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A certain problem of vibrations analysis of thin periodic plates is presented in this
paper. The applied model describes the effect of the periodicity cell size on the overall
plate behaviour. In the modelling procedure we use a concept of functions which describe
oscillations inside the periodicity cell and have to be properly chosen approximations of
solutions to eigenvalue problems for natural vibrations of a separated periodicity cell with
periodic boundary conditions. In this paper we will show that for certain cases of that cell, an
approximate form of those functions can be used.
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1. INTRODUCTION

Main objects of our considerations are thin plates with a periodic structure
along one direction in planes parallel to the plate midplane. These plates are
composed of many identical repeated elements. Our investigations are restricted
to plates in which every element, called the periodicity cell, is treated as a thin
plate with span [ along one direction. An example of such plates is shown in Fig. 1.

Problems of plates of this kind were investigated by means of different meth-
ods. However, exact analysis of those plates within solid mechanics is too com-
plicated to constitute the basis for solving most of the engineering problems.
Thus, many different approximate modelling methods for periodic plates were
formulated.

Effective plate rigidities were used e.g. in [3, 5, 10, 13] where periodic plates
were described by governing equations of certain homogeneous plates with con-
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F1G. 1. Uniperiodic plate.

stant averaged rigidities and averaged mass densities. By means of the asymp-
totic homogenisation methods, the averaged rigidities have to be derived for
every periodic structure by solving a certain boundary-value problem posed on
the periodicity cell. The asymptotic procedures are restricted to the first approx-
imation, [14], which leads to averaged models neglecting the effect of the element
length called the length-scale effect. Moreover, the aforementioned models were
restricted to the static problems.

In order to investigate dynamic problems, certain models, e.g. those based
on the concept of the continnum with additional local degrees of freedom, were
proposed, [15]. Short wave propagation problems were investigated in [1].

Some refined models describing long wave problems for periodic bodies were
presented in [21 — 22}, where it was shown that the length-scale effect on dynamic
response of a body is a very important problem, mainly in the vibration and
wave propagation investigations. The approach formulated in a general form in
the aforementioned papers leads to so-called length-scale models. These models
were applied to analyse certain dynamic problems of periodic structures, e. g.
for Hencky-Reissner periodic plates [2], for composite lattice-type structures [4],
for Kirchhoff periodic plates [6-9], for fibre composites [11], for periodically lam-
inated composites [16, 20], for periodic beams [17], for periodic wavy-plates {18],
for periodic visco-elastic materials [19] and others. These models are physically
reasonable and simple enough to be applied in the analysis of engineering prob-
lems. In the framework of length-scale models for periodic structures we obtain
the governing equations with constant coefficients. The length-scale effect on the
dynamic body behaviour in the framework of the length-scale models is described
by means of certain extra unknowns.

Models of this kind are different from the known modelling methods of asymp-
totic homogenisation. Some mathematical substantiations of those models were
shown in [21 - 22]. However, for thin periodic plates certain calculations con-
firming correctness of the length-scale model were made in [7 - 8].
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In paper [6] the modelling procedure with general assumptions and governing
equations of the length-scale model for plates with periodic structure along two
perpendicular directions were presented. For the considered plates with periodic
structure along one direction, this procedure was changed and generalised in [23].
As a result of the generalisation, models for plates with one-directional periodic
structure were obtained, taking into account the length-scale effect also in sta-
tionary processes. In order to derive the coefficients in the governing equations,
we have to solve a certain eigenvalue problem for natural vibrations of a separated
periodicity cell.

In this contribution, we consider the problem of solutions to this eigenvalue
problem mentioned in [8] and also in [6]. The main aim of this paper is to show
how the eigenvalue problem for the periodicity cell is formulated and solved,
and that for many cases of periodicity cells, the eigenfunctions being solutions
to this eigenvalue problem can be assumed in an approximate form which is
sufficient from the computational point of view. In the presented example, our
consideration will be restricted to plate bands. This makes it possible to present
clearly the aforementioned problem.

Basic notations and preliminary concepts will be presented in Sec. 2. In
the subsequent section, the modelling procedure and the governing equations of
the presented model for linear-elastic plates with a periodic structure along one
direction and constant structure along the perpendicular direction will be shown.
For comparison, the governing equations of a certain homogenised model will be
also presented. An analysis of free vibrations of a plate band with a periodic
structure and eigenvalue problems for certain periodicity cells will be shown in
Sec. 4. Subsequently, in order to evaluate the differences between applying of
exact or approximate forms of solutions to those eigenvalue problems, the analysis
of free vibration frequencies of a periodic plate band will be discussed. In Sec. 6
a test of correctness of the presented model will be shown. Final remarks will be
formulated in the last section.

