributed load is defined as

K

y(@) =0, yb)=0, y"(a)=0, y'(0)=0, yV(a a) + z7y(x) = q(a).

In this paper, the collocation method based on sextic B-spline is applied to
analyze the Euler-Bernoulli beam with arbitrary boundary conditions. A spline
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function is the piecewise polynomial function of degree n. This function is the
composite of several internal points. On the other hand, the number points
must equal or be greater than (k—1) degree. The differential equations with
k degree are solved by B-spline functions of (k+1) degree [5]. Over the years,
the spline method has been used for solving the differential system of equa-
tions with different boundary conditions. For example, the sextic spline func-
tion for the solution of second-order boundary value problems associated with
unilateral, obstacle and contact problems is presented by RASHIDINIA et al. [6].
Their results show that the approximate solutions obtained using the present
method are better than spline and finite difference methods. A quintic non-
polynomial spline method is investigated by RAMADAN et al. for the numerical
solution of the fourth-order two-point boundary value problems [7]. Based on
their findings, the quintic non-polynomial spline method presents better approx-
imations and generalizes all the existing polynomial spline methods up to fourth
order. The natural frequencies of the non-uniform Euler-Bernoulli beam on elas-
tic foundation are obtained using the spline collocation method by Hsu [8].
The Kuramoto-Sivashinsky equation is solved using septic B-spline collocation
method by ZAREBNIA and PARVAZ [9]. The solution is approximated as the linear
combination of the septic B-spline functions. It is shown that this method is un-
conditionally stable by applying the von-Neumann stability analysis technique.
ZAREBNIA and PARVAZ presented the cubic B-spline collocation method for the
numerical solution of the problem arising from chemical reactor theory [10]. Mo-
HAMMADI developed a numerical method based on sextic B-spline to solve the
fourth-order time-dependent partial differential equations [11]. In this paper, the
convergence analysis of the sextic B-spline approximation for the Euler-Bernoulli
beams with fixed and cantilever boundary conditions is discussed in detail. RE-
ALl and GOMEZ introduced an isogeometric analysis collocation method for the
solution of the Bernoulli-Euler beam and Kirchhoff plate [12]. AKRAM also used
the sextic spline method for solving a system of fifth-order boundary value prob-
lems [13].

In the previous studies, the Euler-Bernoulli beam on an arbitrary variable
elastic Winkler foundation was not analyzed using the B-spline collocation
method. On the other hand, these solutions can be generalized only to sim-
ple boundary conditions. In the present study, the solution using the sextic
B-spline method is introduced to analyze the Euler-Bernoulli beam with arbi-
trary boundary conditions on the partial Winkler foundation. Furthermore, the
analysis of the Euler-Bernoulli beam is written in a general form. Therefore,
the objective of this paper is:

e To present a simple and practical numerical technique for determining the

response of Euler-Bernoulli beams with elastically restrained boundary
conditions, resting on a partial Winkler foundation.
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e To state numerical solutions using the sextic B-spline function for an ana-

lysis of the beam with and without the partial Winkler foundation.

This paper is structured as follows. Section 2 outlines the sextic B-spline
collocation method. Then, in Sec. 3, the numerical solution of the differential
equation of the FKuler-Bernoulli beam on uniform foundation is developed using
the B-spline method. Section 4 presents some numerical examples to illustrate
the efficiency of the presented method. Finally, in Sec. 5, brief conclusions are
drawn.

2. DEFINITION OF B-SPLINE CURVE

Let x = (xg, z1,...,2N) be a knot vector. A B-spline function of k-degree is
defined as [14]

1 forz € [z, xiy1)
0 _ 7y Li+1),
(2.1) Bi(z) = {0 otherwise,

T — _ Litk+l =L k-1
2.2 Bf(r) = ————Bj '(a) + ————Bj (),
(2.2) i () Tirk — @i () Titk+1 — Tit1 Hl()

where 0 <i< N —-k—-land1<k<N —1.

Sextic B-spline can be obtained by calculating the B-spline basis function
up to sixth order using Eq. (2.2). Therefore, the sextic B-spline basis function
BY(z) is as follows:

(r —z; + 3h)6, x € T3, %3],
(x — 2 +3h)° — 7 (x — 2 +20)°, T € [Tig, i 1],
(z — i + 3h)0 — 7 (x — z; + 2h)°
+21 (:c—a:i—i—h)G, x € [Ti_1, 24,
(z — ;i + 3h)° — 7 (z — z; + 2h)°
(2.3) BS(x) = % +21 (@ — 2+ h)° =35 (z —2)°, @ € [ws, wip1],
(x —x; —4h)® — 7 (z — 2; — 3h)°
+21 (.7} —X; — 2h)6 , x € [ZL‘Z‘+1, .I‘Z'+2] R
(:E —X; — 4h)6 -7 (:E —X; — 3h)6 s T € [xi+2, SCZ'+3] s
(JI — X — 4h)6 s x € [$i+37 xi+4] s

