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GENERALIZED SECTION MODEL FOR ANALYSIS OF REINFORCED
CONCRETE CHIMNEY WEAKENED BY OPENINGS

M. LECHMAN and PM. LEWINSKI

BUILDING RESEARCH INSTITUTE
ul. Filtrowa 1, 00-611 Warsaw, Poland

In the paper, the general equilibrium equation due to bending moment and normal force is
formulated for RC cross-section weakened by an arbitrary number of openings. The governing
equations for the normal stresses due to bending moment and normal force are derived for
the case when openings are located symmetrically as well as asymmetrically to the bending
direction. The normal tensile stresses in concrete are neglected, and the reinforcing steel is
continuously spaced at ! layers (I € N). The constitutive equations for steel are assumed to be
linear elastic, while the concrete is described as an elastic material in compression and brittle
in tension. Furthermore, the strains are assumed to be small and their distribution across the
section to be linear. The additional reinforcement located in the zone of the flue openings
is involved. Basing on the equilibrium equation about the neutral axis, the effective moment
of inertia of the cracked annular cross-section with openings is derived, and its influence on
the fundamental frequency of the chimney is evaluated. The effects of different parameters
on stresses in concrete and steel in the considered annular cross-sections are presented and
discussed.

NOTATIONS
R external radius of ring
r internal radius of ring
[ number of layers of reinforcement
Ts radius of equivalent ring of steel reinforcement
Te centroidal radius (of concrete)
Tm mean radius of ring
bs effective thickness of reinforcement
bc thickness of concrete
I the ratio of areas, steel to concrete
la;, g,  the ratios of areas, additional steel located at the angles a;, i to concrete
z distance between the neutral axis and the location of normal force
e eccentricity of loading

o angle determining the location of the neutral axis
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ai, Bi angles determining the locations of openings

B variable angle

Fuo;, Fap,  the cross-sectional areas of additional reinforcement in the
surrounding of openings determined by angles s, f;, respectively

E. modulus of elasticity of concrete

E, modulus of elasticity of steel

€cy Oc strain, stress in concrete, respectively

A maximum compressive strain in concrete

€50 strain, stress in steel, respectively

Osi stress in additional reinforcement in the surrounding of opening determined
by the angle o

n ratio of moduli of elasticity of steel to concrete

m, ml, m2 number of openings

k interval number

B coefficient of the maximum compressive stress in concrete

C coefficient of the maximum tensile stress in steel

N axial force at section

A concrete area

b width of the opening

Mo the moment of the effective cross-section about the natural axis

M the moment of the effective cross-section about the centroidal axis

Ioe, Soe the effective moment of inertia and the effective static moment of compressive
concrete zone and steel area about the neutral axis of the cracked annular
cross-section with openings, respectively

