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The optimal design of cementless hip prosthesis is investigated in the paper. Design vari-
ables are materials (represented by their Young’s moduli) of the non-homogenous stem prosthe-
sis, disposed in vertical layers. The minimisation of the interface stress function with constraints
on the resorbed bone mass fraction is presented. A simplified two-dimensional FEM model of
a stem-bone configuration is considered, enabling however to obtain essential characteristics of
the stem-bone load-transfer mechanism. Evolutionary algorithm approach is applied to find
the optimal solution.

1. INTRODUCTION

First papers devoted to the artificial joint design had a form either based
on the creativity of the analyst, guided by FEM results, or based on systematic
parametric variations in subsequent FEM calculations. Further papers were based
on the numerical optimization methods. YANG et al. [1] introduced a design
sensitivity analysis in combination with the FEM, analysing the dependence of
cement strain-energy density levels on cement and stem elastic moduli in the
femoral hip prosthesis.

Mathematical shape optimization of femoral hip stem was considered by
HUiskgs and BOEKLAGEN [2]. Design objective was to minimize stress peeks
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in the cement and at the cement/bone interfaces, which one believed to be the
prime causes for fixation failure. Two mechanical models were applied. The first
one, very simple, using the beam on elastic foundation theory and the second one
as a two-dimensional FEM model.

It was concluded that concerning “traditional” stem shapes, and depending on
the loads and properties, the optimal stem produce cement and cement/interface
stress reduction in the range of 30 — 70%. The parametric analysis showed that
to obtain maximal stress reductions, the stem should not be extremely short, and
preferably made of a Co Cr-alloy, rather than titanium.

Evidently, the shape of prosthesis will not be dictated by the outcome of an
optimization process, because other considerations (e.g. surgical technique, pos-
sibilities of removal, manufacturing techniques) will have to play a role as well.
The mechanically optimized shape can only serve as a guideline in a design pro-
cess. KOWALCZYK [3], using three-dimensional model of femur with a cementless
implant and design sensitivity analysis, considered the stress concentrations and
their sensitivity to various geometric parameters of the implant. Results provide
a good qualitative information on the influence of geometric parameters of the
implant stem on the stress distribution in the bone tissue.

The first very simple model mentioned above — beams on elastic foundation
— in combination with the predictor based on a statistical model (CHANG et al.
[4]) gives results which are in agreement with three-dimensional finite element
computer simulations, and experimental and clinical results.

The designer of a cementless hip stem in total hip replacement is faced with
two conflicting demands. On the one hand, a stiff stem shields the surrounding
bone from mechanical loading (stress shielding). It may cause massive bone
resorption mainly around the proximal part of the stem. Reduction of the stem
stiffness decreases the amount of stress shielding but it promotes higher proximal
interface stresses and increases the risk of proximal interface failure.

These two objectives (less stress shielding and more uniform load transfer)
lead to a design conflict. It is known that more uniform load transfer requires a
nonhomogeneous stem. The simplest example of a nonhomogeneous implant is
the one consisting of two separate homogeneous materials, such as a cemented
stem. The stiffness of the implant (stem and cement) can be controlled by chang-
ing the parameters describing the stem diameter and cement mantle thickness.
Optimal distribution of elastic properties in a stem has been presented by KUIPER
and HUISKES [5]. For a simplified two-dimensional FEM-model of a stem-bone
configuration, the minimization problem of the interface stress function with
constraints on the resorbed bone mass fraction has been solved, with Young’s
modulus in particular points of the stem as design variables. Some numerical
results for different meshes of finite elements and various values of upper bounds
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for the prosthetic Youngs modulus, have been presented. In the present paper,
the minimization problem of the interface stress function with constraints on the
resorbed bone mass function for a similar two-dimensional FEM-model has been
solved. We assume a layered medium. In each layer we assume a constant value of
the Young modulus. Design variables are Young’s moduli in each layer (Fig. 1b).
The number of layers is given.
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2. RESORBED BONE MASS FRACTION

Underloading of a bone may lead to bone loss. Bone can be considered as
locally underloaded when its local strain energy per unit of the bone mass (9),
averaged over n loading cases (S = 3", U;/g), is beneath the local reference
value Sy, which is the value of S when no prosthesis is present [5, 6]. It has
been observed that not every underloading leads to resorption: a certain function
of underloading (the threshold level or dead zone “s”) is tolerated. Hence, bone
is considered to be underloaded when the local value of S is beneath the local
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value of (1 — s)Syer. Using this definition, the resorbed bone mass fraction m,
can be expressed in the following way:

(2.1) my = 514- / r(S(b; x))g(x)dx
(9]

where: m, - resorbed bone mass fraction, b — vector of design variables, M -
original bone mass, (2 - original bone volume, x — volume coordinates, g(x) -
local bone density, 7(S(b;x)) — resorptive function,

1 if S < (1= 8)Ser,
TSN =4 i S5 (1 - 5)Sur.