0, otherwise.
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In this paper, the solution domain a < z < b is divided into N segments
with a uniform length of h = b_T“ at the knots x; where ¢ = 0,1,2,..., N and
ZTi+1 = x; + h such that a = zg < 21 < ... < zny = b. In the sextic B-spline,
basis function is defined as follows:

N+5
(2.4) y(x) = aBi(x),
i=0
where By(x), ..., Bnts(z) are the sextic B-splines functions at the knots and are

given by Eq. (2.3). ¢p, . . ., cn+5 are unknown real coefficients that are determined
by satisfying the boundary conditions at each end of the beam and the continuity
conditions of displacement, slope and moment along with the shear force and
the collocation form of the differential Egs. (1.1) and (1.2). Also, first, second,
third, fourth and fifth derivatives of B; with respect to variable x are used to
solve the fifth-order differential equation. Values of B; and its derivatives at the
nodal points are given in Table 1.

Table 1. Values of B; and its derivatives at the nodal points.

Zq Ti+1 Ti+2 Ti+3 Ti+4 Ti+5 Ti+6 Ti+7

B lo| L 57 302 302 57 RN
' 720 720 720 720 720 720

5 o 6 150 240 240 150 6 0
! 720h 720h 720h 720h 720h 720h

5 | o 30 270 300 300 270 30 0
‘ 720h2 720h2 720h2 720h2 720h2 720h2

5 | o 120 120 960 960 ~ 120 ~ 120 0
! 720h3 720h3 720h3 720h3 720h3 720h3

BY | o 360 1080 720 720 1080 360 0
! 720h4 720h4 720h4 720h4 720h4 720h4

B9 | o 720 3600 7200 7200 3600 720 0
! 720h5 720h5 720h5 720h5 720h5 720h5

3. CONSTRUCTION OF THE PROPOSED SOLUTION

By substituting Eq. (2.4) into Egs. (1.1) and (1.2), equations yield as follows:
e for uniformly distributed load:

N+5 W i N5 o(2)
(3.1) ; B (xj) + ol ; ¢iBi(x) — BT = 0, for 7=0,1,...,N,
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e for linearly distributed load:

N+5 N+5

B+ LS ) - W) L _
(3.2) iZ;cZBi () + ;czBl(az) e =0,

for 7=0,1,...,N.

From Table 1 and Eq. (2.4), y, ¥}, ¥/, v, y® and y©®) are obtained as
follows:

1
(3.3) vy = 730 (¢i+57¢i114+302¢ 19 + 302¢;43+5T¢i1a + Civs) ,

(3.4) o) = 721% (6¢i+150ci11+240¢i 49 — 240¢;43—150¢i 1 4—6¢it5) ,

(3.5) ! = 723112 (30¢;4270¢; 11 —300¢ 42 — 300¢;434+270¢i44+30¢i45) ,
(3.6) y!" = 7Qéh3 (120¢;+120¢;11—960¢; 12 + 960c;+ 3—120¢; 41 4—120¢;15) ,
(3.7) y@W = 72(1]h4 (360¢;—1080¢;41+720¢; 42 + 720¢;+3—1080¢; 4 4+360¢i45) ,
(3.8) y® = 72(1]h5 (720¢;—3600¢;41+7200¢;+2 — 7200¢;13+3600¢; 4 4—720¢;15) -

y, yi, EIy!, and EIy]" can be stated as displacement, slope, bending moment
and shear force in the beam, respectively. Substituting Eq. (3.7) into Eq. (3.1),
for uniformly distributed load, results in:

1
(39) =577 (360c; — 1080c;11 +720¢; 12 + 720¢;45 — 1080¢j4 + 360c;5)
qlx
* T0E1 (¢i 4 57cit1 + 302¢i42 + 302¢i43 + 57¢ita + Cits) — }gj) =0,

i or j=0,...,N.