w1 fundamental frequency

ho height of the stack

Io cross-sectional moment of inertia at the base

1o mass per unit height

A coefficient taking into account the geometrical properties of the stack

1. INTRODUCTION

Over the recent years, the determination of stresses in non-circular cross-
sections of reinforced concrete (RC) chimneys has been analysed as a theoreti-
cal problem as well as a practical one. In order to solve the problem, both the
analytical and numerical approaches are applied. HAMPE and FRENTZEL [1] con-
sidered a tall RC chimney treated as an axisymmetric elastic shell weakened by
one opening of small size. They investigated the effect of the opening shape on
the stress concentration in the surroundings of the opening. In later publications
regarding this problem, the Bernoulli assumption is commonly introduced for
the analysis of RC cross-sections. In the analytical approach, the equilibrium
equation for loading eccentricity and the corresponding formulae for stresses in
concrete and steel are derived in explicit analytical form. The governing equa-
tions for the normal stresses, derived for the case when a concrete chimney cross-
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section is weakened by four openings located at the same level and symmetric
to the wind direction, are given by LEE and JABALI [2]. The general equations
for the calculation of loading eccentricity and maximum stresses in concrete and
steel reinforcement for the hollow circular section with a maximum of two open-
ings of equal size are derived by WEN-FOO YAU [3] without the use of a thin-wall
approximation. The analysis presented by ACI Committee 307 [4] concerned the
problem of stresses in reinforced concrete chimneys weakened by a maximum of
two openings. Another group of authors present the numerical approach to the
analysed problem. Starting from equilibrium equations formulated in a general
implicit form, a numerical technique is used to solve the governing equations. The
results are given in form of diagrams for particular geometrical characteristics of
cross-sections. The calculation of the elastic stresses in the circular cross-section
of the shaft with one or two openings has been presented by PINFOLD [5]. The
ultimate load analysis of a shell with the circular cross-section weakened by one
opening is also included in this monograph. The method of dimensioning for the
annular cross-scctions of RC chimneys was given by BACHMANN [6] using linear
and nonlinear material models and taking into consideration the tensile strength
of concrete. Commentary on DIN 1056 [7, 8] includes diagrams for the strength
analysis of annular cross-sections weakened by one and two openings located
symmetrically to the bending direction. CIESIELSKI and BANAS [10] adopted
the model given by Bachmann and performed the static analysis of multilayered
ring cross-sections with weakenings and strengthenings, considering different lin-
ear and nonlinear material models by using of a computer program. The authors
analysed chimney cross-sections with 1, 2, 3, 4, 5 openings symmetric to the wind
direction. It should be mentioned that in the referred publications [5, 6, 7, 10],
representing the numerical approach, neither the unique existence of the solution
nor the convergence and the accuracy of the applied numerical technique have
been discussed. Despite the generality of the discussed approaches, there are no
proper analytical formulae covering the majority of important problems encoun-
tered in engineering practice. In particular, the annular cross-sections weakened
by arbitrary number of openings located asymmetrically to the bending direction
have not been analysed as yet. The assumption of central layout of steel rein-
forcement in the wall of chimney-like structures, used in the referred publications,
may not be justified. Furthermore, the effect of the additional steel bars designed
for reinforcing the surroundings of the openings should be examined. In the pa-
per, the governing equations for the normal stresses due to bending moment
and normal force are derived for the case when a reinforced concrete chimney
cross-section is weakened by one, two, ..., m openings, located asymmetrically
to the bending direction, while the reinforcing steel is spaced continuously at I
layers and concentrated in the vicinity of m openings. The proposed approach
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covers the majority of important cases encountered in engineering practice. Some
partial results have been presented by the present authors at the international
conferences [11, 12].

2. GENERAL EQUILIBRIUM EQUATION

The annular cross-section, described by radii R and r, is assumed to be
weakened by m openings of small size in comparison with the circumference of
the section, and the Bernoulli assumption is satisfied. The locations of open-
ings are determined by couples of the angular coordinates (a1, as), (a3, a4), ...,
(2m-1,02m), 0 S 1 < ag < ... < Agm—1 < g < 27, while symbols Fjg,
© = 1,...,2m denote the cross-sectional areas of additional reinforcement in the
surroundings of openings (see Figs. 1 and 2). The reinforcing steel is continuously
spaced at [ layers, the locations of which are determined by radii 41, 749, ..., 75,
respectively. The effective thickness by, 7 = 1,...,0 is defined as the quotient
of the reinforcement area and the circumference of the corresponding radius rg;
of the layer i. The steel reinforcement spaced at [ layers can be replaced by a
continuous ring of equal area located on the reference circumference of radius
rs, and of effective thickness b;. They can be found by comparing the static
moments of the given reinforcements and the equivalent one about an arbitrary
line perpendicular to the bending direction, according to the formula

I !
P B bailiashy Dsifots
(2.1)

l
by = (Z bsi"'si) /'rs-
Tt |

For the typical case of two layers of reinforcement, the formula (2.1) takes
the form:

s = (bslrzl -+ bs2"'§2> /(bsl"'sl 2y bs2"'s2)
(2.2)
by = (bslrsl - bs2rs2) /'rs-

In the similar way one defines the thickness of concrete b, as the ratio of the
concrete area A, and the circumference of the mean radius r,, of the considered
ring, b = Ac/(27ry,).