The function r(S) is a kind of “influence function”. In the paper [6] by KUIPER
and HUISKES, two influence function were tested. The first function is the normal
or Gaussian cumulative distribution function (curve A, Fig. 2). The second one
is a step function (curve B, Fig. 2). In the present paper the step function (curve
B) is applied.
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3. PROBLEM FORMULATION

The present study investigates the stem-bone load-transfer mechanism in
order to minimize the shear stress function and satisfy the resorption limits.
Homogenous stem solution is compared to the stem composed of different mate-
rials, distributed symmetrically in vertical layers. For the two-dimensional plane
stress FEM model of a stem-bone configuration (Fig. 1b), the three following
optimization problems have been solved:
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e the minimization of the resorption coefficient
(3.1) m, — min;

e the minimization of the shear stress in the bone interface zone

(3.2) % / (Ouy/Tret)*dIT — min;
I

e the minimization of the shear stress function in the interface area subjected
to the constraints on the resorption coefficient

|1
(3.3) min [ﬁ/(amy/Tref)2m:l
I
(3.32) subjected to m, < myg,

where: II ~ interface area, o,y — shear stresses in bone elements being in contact
with the prosthesis, 7y¢f — reference stress, mg — upper bound of the resorbed
mass fraction m,.

Discrete design variables of nonhomogenous stem optimization problem are
material characteristics of the prosthesis vertical layers (Fig. 1b). Young’s moduli
E; are chosen from a finite set of ¢ available values. The discretteness constraints
used in the three optimization problems can be formulated as follows:

(3.4) E; € [E',E? E3,..., E9).

4. PRESENTATION OF EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms (EA) are a class of stochastic search methods in-
spired by natural phenomena of evolution, genetic inheritance and fight for sur-
vival [7]. They attempt to emulate the biological evolutionary theories to solve
the optimization problems and use a vocabulary borrowed from natural genet-
ics. The EAs can be considered as extension of the Genetic Algorithms (which
are based mainly on fixed-length binary string encoding) and allow any data
structure representation suitable for a problem, together with any set of adapted
operators [7].

The EAs process at every iteration a fixed number of individuals, called pop-
ulation. Each individual of the population represents a potential solution of the
problem, and is characterized by its fitness, i.e. a measure of its performance



422 J. BAUER and M. PYRZ

evaluated with respect to the optimization criteria. The process of simulated
evolution uses biologically inspired operators of selection and recombination (re-
production and mutation) and corresponds to a search through a space of poten-
tial solutions, coupling the elements of the exploration of the search space and
the exploitation of the most promising individuals. During the iterative process,
a constant population of potential solutions evolve, the best individuals are se-
lected and its features are recombined to create new propositions of solutions.
Probabilistic and random functions are applied to search for the best individual.

t=0

initialize randomly Population (t)

evaluate Population (t)

while (termination condition not satisfied) do
t=t+1
select Population (¢) from Population (¢ — 1)
recombine Population ()
evaluate Population ()

FiG. 3. Flow-chart of a classical evolutionary algorithm (Population (¢) = {z1,z2,...,2s}
denotes a population of n individuals at iteration ).

New designs are generated by recombining the information contained in the
existing “parent” individuals. The crossover operator (applied with the crossover
rate probability p.) forms an offspring by swapping the corresponding segments
of parents’ features, and exchanges the information between different potential
solutions. The mutation operator (used with the mutation rate p,, probability)
changes randomly some characteristics of a selected individual and introduces in
this manner some extra variability into the population. Selection is the process
of creating a new generation, accomplished by copying individuals from the last
generation, based upon the evaluation of fitnesses of individuals. According to
the evolutionary theories, only the most suited elements are likely to survive.
The individuals with higher fitness values will be selected to form the next gen-
eration, i.e. the relatively good solutions are reproduced while the relatively bad
solutions die. The initial population can be created randomly. New designs are
usually better and they replace the members of old generations. This evolution-
ary process converges after several populations and the best individual represents
the solution. It cannot be shown mathematically that the EAs approach always
converges to the global optimum but it is possible to find near-optimal solutions
for difficult problems, where standard optimization procedures cannot be applied.
These robust near-optimum propositions often introduce more realism into the
optimization practice and can be acceptable for engineering design.
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5. OPTIMIZATION OF HIP PROSTHESIS

A simplified FEM model of 2D plane stress is used for static analysis of the
hip prosthesis behaviour. The stem-bone structure is meshed with 612 square
isoparametric elements Q4, the material characteristics of the stem part are al-
lowed to vary in the optimization procedure. Young’s modulus Eg = 20 GPa
and Poisson’s ration vg = 0.3 have been assumed for bone material. The stem is
loaded with a bending moment of 1000 Nmm (Fig. 1). In the present approach,
shear stresses o,y are calculated in the middle of each bone element staying in
contact with the stem. The local strain energy density u evaluated for the bone-
stem configuration and necessary to determine the resorbed bone mass fraction
m, ,is obtained using the expression

2 2)_’/ l1+v 4

(5.1) u Ozz + Oy 0220y + ~% Tay-

= é—E-(
This value is compared with the corresponding energy densities up calculated for
the bone only structure in a similar manner.