The above solution for uniformly distributed load can be written in the
form of:

1 360 k 1080 57k 720 302k

B0 7o\t T &) T\ T Er ) t \r TR ) e
720 302k 1080 57k

T\t T Er )t T T Er) e

360 k x . )
+<h4+EI>cj+5>_ql(N):0’ t or j=0,...,N.
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Similarly, it is possible to develop the solution for the linearly distributed
load by substituting Eq. (3.8) into Eq. (3.2):

1
W (7206j - 36000j+1 + 72006j+2 - 720()Cj+3 + 36000j+4 - 7200j+5)

K
* M(Gq +150ci 41 + 240ci 2 — 240¢i43 — 150¢i 14 — 6ciys)
dg(z) 1 . ,
N T =0,1,..., V.
diU EI 07 v or j 07 } )

By simplifying the above solution, the solution for linearly distributed load
can be rewritten as follows:

(3.11) 1 /7720 n 6k 4+ ~ 3600 n 150k
- o \\ W T wET) @ n " hET )T
7200 240k 7200 240k 3600 150k
T\ e ) s Ther )9 T T her ) 9
720 6k dg(z) 1 _ .
—(h5+hE,I>Cj+5>— d E:O, 1 or jZO,l,...,N.

The systems (3.10) and (3.11) consist of N + 1 equations in the N + 6
unknowns {cy, ¢j,...,cn45}. Thus, the five equations are needed at this stage.
Therefore, the boundary conditions are used to obtain theses extra equations.
Four extra equations are explicitly obtained using two boundary conditions at
each end of the beam depending on the type of end support and one extra
equation for uniformly distributed load is given below:

1
72015 (720co — 3600c1 + 7200c2 — 7200¢3 4 3600¢y — 720c¢5)

K
—son g (6¢0 + 150c1 + 240¢; — 240c; — 150c4 — 6c5) = 0.

The above solution for uniformly distributed load can be rewritten as
(3.12) 1 [/[720 . 6k . 3600 n 150k n 7200 n 240k
0 \\ s T hET ) wowED) T\ he T hET )

(7200, 240\ (3600 150K\ (720 Gk 0
W hED) o nEl) T\ T hED)) T

Also, one extra equation for linearly distributed load is obtained as

_l’_

1
20hE (360co — 1080cy + 720¢2 + 720c3 — 1080c¢4 + 360cs)

+ Wy(x) (Ci + 57c¢i+1 + 302¢i42 + 302¢;43 + 57¢i44 + Ci+5> = q(a).
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By simplifying the above solution, the solution for linearly distributed load

can be given as follows:
o L (0 e (105 (0
720 h* “nt T FEI h?* EI
720 302k 1080 57k 360 k q(x)
’ (WEI)‘“ (‘ = *m)“*(w*) 5) T
In addition, the continuity conditions of displacement, slope and moment

along with the shear force in the vicinities of the different segment connections
are defined as [4]

Y (a) = y(a),
0(a) = y'(a),
(3.14)
M(a) = ETy"(a),

V(a) = EIy" (a).

By applying the relationships between the individual physical quantities and
the B-spline function, the continuity conditions at the first and last knot (the
end knots) can be rewritten as follows:

1
Y(a) = — (co + 57c1 + 302es + 302¢3 + 57cs + ¢5),
0(a) = 200 (6co + 150¢1 + 240¢ — 240c¢3 — 150¢4 — 6¢5),
(3.15) }
M(a) = 20hZ (30co + 270¢1 — 300c2 — 300c¢3 + 270c4 + 30c¢5),
1
Via) = 20h3 (120cp 4+ 120¢; — 960c2 + 960cs — 120c4 — 120c5),
and
1
Y(b) = 55 (e + 57ent1 + 302642 + 302en43 + 57en+a + ens)
1
9(b) = 20k ——(6cn + 150cn+1 + 240y 42 — 240cn 43
- 15OCN+4 — 6CN+5),
3.16 El
(3-16) pr(p) = ooz (30ex + 270cx 1 — 300c 42
—300cN+3 + 270cN 14 + 30cN+5),
V(b) = 537 (120ew +120en 11 — 960cx+2

+ 9606N+3 - 1200N+4 - 1206N+5),
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where Y, 8, M, and V are displacement, slope, bending moment, and shear
force of the Euler-Bernoulli beam, respectively. Finally, the matrix equation is
given as

(3.17) 4] x [C] = [F],

where the coefficient matrix [A], matrix [C] and the load matrix [F] are cited
in the appendix.

4. NUMERICAL EXAMPLES

To validate the sextic B-spline method, the results of different examples are
presented. First, the high computational efficiency of the method is shown and
then it is examined for the feedback with arbitrary boundary conditions. In all
the examples, E' and I are assumed as

Kk
E =2038901.91 — [ =6572.4175 cm.
c1m

4.1. Euler-Bernoulli beam under uniformly distributed load

For the purpose of verification of the presented method, the Euler-Bernoulli
beam with translational restraint supported under a uniformly distributed load
is considered (Fig. 2). The beam is assumed to have the following characteristics:

K K
g=15 -8} —92500 -2

—, L =500 cm.
cm cm

F W Y Y ¥ Y Y ¥YYY X

k =2500 kg/cm k =2500 kg/cm
gx

500 cm

F1G. 2. Euler-Bernoulli beam under with translational restraint supported
under uniformly distributed load.