Thus, in further considerations the radius 74 of equivalent reinforcement is
used. In the present derivation the following assumptions are introduced:
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FiG. 2. Cross-section weakened by arbitrary number of openings located asymmetrically.
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(i) the distribution of strain across the section is plane,

(ii) the tensile strength of concrete is ignored,

(iii) the reinforcement in both the tension and compression zone is taken into
account.

Only elastic stresses are considered. As the compressive stresses in concrete
of many RC chimneys in operation do not exceed the value of 50% of the uniaxial
compressive strength, this assumption is justified.

The location of the neutral axis, described by an angle «, is considered outside
as well as within the openings, basing on the equilibrium equation for loading
eccentricity. The eccentricity of the normal force, e, is obtained as a resultant
force of the weight of the chimney above the section under consideration and the
wind pressure measured from the geometrical center of the chimney cross-section.
The equation for loading eccentricity is obtained by considering 2m + 1 cases of
the location of the neutral axis. Let us consider the case agr < a < aggs1 and
ag < 21— a < agit1, 0 < k,I < m. The sectional equilibrium of the bending
moments about the line perpendicular to the bending axis and crossing it at the
location of the normal force N, can be described in the following form (Figs. 1
and 2):

k—1 @2+l a
(2.3)  Tmbe Z / oc(e —recos BY(1 — p)dB + / ocle —recos B)(1 — p)dB
=0 qy; Qg
Q2i41 Q2i41
+ / (e —recos B)(1 — pw)dB + Z / (e —rccos f)(1 — p)dp
MM —a 1=l+1 gy
m 2+l 2m
+ Z / os(e —rs cosﬁ),ud,b’—l—zgsi(e—rs COS @) fhai ¢ = 0,
=0 g i=1
where
ag = 0, Qam+1 = 2,
(2.4)
2mr b Fooi . 2R3 -3
b= ST— Mai = %, 1=1,2,..,2m, r.= TR 2

and where in turn p, pe; — the ratios of areas, steel and additional steel to
concrete, respectively, r. — centroidal radius, r,, — mean radius of the ring.

The elastic stress-strain relationships for both steel and concrete in compres-
sion are assumed as:

(2'5) Oc = E05Ca os = Eses, 05 = 05(051;).
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Due to the Bernoulli assumption we obtain:

[ TeCosfB+2z—e (TscosP+z—e
(2.6) Ee = Eprm—mm——— €s = Epmr—mm—o
R+2z-—e R+2z-e
where 2z — e = —r, cos a.

3. DERIVATION OF EQUATIONS FOR THE SECTION WITH ONE, TWO, THREE,
FOUR OPENINGS

In the present derivation the annular cross-section of a RC chimney weakened
by four openings is considered. This case covers the majority of important cases
encountered in engineering practice. The openings are symmetric to the wind
direction and located at the same level. The steel reinforcement is replaced by
a continuous ring of equivalent area located on the reference circumference of
radius 7, (see Eq. (2.1)). The location of the neutral axis, described by an angle
«@, is considered outside as well as within the openings, basing on the equation
for loading eccentricity.

The locations of openings are determined by angles a4, 1 = 1,2,3,4, while
Fai, © = 1,...,4 denote the cross-sectional areas of additional reinforcement in
neighbourhood of openings (see Fig. 1). The equation for loading eccentricity
is derived by considering 5(k = 0, 1,2,3,4) cases of the location of the neutral
axis. Let us consider the case oy < @ < a3(k = 2). The sectional equilibrium
of the bending moments about the line perpendicular to the symmetry axis and
crossing it at the location of the normal force N, can be described in the following

form:
oy

(3.1) 27,b, /Uc(e —rccos B)(1 = n)dp + /Js(e — rscos B)udf
0 0

+/oc(e —recos B)(1 — u)dB + /os(e —1rgcos B)udf

Q2

n 4
+ /os(e —rgc0s B)udf + Zasi(e — T5 COS ) lhqi p = 0.