The EA optimization procedure is coupled to FEM 2D plane stress analysis
module. It uses real encoding of discrete design parameters, adapted genetic
operators and the following exterior penalty method to formulate the fitness
function f (which includes the optimization criteria and the normalised constraint
violation terms, weighted by penalty coefficients)

>onb(Ozy/Trer)? + 1

(5.2) f

+ C2(m0 - mr)-

The fitness is maximized in the optimization process. The square of normalized
shear stresses is summed up over all nb elements staying in contact with the stem,
mr, Mo are respectively the resorbed mass fraction and its upper limit, and ¢,
¢z are constant values. For the 612 element mesh model ¢; = 2, ¢; = 5 have been
taken.

The stem is composed of eight vertical layers corresponding to symmetric ma-
terial distribution. Design variables are Young’s modulus of 4 stem layers, chosen
from a list of available values. The EP problem encoding uses the prosthesis layers
mapping to the material numbers and integer string problem representation.

The numerical results, presented in the next section, have been obtained
for a population of 60 individuals. The single arithmetical crossover operator
(applied with the probability p. = 0.65) and the non-uniform mutation (the
probability pm, = 0.15) have been used [7]. The selection procedure applies
the tournament ranking using random pairs. Moreover, this approach replaces
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the worst individual in the new generation by the best individual found in the
previous generation.

6. NUMERICAL RESULTS

According to [5], the resorbed bone mass fraction has been limited to mg =
0.25 and the dead zone coefficient s (see Fig. 2) was set equal to 0.5. The results
obtained for homogeneous stems clearly illustrate the design conflict. The stem
composed of bone material (E = 20 GPa) gives the high interface shear stresses
Ozymax = 3,32 MPa, whereas stiff stem (titanium E = 100 GPa) generates
lower shear stresses (0zymax = 1.39 MPa) but causes much bone resorption
(my = 0.830).

Homogeneous stem with Youngs modulus E = 47.8 GPa corresponds to the
limit value of bone resorption m, = 0.25.

The optimization results obtained for two different catalogues of Young'’s
modulus of the layered prosthesis are presented:

I : 9 elements catalogue [20.0; 50.0; 55.0; 60.0; 65.0; 70.0; 75.0; 80.0; 100.0][GPa],
IT : 14 elements catalogue [2.0; 5.0; 7.0; 10.0; 15.0; 20.0; 30.0; 40.0; 50.0; 60.0;
70.0; 80.0; 90.0; 100.0][GPa].

The distribution of shear stresses in the interface part of the bone obtained
for the first Catalogue I are presented in Fig. 4. The optimal material distribution
in the prosthesis for the minimisation of m, coefficient is shown in Fig. 5. The
outer layers are much weaker than the inner layers and Young’s modulus of the
outer part is the same as the bone modulus.

Results for the minimization of shear stresses o4y in the bone are shown in
Fig. 6. The opposite tendency of material stiffness distribution in comparison
with the previous test can be noticed -outer layers are much stronger than the
inner layers.

Finally, considering a minimization of o;y with the constraint on the upper
limit of m, coefficient, we obtain a trade-off material distribution in the prosthesis
which is a resultant of the two previous solutions (see Fig. 7).

The solutions obtained for the Catalogue II (14 elements) are qualitatively
similar to the results in the Case I. The distribution of shear stresses in the bone is
shown in Fig. 8 and material distribution in the prosthesis for three minimization
problems are given in Figs. 9, 10 and 11, respectively. It is worth to note the
difference between the optimal solutions in Figs. 7 and 11, which is caused by
various material characteristics available for the two studies.



w

——min mr [
—=—min stress
——min stress & mr<mo

N
8}

N

shear stress
—
- O
1

FIG. 4. Shear stress along the bone (lower part to the left of the figure).
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F1G. 5. Minimization of the resorption coefficient m, — min. Optimal material distribution.
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F1G. 8. Shear stress along the bone (lower part to the left of the figure).
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FiG. 9. Minimization of the resorption coefficient m, — min. Optimal material distribution.
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7. FINAL REMARKS

The very simple presented here model enables us to formulate qualitative
conclusions on the material properties distribution necessary to avoid two main
problems in total hip replacements: bone resorption due to stress shielding and
high proximal interface stresses. The characteristics material distribution pat-
terns have been obtained for different optimization criteria. A rapid convergence
of the optimization procedure within some scores of iterations have been noticed
in all examples. The minimization of shear stresses under resorption constraints
leads to results which are similar to the solutions obtained by KOWALCZYK (3]
;where the application of hollow implants makes some stress concentration de-
crease.

The optimization of hip prosthesis for different configurations of material
distribution within the stem will be investigated in further studies.
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