Analytical solution of the displacement, slope, shear force, and bending mo-
ment of the Euler-Bernoulli beam with the translational restraint supported
under a uniformly distributed load can be determined as
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Y(2) = & (—0.625X* + 625X* — 78125000z — 1.5E1),
1
0(z) = 47 (—2.5X° +1875X? — 78125000),

V(z) = 3750 — 152,  M(x) = —7.52% + 3750z.

Table 2 compares the values of the displacement, slope, bending moment,
shear force of the Euler-Bernoulli beam with translational restraint supported
under a uniformly distributed load. It can be seen that the results are fairly close.
The maximum difference of the obtained results is approximately 0.0004%.

Table 2. The values of the displacement, slope, bending moment, shear force of the Euler-
Bernoulli beam under uniformly distributed load — translational restraint supported case.

Displacement Slope Shear force Bending moment
Location [cm] [rad] [kg] [kg/cm]

[em] Analytical | B-spline| Analytical| B-spline| Analytical| B-spline| Analytical | B-spline
solution | function| solution | function| solution | function| solution | function

0 —1.50000 |—1.50000| —0.00583 |—0.00583| 3750.0 3750.0 0.0 0.0
50 —1.78596 |—1.78596| —0.00550 |—0.00550| 3000.0 3000.0 | 168750.0 [168750.0
100 —2.04102 [—2.04102| —0.00462 |—0.00462| 2250.0 2250.0 | 300000.0 |300000.0
150 —2.24070 |[—2.24070| —0.00331 |—0.00331| 1500.0 1500.0 | 393750.0 |393750.0
200 —2.36750 |—2.36750| —0.00173 |—0.00173 750.0 750.0 450000.0 |450000.0
250 —2.41093 |—2.41094 0.0 0.0 0.0 0.0 468 750.0 |468750.0
300 —2.36750 |—2.36750| 0.00173 | 0.00173 —1750.0 —750.0 | 450000.0 |450000.0
350 —2.24070 |—2.24070| 0.00331 0.00331 | —1500.0 | —1500.0 | 393750.0 |393750.0
400 —2.04102 |—2.04102| 0.00462 | 0.00462 | —2250.0 | —2250.0 | 300000.0 |300000.0
450 —1.78596 |—1.78596| 0.00550 | 0.00550 | —3000.0 | —3000.0 | 168750.0 |168750.0

500 —1.50000 |—1.50000| 0.00583 | 0.00583 | —3750.0 | —3750.0 0.0 0.0

4.2. Euler-Bernoulli beam under linearly and uniformly distributed load

In order to illustrate the accuracy of the presented method, the Euler-

Bernoulli beam with arbitrary boundary conditions under uniformly and lin-
early distributed load is considered (Fig. 3). Analytical solution of the displace-

65 kg
q =30 kg/cm
25 kg
AERERR TR
Y, |® g
Ek = 5000 kg/cm &
500 cm 350 cm 500 cm 350 cm

F1c. 3. Euler-Bernoulli beam with arbitrary boundary conditions
under uniformly and linearly distributed load.
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ment, slope, shear force, and bending moment of the Euler-Bernoulli beam with
translational restraint supported under a uniformly distributed load can be de-
termined as

(

80875

—1.252% + 178$3 — 4864583.33422

80875

—1.25z% + 1—8x3 — 4864583.33422
+0.30100763E Tz — 150.503816 E1

1173958.33422 + 0.03255167E1 -

+90.67052E1

1, 905 , 82125

“1050° 168" 7

80875

—5x3 4 TxZ —9729166.667x

80875

—5x3 + T:E? —9729166.667x

+0.30100763E£1

2347916.667x + 0.03255167E1

L4, 905 5 492750 ,

To10" a2

+26430952.381x — 0.382741E1

80875

—1522 + —3 T 9729166.667

2347916.667

2 5 905 , 492750
105 14 7

80875

=30z + ——

3

2 5 905 492750
_|_ —

T35t T T 7

23+13215476.1922
—0.382741E1 - x — 246.48704FE1

T + 26430952.381

0 <z <500 cm,

500 < a < 850 cm,

850 < x <1350 cm,

1350 < 2 <1700 cm,

0 <z <500 cm,

500 < x < 850 cm,

850 < x <1350 cm,

1350 < z <1700 cm,

0 <z <850 cm,
850 < x <1350 cm,

1350 < 2 <1700 cm,

0 <z <850 cm,
850 < x < 1350 cm,

1350 < z < 1700 cm.
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Table 3 presents the values of the displacement, slope, bending moment,
shear force of the Euler-Bernoulli beam with arbitrary boundary conditions
under uniformly and linearly distributed load. It can be seen that the results
are fairly close. The maximum difference of the obtained results is approximately
0.00005%.