4 i=1

Substituting Eqs. (2.4), (2.5) and (2.6) into (3.1) and denoting n = F,/E,,
p = 15/7c, after some rearrangements we obtain:
e (1 = w)Xe(@) + npX,(a)

(3.2) o 0.5 (1 = pw)Ye(a) + nuYe(a)’
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where the functions of « are:
Xc(a) = —2cosa(sina; — sinag + sina)
+0.5(sin 203 — sin 2ay + sin 2a) + o) — a2 + @,
X¢(a) = —2pcos asinay — sinag + sinag — sinay)

+p%[a1 — a9 + az — as + ) + 0.5(sin 2a;; — sin2a + sin 2a3 — sin 204))
4
(3.3) + £ Z [hai COS i (p COS (v — COS (),
i=1

Y.(a) = sina; — sinag + sina — cos a(a; — as + @),

Ys(a) = p(sina; — sinag + sinag — sinay)
4
—cosa(o —ay +az —ag +7) + — Zuai(pcos a; —cosa).
i=1
In a general case of the arbitrary location of the neutral axis (k = 0,1,2, 3,4,
Fig. 1), the functions X., X, Y, Y5 in Eq. (3.2) are expressed as follows:

k
Xk(a) = -2cosa (Z(—l)i_1 sin a; + g sina)

i=1

k .
(1) e + Gper,

=1

2

k
+0.5 (Z:(—l)i—1 sin 2a; + 6k sin 2a> +
i=1

4 4
Xk(a) = —2pCOSO(Z(—-1)i_1 sin a; + p? Z(—l)i“lai—Hr
=1 i=1
4 _ pd
(3.4) +0.5 z:(—l)’_1 sin2aq; | + — Z Lai COS v (p cos a; — cos ),
-~ e
1==1 =1

k k
YE(a) = Z(,J)i‘l sin o; + g sina — cos & <Z(~—1)i-lai + 6ka> ,

i=1

4 4
YE(a) = pZ(—l)i_1 sin o — cos & <Z(-—1)i_1ai + w)

i=1 =1

4

1 .
Z(_l)lﬁlu’ai(pcos Q; — COS 05)7 k= 03 132a 374’

+ _—
Ko
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where:
o = ((-1F+1) /2, kz_jo( ) =0.

Considering the case k = 2 we can obtain Eq. (3.3) from Eq. (3.4). The
maximum compressive stress in concrete can be expressed in the following form:

(3.5) o, = Boy,
where
(3.6) 00 = N/A.

is the compressive stress in concrete due to the action of the axial force N , Ae —
concrete area, B — coefficient of the maximum compressive stress in concrete.

Let us consider the sectional equilibrium of the normal forces for the case
k = 2. The equilibrium equation can be described as follows:

aq

(3.7)  2ry,b. {/ac(l — u)dg + 7lasudﬁ + /aoc(l —~ p)dp + 7aasud,3
0 0 as as

A 4
+ /asudﬁ + Zasi/ﬁa,— - N =0.
o i=1

Substituting here Egs. (2.5) and (2.6) we obtain the equilibrium equations in
the following form:

R—rccosaN

(3.8) (1 = p)reYe(a) + nurYy(a) = DrboEeel

where Y. and Y; are described by Egs. (3.3).