Table 3. The values of the displacement, slope, bending moment, shear force of the Euler-
Bernoulli beam under uniformly and linear distributed load — arbitrary boundary conditions

case.
Displacement Angle Shear Bending moment
Loca- [cm] [rad] [kg] [kg/cm]
[tlori Analytical| B-spline | Analytical| B-spline| Analytical| B-spline | Analytical B-spline
om solution | function | solution | function| solution | function solution function
0 0.00 5.92E-15 | 0.00000 |—1.4E-13| 26958.33 | 26958.33 |—9729166.67|—9729165.94

100 | —3.30418 | —3.30418 | —0.06292 |—0.06292| 23958.33 | 23958.34 |—7183333.33|—7183332.78

200 | —11.98752|—11.98750| —0.10796 |—0.10796| 20958.33 | 20958.27 |—4937500.00|—4937499.75

300 | —24.37406 |—24.37410| —0.13735 |—0.13735| 17958.33 | 17958.45 |—2991666.67|—2991666.39

400 | —39.01177|—39.01180| —0.15335 |—0.15335| 14958.33 | 14958.55 |—1345833.33|—1345833.36

500 | —54.67244 |—54.67240| —0.15819 |—0.15819| 11958.33 | 11958.75 0.00 —1.05

500 | —54.67245|—54.67240| 0.14282 | 0.14282 | 11958.33 | 11958.54 0.00 0.58

600 |—40.25101 |—40.25100] 0.14691 | 0.14691 | 8958.33 8958.15 | 1045 833.33 | 1045 833.12

700 | —25.06780 |—25.06780| 0.15768 | 0.15768 | 5958.33 5958.15 | 1791666.67 | 1791666.79

800 | —8.56622 | —8.56622| 0.17290 | 0.17290 | 2958.33 2958.33 | 2237500.00 | 2237499.39

850 0.29166 0.29167 0.18148 | 0.18148 | 1458.33 1458.29 | 2347916.67 | 2347916.15

850 0.29166 0.29167 0.18148 | 0.18148 0.0 0.01 2347916.67 | 2347916.12
900 | 9.586411 | 9.58473 0.19024 | 0.19024 0.00 —0.04 | 2347916.67 | 2347916.12
1000 | 29.48662 | 29.48493 | 0.20776 | 0.20776 0.00 0.02 2347916.67 | 2347916.45
1100 | 51.13893 | 51.13725 | 0.22528 | 0.22528 0.00 0.55 2347916.67 | 2347917.36
1200 | 74.54336 | 74.54167 | 0.24280 | 0.24281 0.00 0.15 2347916.67 | 2347917.84
1300 | 99.69989 | 99.69820 | 0.26033 | 0.26033 0.00 0.19 2347916.67 | 2347915.09
1350 | 112.93520 {112.93350| 0.26909 | 0.26909 0.00 0.78 2347916.67 | 2347916.78
1350 | —103.3721 |—103.3720| 0.26909 | 0.26909 0.00 —0.03 | 2347916.67 | 2347915.83

1400 | —89.69930 |—89.69930| 0.27781 | 0.27781 | —1392.86 | —1392.86 | 2314285.71 | 2314285.04

1500 | —61.08280 |—61.08280| 0.29414 | 0.29414 | —5035.71 | —5035.70 | 2002380.95 | 2002380.48

1600 | —30.99825 |—30.99830| 0.30664 | 0.30664 | —9821.43 | —9821.43 | 1269047.62 | 1269047.35

1700 0.00 2.06E-16 | 0.31175 | 0.31175 | —15750.00 |—15750.00 0.00 0.00

4.8. Indeterminate beam under uniformly
and linearly distributed load

The indeterminate beam under uniformly and linearly distributed load with
spring supports is evaluated. The beam characteristics are shown in Fig. 4.
Analytical solution of the displacement, slope, shear force, and bending moment
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T LI mTﬂTﬂT

k =2000 kg/cm k =3500 kg/cm
k =4000 kg/cm
800 cm 800 cm

F1G. 4. Indeterminate beam under uniformly and linearly distributed load.

of the indeterminate beam under uniformly and linearly distributed load with

springs supports can be determined as

—%x‘l + 988.7710323
— 262393786.2x — 2.96631309E T

1 1 5
Y(z)=— - 5 2.4 3
(v) i ca00% — %" + 36778956372

—8053899.05622 + 0.4851101E1
—140.09774885E1

10
—gzc?’ +2966.3130922 — 262393786.2

1
_ 1 5
0(r)= i —%m‘l - 6353 +11033.686912:2

—16107798.1122 + 0.4851101 E1

5932.62618x — 102

M(z)=1{ —0.00312523 — 2.522 + 22067.37382x
—16107798.112

9932.62618 — 20z
€T)=
—0.0093752% — 5 + 22067.37382

0 <z <800 cm,

800 < x <1600 cm,

0 <z <800 cm,

800 < x <1600 cm,

0 <z <800 cm,

800 < x < 1600 cm,

0 <z <800 cm,
800 < x < 1600 cm.

Table 4 presents the values of the displacement, slope, bending moment, shear
force of the beam under uniformly and linearly distributed load.
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4.4. FEuler-Bernoulli beam on Winkler foundation
under uniformly distributed load

Now the Euler-Bernoulli beam on the uniform Winkler foundation under
a uniformly distributed load with spring supports is considered. The beam char-
acteristics are shown in Fig. 5. Figure 6 presents the displacement, slope, bending
moment, shear force of the beam on the Winkler foundation under uniformly
distributed load.

q =30kg/cm

Yy vy by dbybvvvduid

T

K =10 kg/cm? k=2700kg/em K =10 kg/cm?
800 cm 800 cm

Bl

v

Fi1G. 5. Euler-Bernoulli beam on Winkler foundation under uniformly distributed load.

!
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§ -15 g 0

= z -0.002
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a -0.004

s -0.006

-0.008

-3 -0.01

0 500 1000 1500 2000 0 500 1000 1500 2000
Location [cm] Location [cm]

4000 400000

3000 "E 300000
Q

2000 & 200000

— = 100000
5 1000 s
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=1 =}
< 0 g

2 = -100000
@ _1000 =)

'-g -200000

~2000 A -300000

-3000 -400000

-4000 -500000

0 500 1000 1500 2000 0 500 1000 1500 2000
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Fic. 6. Displacement, slope, bending moment, shear force of Euler-Bernoulli beam on Winkler
foundation under uniformly distributed load.
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4.5. Beam with the translational and rotational support on Winkler foundation
under uniformly distributed load

The Euler-Bernoulli beam with the translational and rotational support on
the uniform Winkler foundation under uniformly distributed load is considered
in this section. The beam characteristics are shown in Fig. 7. Table 5 compares
the values of the displacement, slope, bending moment, shear force of the FEuler-
Bernoulli beam using the B-spline collocation method along with the integrated
finite element analysis of structures (SAP2000) [14]. It can be seen that the

k= 8000 (kg-cm)/rad g =30kg/cm k= 8000 (kg-cm)/rad

L YYYVYYVYYY YYYVYYY Y Y YY VY Y

2 To¥

e N A R

K=10kg/em? & =3000 kg/em K =10 kg/cm?
800 cm 800 cm

F1G. 7. Euler-Bernoulli beam with the translational and rotational support on Winkler foun-
dation under uniformly distributed load.

Table 5. The values of the displacement, slope, bending moment, shear force of the beam with
the translational and rotational support on Winkler foundation under uniformly distributed

load.
Displacement Slope Shear force Bending moment
If.’ca‘ [cm] [rad] [kg] [kg/cm]
ion : : - ;
lem] | SAP2000 | BSPne| gapoggg | BsPlne | gy poggg | Bspline | g poggg | Brspline
function function function function
0 —1.00753 | —1.00054 | —0.007267 | —0.007207 | 3026.986 | 3001.625 | —57.6438 |—57.65583

100 | —1.69972 | —1.68964 | —0.006325 | —0.006313 | 1354.721 | 1354.339 | 211985 | 212091.6
200 | —2.23826 | —2.22866 | —0.004356 | —0.004369 | 330.1139 | 329.7931 | 291704.9 | 291798.2
300 | —2.56225 | —2.55476 | —0.002129 | —0.002152 | —259.742 | —259.963 | 292492.5 | 292572.2
400 | —2.67034 | —2.66535 |—0.0000919| —0.0001016 | —632.781 | —632.901 | 246944.8 | 247012.1
500 | —2.59651 | —2.59373| 0.00147 0.00145 —990.25 | —990.288 | 166401.2 | 166457.8
600 | —2.40161 | —2.40044 | 0.00228 0.00227 —1486.36 | —1486.35 | 44201.65 | 44249.44
700 | —2.17809 | —2.17786 | 0.00197 0.00196 —2199.71 | —2199.67 | —138219 | —138178
800 | —2.06343 | —2.06349| 1.7E-17 |0.000000086| —3146.82 | —3095.23 | —401981 | —401943
800 | —2.06343 | —2.06349| 1.7E-17 |0.000000086| 3146.819 | 3095.25 | —401981 | —401943
900 | —2.17809 | —2.17785| —0.001966 | —0.001959 | 2199.706 | 2199.685 | —138219 | —138176
1000 | —2.40161 | —2.4004 | —0.002279 | —0.002265 | 1486.363 | 1486.332 | 44201.65 | 44250.98
1100 | —2.59651 | —2.59367 | —0.001469 | —0.001448 | 990.2504 | 990.2263 | 166401.2 | 166455.7
1200 | —2.67034 | —2.66528 | 0.000092 0.00012 632.7814 | 632.7757 | 246944.8 | 247000.7
1300 | —2.56225 | —2.55468 | 0.00213 0.00215 259.742 | 259.7593 | 292492.5 | 292544.3
1400 | —2.23826 | —2.22859 | 0.00436 0.00437 —330.114 | —330.075 | 291704.9 | 291746
1500 | —1.69972 | —1.68963 | 0.00632 0.00631 —1354.72 | —1354.67| 211 985 | 212 008.3
1600 | —1.00753 | —1.00064 | 0.00727 0.00721 —3026.99 | —3001.92 | —57.6438 | —57.6425