Denoting
A; =2nrypb, and pg = R/r.,
we get
(3.9) B m(pr — cos @)

(1= w)Ye(a) + npYs(a)

For arbitrary location of the neutral axis, the coefficient B takes the same
form as above, however, the factors Y, and Y; are described by Egs. (3.4). The
maximum tensile stress in steel is computed from the constitutive and geometrical
relations, (2.5) and (2.6):

(3.10) o, =Col,
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where C — coeflicient of the maximum tensile stress in steel:
Ts + TeCOSQ

11 = -
(3:.11) ¢ nR—rccosa’
or
(3.12) C = -—nltcose
PR — COS ¥

4. GENERALIZATION OF THE THE OBTAINED FORMULAE
FOR THE SECTION WITH M OPENINGS

Let us consider the annular cross-section weakened by m openings situated
symmetrically with respect to the bending direction. By this assumption, the
locations of the openings are determined by couples of the angular coordinates
(o, a0), (a3,04) 4 oo (m—1,0m), 0 <o < ap <o < ame1 < ay < 7. The
equation for loading eccentricity can be derived for this case in the form (3.2)
using the principle of the mathematical induction, where the functions XF, Xf,
YE, Y} are expressed as follows:

k
X*(a) = -2cosa (2:(—1)1“1 sin a; + &g, sina)

=1

k
+ 0.5 (Z(—l)i_1 sin 2a; + 0, sin2a> + Z(—l)i“ai + Ok,

=1 1=1

Xk a )=—2pcosaz 1) !sin oy

m m
+ 02 D (=) ey + T+ 0.5 Z(—l)H sin 2ai]
B Z Jai COS @ (p €OS oy — cOs @),
/1 i=1
k . k o
YE(a) = Z(—l)z_1 sin @; + 0k sina — cos & <Z(—1)Z"J‘ai + 5ka> ,
i=1 =1

m m
ko) = pz:(—l)i_1 sin@; — cos & <Z(—1)i_lai + 7r>
i=1 i=1
1 & ~
+—Z(—1)’_1uai(pcosozi — cos ), k=0,1,..,m,
P
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where:
k=0

b= (-0F+1) /2, 3 () =0

The maximum concrete stress coefficient B takes the same form as (3.9),
however, the factors Y and Y} are described by Egs. (4.1). The coefficient of
the maximum tensile stress in steel C' is computed from Egs. (3.11) or (3.12).

5. THE CASE OF ASYMMETRIC LOCATION OF OPENINGS

Let us consider the circular cross-section weakened by m openings situated
asymmetrically to the bending direction (Fig. 2).

It is assumed that the circular cross-section is subdivided by the bending
axis on two halves containing m1 and m2 openings, respectively (ml+m2 = m).
Thus, the locations of the openings in the first half are determined by couples of
the angular coordinates (a1, ), (a3, ), ... , (Qemi—1,@2.m1), 0 < o < @ <

- < a2mi-1 < g < 7w, while the locations of the openings in the second
half are described by (81, B2), (B3, 84)-, (Boem2-1,B2.m2), 0 < B < B2 < ... <
Bo.ma—1 < Pama < . The symbols F,q;, 1 = 1, ..., 2-m1 denote the cross-sectional
areas of additional reinforcement in the surrounding of openings in the first half of
the section, and Fig;, i = 1, ..., 2-m2 in the second one, respectively. The equation
for loading eccentricity can be derived for the analysed case in the similiar form
as (3.2) by superposition of the solutions obtained for the symmetrical problem.
Ordering the values a1, a9, a3, @4, ... , @2.m1-1, Q2.m1, B1, B2, B3, Ba, weey Bouma_1,
BQ.mg and numbering them by jl, jg,...,jg.ml, il, ?;2, ...,iz.mg, Eq (32) can be
written in the form:

T {X2(a) + X}y +nu{X§1(a) + Xh(a)}
re (1= ) {Y(@) + Y3(@)} +np {Yii(@) + Yi(@)]

j=0,1,2,...,2(m1 +m2),

where the functions {X7;, X7, Y2, ¥J} and {X7,, X7, Y5, Y5} refer to the cor-
responding section halves and are expressed in the similar manner as in Eqs. (4.1):

k
(5.2) X) (a) = ~2cos o (z:(—l)i_1 sin o + Ok sina>
1=1

k k
+0.5 <Z(—1)i'1 sin 2a; + g sin2a> + Z(—l)i_lai + O,
i=1

=1

Ik <7 < Jks1; Jo=0,
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14
[Co'nt] X (@) = =2pcosa Z )~ Lsina; + p? Z (1) loy + 7
' i==1

2:ml
+2 Z [ai COS @ (p cOS i — €oS ),
i=1

2:ml

+ 0.5 Z (=1)""!sin 204

k k
Z:(—l)i_1 sin ¢; + 0, sin o — cos & (Z(—l)i_lai + (5ka> ,

Yi(a) =
i=1 i=1
Je <7 < Jet,
. 2-ml . 2-ml '
Yi(a)=p Z (=1)*1sinq; — cos (Z (1) o + 7r>
i=1

i=1

2m1

+ ) Liai(p cos a; — cos a),

==

=

S
W
=

5 = ((-1)F +1) /2

I

Xo(a) = ~2cosa (2:(—1)z sin 3; + 4 sma)
=1

I ' I '

Z(—-l)z_l sin28; + §; sin 204) + Z(—l)l_l,@i +

05
i=1

) 2:m?2 i )
Xlp(a) = =2pcosa Y (1) 'sinBi+ 0% | Y (1) B+ 7
] i=1
2-m2 . p Zm2
+ 0.5 z (=1 tsin2g;| + & Z 1, cos PBi(pcos B; — cos ),
=1 i=1

=1

. l . l .
Yi(a) = X:(—l)’_1 sin 3; + d;sina — cos & <Z(—1)’"1ﬁi + (5101) ,
i=1

il Sj < il—{-la
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(5.2) . 2.m2 . 2.m2 )
Y@ =p Y (-1 sing — cosa (2 (~1)71 B+ 7r>

i=1 =1

2m2

+ ,Ug, (pcosf; —cosa), 1=0,1,...,2-m2,

i:l

=0

b= ((-0'+1) /2, 3()=0, j=0,1,...,2- (ml +m2).

For the symmetrical case XZl = ng, Xgl = XgQ, chl = YCJQ, Y;]l Y2 and the
formulae (5.1), (5.2) take the same form as (3.2), (4.1). The maximum concrete
stress coefficient B is then calculated from the expression

2m(pRr ~ cos @)
(1 = w{Y2 (@) + Yh()} + np{Y7 (@) + Yi(a)}

(5.3) B=

where the factors Y7, Y, Y7, YJ, are described by the formulae (5.2). The
coefficient of the maximum tensile stress in steel C is computed from Eqs. (3.11)
or (3.12).

The solution algorithm consists of three steps:

e calculation of roots () of the equation for loading eccentricity (3.2), (4.1)

r (5.1), (5.2),

e determination of the maximum compressive stress in concrete basing on the
formulae (3.5) (3.6), (3.9) or (5.3),

e determination of the maximum tensile stress in steel basing on the formulae
(3.10), (3.11) or (3.12).

6. DYNAMIC ANALYSIS OF THE MODEL

Dynamic analysis of the model requires the determination of the dominant
(smallest) eigenvalue of the problem. In this approach, the evaluation of the effec-
tive cross-sectional characteristics of RC ring is necessary. In the problem under
consideration, the following constitutive model for determination of stiffness of
RC chimney is proposed:

(i) in the state before cracking, the effective cross-sectional characteristics of
RC ring is adopted,