ANALYSIS OF EULER-BERNOULLI BEAMS. .. 439

results are close. Table 5 shows that the maximum difference of obtained results
is approximately 9.57%.

4.6. Euler-Bernoulli beamn with general boundary conditions partially supported
on Winkler foundation under uniformly and linearly distributed load

In this section, the Euler-Bernoulli beam partially supported on the Winkler
foundation under uniformly and linearly distributed load is assumed with general
boundary conditions. The beam characteristics are shown in Fig. 8. Figure 9
presents the displacement, slope, bending moment, shear force of the Euler-

45 kg
40 kg
q=20kg/cm 10 kg
k=20000 (kgemyrad [ TTTTTTTTT ] Jk=15000 (kg-cm)/rad
4 ¥
% 7
k= 1500 kg/cm g k=2200 kg/cm
k=3000 kg/cm k= 4000 kg/cm
K =15 kg/em?
600 cm 400 cm 600 cm

Fic. 8. Euler-Bernoulli beam with general boundary conditions partially supported on Winkler
foundation under uniformly and linearly distributed load.

0 0.02
B 0.015
i 5 0.01
= =)
S X g 0.005
g o
2 o 0
= 2
S 7]
A -0.005
-5 -0.01
-6 -0.015
0 500 1000 1500 2000 0 500 1000 1500 2000
Location [cm] Location [cm]
10000 1200000
8000 ,E 1000000
6000 2 800000
= 4000 = 600000
2 -
&, 2000 § 400000
5 0 g
5] © 200000
= -2000 g
175) o0 0
-4000 8
6000 % -200000
-8000 M -400000
-10000 -600000
-12000 -800000
0 500 1000 1500 2000 0 500 1000 1500 2000
Location [cm] Location [cm]

F1G. 9. Displacement, slope, bending moment, shear force of Euler-Bernoulli beam with general
boundary conditions partially supported on Winkler foundation under uniformly and linear
distributed load.
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Bernoulli beam with general boundary conditions partially supported on the
Winkler foundation under uniformly and linearly distributed load.

4.7. Euler-Bernoulli beam with arbitrary boundary conditions supported
on partial Winkler foundation under uniformly and linearly distributed load

The Euler-Bernoulli beam arbitrary boundary conditions supported on the
partial Winkler foundation under uniformly and linearly distributed load is con-
sidered. The beam characteristics are shown in Fig. 10. Figure 11 presents the

p=8000 kg
e g =35 kg/cm hllql iOi(gT“iH ¢=35kg/em 40 kg
i H
L I § |
k=4500kg/em  K=15kg/em®  k=5000 kg/cm k= 6000 kg/em
L:2mL=2mL=4m‘ L=8m > L=4m L=5m

Fic. 10. Euler-Bernoulli beam with general boundary conditions partially supported on Win-
kler foundation under uniformly, linearly distributed and point loads.
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Fi1G. 11. Displacement, slope, bending moment, shear force of Euler-Bernoulli beam with gen-
eral boundary conditions partially supported on Winkler foundation under uniformly, linearly
distributed and point loads.



ANALYSIS OF EULER-BERNOULLI BEAMS. .. 441

values of the displacement, slope, bending moment, shear force of the Euler-
Bernoulli beam using the B-spline collocation method along with the integrated
finite element analysis of structures (SAP2000) [14]. It can be seen that the re-
sults are close. Figure 10 shows the maximum difference of the obtained results
of approximately 4.32%.