(i) after cracking, the tensile strength of the concrete is neglected so that only
the compressive zone of concrete in the effective cross-sectional characteristics is
considered.
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The case (i) leads to a purely geometrical task. For the case (ii) the gen-
eral theory of reinforced concrete is used in order to determine the stiffness after
cracking. Due to Eurocode 2, the cross-sectional stiffness after cracking should
be calculated about the neutral axis of the effective cross-section. This moment,
denoted by My, can be obtained from the equation similar to Eq. (2.3) by sub-
stituting the expression (e — rocos 8) by (rccos 8 + z — e) and (e — g cos B) by
(rscos B+ 2z —e). Similarly, the moment about the centroidal axis of the effective
cross-section, denoted by M, also can be calculated from the equation similar to
Eq. (2.3) by replacing (e — r.cos 8) by (r.cos8) and (e — rscos B) by (rscos 8),
and using Egs. (2.5) and (2.6). Comparing the obtained equations for My, M and
N (which is described by Eq. (3.7)), we can get the obvious equilibrium equation:

(6.1) My=M+ N(z—e),
where
M() = O'é . I()e/.’l?,

(6.2)
N = o, - Soe/z,

where in turn the depth of compressive zone is described by £ = R+ 2z — e =
R — rccosa, as the function of location of the neutral axis (described by an
angle a), Iy, — effective moment of inertia of compressive concrete zone and steel
area about the neutral axis of the cracked annular cross-section with openings,
Soe — effective static moment of compressive concrete zone and steel area about
the neutral axis of the cracked cross-section. The searched value of Iy, can be
derived directly, but it is possible to evaluate it easily using the known coefficient
B. Substituting Egs. (6.2) to (6.1) we can get the equivalent equilibrium equation:

(6.3) Ipe = Spe(e = recos @),

which enables us to establish the location of the neutral axis, described by an
angle a, as by Eq. (3.2). The effective static moment can be derived by comparing
Egs. (6.2) and (3.5):

(6.4) Soe = Ac - z/B.
Substituting Eqgs. (6.4) to (6.3) we get:
(6.5) Ine=A;- (R—rccosa) - (e — recosa)/B.

For the determination of the eigenvalue of the problem it is possible to evaluate
the fundamental (natural) frequency by using the subsequent formula:

A |E.I
6.6 = —
( ) “I h% 1o ’
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where hg ~ height of the stack, Iy — cross-sectional moment of inertia at the base,
o — mass per unit height and A - coefficient taking into account the geometrical
properties of the stack. In case of the cylindrical structure of the chimney A =
3.5151 [14]. In particular, it applies to chimney structures in the form of truncated
conical shells. Exact analysis allows for point-to-point changes in stiffness and
mass of the structure, but in present consideration it is possible to deduce some
qualitative conclusions. Taking the effect of openings and cracking of concrete
into account, we can observe the decrease of the fundamental frequency (increase
of the natural period of vibrations). More general eigenvalue calculations could
also be performed. The forced vibrations can be analysed by explicit integration
of the equations of motion. Such kind of integration for structural system can
be simply treated for such cases where a lumped mass is used. In the equations
of motion the effective moment of inertia Iy, should be used for the generation
of the stiffness matrix, dependent on the state of deformation, what means that
the problem is nonlinear. An explicit consistent algorithm can be given using
the central difference method. If the internal force vector is computed using
the new displacement and velocity, the new acceleration can be computed for
a lumped matrix by merely dividing the force by the approximate mass term.
The fundamental frequency of the stack with lumped masses can be determined
by using the Kayser-Trochy method, where the solution depends directly on the
displacements along the chimney height, which should be calculated according to
the stiffness of the shaft at particular cross-sections.