5. CONCLUSION

This paper presents the analysis of the Euler-Bernoulli beam with arbitrary
boundary conditions partially supported on a Winkler foundation using the sex-
tic B-spline collocation method. A direct modeling technique is introduced for
modeling the beam with arbitrary boundary conditions. Thus, the effect of trans-
lational along with rotational support flexibilities, the type of beam support,
and the elastic coefficient of foundation are assessed. Finally, some numerical
examples are shown to present the efficiency of the sextic B-spline collocation
method. To validate the analysis of the Euler-Bernoulli beam with the presented
method, the results of the B-spline collocation method are compared with the
results of the analytical method and the integrated finite element analysis of
structures (SAP2000).

APPENDIX

The coefficient matrix [A], matrix [C] and the load matrix [F] in Eq. (3.17)
are given for all boundary condition by:
1) for uniformly distributed load:

[ q/EI o ]
q/E1 o
q/E1

C2
q/EI
F_ | Y/EI 7 c—| o~ 7
qFET CN i1
0 CN+2
m CN+3
Zi CN+4
| myg | L CN+5 ]
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where value for m; is dependent on boundary conditions

360 k 1080 57k
Ay =22 Ay = — 2 208
S T ) & 2 W T ED
720 6k 3600 150k
A=95 trEr ST T ED
[ A1 Ay A3 A3 Ay Ar O
0 Al Ag Ag Ag A2 Al
0 0 A1 AQ A3 AS A2
_ 110 0 o 0 A A
720 A4 A5 Aﬁ *A6 *AS *A4 0
ur U2 U3 U4 us U6 0
ur ug ug uip wir uiz 0
o 0o o --- 0 U3 Ul4
L0 0 0 0 w9 us

_ 720, 302
L T o
L T200 240k
6= T T hETD
0 --- 0 01
0 0O O
Ay - 0 0
As As Ay A,
.0 0 o |
0 0 0
O 0 O
U5 U1e U17 UI8
U2l U2l U2 U3

where u; and m; depend on the boundary conditions that are determined by the

kind of support and toggle.
2) for linearly distributed load:

Co
1

C2

CN
CN+1
CN+2
CN+3
CN+4

L CN+5
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where value for m; is dependent on boundary conditions

[ Ay As Ag —Ag —As —As O o - 0 0 7
0 Ay A5 Ag —Ag —As5 —A4 0 -~ 0 0
0 0 A4 A5 A6 —AG —A5 _A4 T 0 0

_ L lo o o0 -~ 0 A A As —-Ag —As —Ay
720 | A Ay A3 A3 Ay AL 0 - 0 0 0
U U U3 U4 us Ue 0 0 0 0
wr ug ug up w;x wiz 0 o 0 0 0

0O 0 0 c. 0 u13 U4 U5 Ul U7  ULS

L0 0 o0 .- 0 w9 w0 w21 w21 u22 U2z |

Simple spring at the first and last member of a system

Simple spring at the first and last member:
Y -k =V, M =0,

[C5] =[Ch] =

120

120 960 960 120 120
k1 — ﬁEl 5Tk1 — ﬁEl 302k1 + ﬁEl 302k1 — ﬁEI 5Tkt + ?El k1 + hsEl],

30 270 —-300 —-300 270 30]

where k1 is a stiffness coefficient of a simple spring.

Sitmple spring in the middle of a system

Simple spring at the first member:
Y k= (‘/Y(right) - Vv(left)) ) M(right) = M(left)7

[C1] =

120 120 960 960 120 120
k1 — ﬁEl 57k, — ?El 302k1 + ﬁEl 302k1 — ﬁEl 57k1 + ﬁEl k1 + ﬁEl ,

o] = 30 270 —-300 —-300 270 30
C=% % e e owl

my = _V(left spring)» ma = M(left support)*
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Simple spring at the last member:
Yv(right spring) — Yv(left spring)» e(right spring) — Q(Ieft spring) s
[C3]=[1 57 302 302 57 1],

30 270 —300 —300 270 30
oy = | o5 20 20 R 20

m3 = Yv(right spring)» my = e(right spring)*

Toggle in the middle of a system
Toggle at the first member:
M(right toggle) — 0, V(right toggle) — V(left spring)»

30 270 —300 —-300 270 30]

ol — 120 120 —960 960 —120 —120
G=10% 9w w oW s w |
my =0, my = ‘/(left spring) -
Toggle at the last member:
M(leftt toggle) — 0, Y(right toggle) — Yv(left toggle)»

[C3]=[1 57 302 302 57 1],

30 270 —300 —300 270 30
oy = | o5 20 20 R 20

m3 = Yv(right spring) s my =0,

where matrices [C1], [C2], [C3] and [C4] are:

[ul U2 U3 U4 Us u6],
[

U7 ug U9 U0 U1l U12]7

[C1]
[C2]
[C3] = [ w13 wia wis wie w7 uis |,
[Ca]

= [u19 ug0 w21 upy uz3z ugy |.
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