7. NUMERICAL EXAMPLES

The numerical iterative technique is applied for the solution of the equations
for loading eccentricity. The presented approach enables the evaluation of stresses
in the considered cross-section of the R/C chimneys by the interactive analysis.
For presentation of the proposed Egs. (3.2), (3.4), (3.9), (3.11) or (3.12), (5.2),
(5.3), three particular designs with one, two and three openings are chosen. Figu-
re 3 shows the curves plotted according to the equation for loading eccentricity
(3.2), (3.4) for a section weakened by one opening. Values of the coefficients B
and C for this section are plotted directly as a function of the external loading
and the width of the opening (i.e. B, C versus e/R and b/R, Figs. 4, 5).
Similarly, the values of o, B, C for the section with two openings are shown
in Figs. 6, 7, 8, respectively. As the next example, the cross-section weakened
by three openings is considered. Values of «, B, C are expressed as a function
of the external eccentricity (Figs. 9, 10, 11). It is apparent that the obtained
curves are discontinuous because of the skip of the neutral axis from the location
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a € (a4, 7) to the location o/ € (a3, @4). As it is shown in Figs. 10 and 11, the
additional reinforcement in the surrounding of openings involved in the above
mentioned equations results in lower stresses in concrete and steel. The obtained
results were compared with those calculated for the circular cross-section (dashed
line). The presented examples indicate that the dependence of the coefficient B
on the arguments e/R and b/R is approximately linear (Figs. 4, 7, 10) while the
changes of the coefficient C' and the angle  are nonlinear (Figs. 3, 5, 6, 8).
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For the section with one opening given in Fig. 12, the stress distribution was
determined for various values of the loading eccentricity. The obtained diagrams
correspond to the Bernoulli assumption and confirm the correctness of the re-
sults. As an example of the application of the proposed algorithm for the case
of the asymmetrical location of openings, the cross-section with two openings of
equal size was considered. Figure 13 presents the changes of the depth of the
compressive zone determined by a and the values of the corresponding stress
coefficients B, C' as a function of the angle 5 formed by the axis of the openings
and the bending direction. The maximum stress in concrete occurs in the case
when the openings are situated along the bending direction (8 = 0, symmetric
case). The maximum value of stress in steel is obtained in turn in the case when
the axis of openings is normal to the bending direction (8 = m/2). On the other
hand, the minimum values of B and C refer to the angle 5 = 0.367.
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F1G. 13. Value changes of a, B, C for a section weakened by two openings located

asymmetrically.

It is worth noting that the root of the equation determining the location of
the neutral axis (3.2) - (3.4) or (5.1) — (5.2) is not unique in a general case. The
correct value is chosen according to the solution which satisfies the principle of
the minimum elastic energy.

8. CONCLUSIONS

1. General analytical formulae combined with numerical iterative technique
is proposed for determining and analysis of stresses in RC chimney sections weak-
ened by openings. The algorithm of the model can be easily processed.

2. The governing equations are obtained for arbitrary number of openings and
arbitrary bending direction, as well as for steel reinforcement spaced at [ layers in
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the wall of chimney-like structures. The additional steel bars in the surrounding
of openings are also taken into consideration in the governing equations. Thus,
the proposed section model seems to have a wider application field than the ones
given in previous papers.

3. Another advantage of the analytical approach is the possibility of investi-
gation of solutions of the problem.

4. Substituting ry =r. = rp, 0 =0, 03 = Q4 =T, flo; =0,2=1,23,4in
Egs. (3.2) and (3.4), the corresponding equations of ACI 307-79 for one opening
are obtained as a special case of the proposed ones. Similarly, assuming addi-
tionally ap = 0, the formulae given in the standard [13] for the annular section
can be easily obtained as a particular case of the equations derived above.

5. The obtained results indicate that additional reinforcement involved in the
proposed equations results in reducing the stresses in concrete by about 5% and
in steel by about 10%.

6. Using the proposed approach one can generalize the obtained formulae
taking into account nonlinear material law for steel and concrete.

7. The application of the obtained results can be extended to the RC tower
and the supporting structures.

8. The range of validity of the solution for the asymmetric problem (described
in Sec. 5) is limited to such number, sizes and locations of openings which cause
negligibly small disturbance of the plane character of bending with axial com-
pression.
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