2. PRELIMINARIES

We introduce the orthogonal Cartesian co-ordinate system Ozizox3 in the
physical space and denote z = (z1,22), 2 = z3. We also define ¢ as the time co-
ordinate. In this paper we will investigate thin linear-elastic plates with a periodic
structure along one direction of the z;-axis, and with constant properties along
the zo-axis, in planes parallel to the plate midplane. The region of an undeformed
plate is denoted by Q = {(x,2) : —h(x)/2 < z < h(x)/2,x € T}, where II is
the rectangular plate midplane with length dimensions L, L along the z1- and
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Ty-axis, respectively, and h(x) is the plate thickness at the point x € II. We
shall introduce a positive value | called a period. We assume that the period [
is sufficiently small compared to the minimum characteristic length dimension of
the plate midplane along the direction of plate periodicity, and sufficiently large
compared to the maximum plate thickness h, i. e., b < | < L;. Thus, the period
[ will be referred to as the mesostructure length parameter. Denote A = [0, L] and
define the interval I(z;) = (z1 —1/2,71+1/2), 1 € Ag, where Ag = {z1 : 71 € A,
I(z1) € A}, which will be called a periodicity interval at z;. We assume that
the plates have the [-periodic heterogeneous structure and are called uniperiodic
plates. Thus, it is assumed that plates of this kind have thickness h(-), which is
the [-periodic function in z; and independent of 3. Moreover, all the material
and inertial properties of those plates, i. e. components of the elastic moduli
tensor a;;ki, and mass density p, are also [-periodic functions in z1, independent
of z9 and even functions in z.

In the analysis of periodic structures we shall also use the following introduc-
tory concepts: the averaging operator in a periodicity interval I(z;) and two kinds
of functions which will be referred to as slowly varying and highly oscillating.

For an arbitrary integrable function ¢ defined on II we define the averaging
operator, following [10, 12 - 13, 21 - 22], given by

(2.1) <o >=< > (r1,22) = 1 / o(y1, z2)dy1, z1 € Ag.
I(z1)

If the function ¢ is I-periodic function in z; and is independent of z2, its averaged
value obtained from (2.1) is constant.

The first kind of the functions used is a slowly varying function. A function
F(-) defined on A will be called slowly varying if for every 1,72 € A and z; €
Ag, the following condition holds: F(y1) = F(y2), ¥1, ¥2 € I(z1), with all its
derivatives. Hence, for an arbitrary integrable function ¢(-) and a slowly varying
function F(-) we obtain < oF > (z1) =< ¢ > (x1)F(z1), 71 € Ao.

Define the second kind of the functions needed. A differentiable function
¢(-) defined on A will be called highly oscillating function if for every z; € Ay
it satisfies the condition < (¢F)1 > (z1,t) =< Fé1 > (z1,1) for every slowly
varying function F' defined on Ag and 172¢(x1,t), 17 g 1(21,t), da1(21,t) are of
an order O(1) where I is the mesostructure length parameter, as well as there
exists a periodic function ¢, such that ¢ = ¢, for the interval I(zy).

Throughout the paper subscripts o, 8, ...(3,7,...) Tun over 1,2 (1,2,3) and
indices A, B,... run over 1,..., N. For all the aforesaid indices the summation
convention holds. Displacements, strains and stresses in an arbitrary point of a
plate are denoted, respectively, by u;, €;5, sij. Moreover, let p be the loads in the
z-axis direction on the upper and lower plate boundaries, and b be the constant
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body force in the z-axis direction. By w(x,t) we denote the plate midplane
deflection. We shall define cap,5 = Ao Bys — aaﬂ33a7533(a3333)_1 and assume that
z = const are material symmetry planes; hence c3op, = 0, €333, = 0.

3. MODELLING PROCEDURE

The modelling procedure used in this paper was presented for plates with
two-directional periodic structure in [6, 8], and in the generalised form for plates
with one-directional periodic structure in [23]. For the sake of selfconsistency, we
remind here its key concepts. :

The starting point of our considerations are the well-known Kirchhoff plate
theory assumptions: the kinematic relations, the strain-displacement equations,
the stress-strain relations (under the plane stress assumption, s33 = 0), and the
virtual work principle. The aforementioned relations for periodic plates lead to
the partial differential equation of the fourth order involving highly oscillating
periodic coeflicients. In order to pass to the equations with constant coefficients
but retaining the length-scale effect, the additional modelling assumptions were
introduced in [9, 6, 8].

Introduce the quantities which are -periodic functions in z; and independent
of 9,

h/2 /2 h/2
Ho= / pdz, 9= / pz2dz, dopys 1= / ZQCaﬁ,y(st,
—h/2 ~h/2 —h/2

describing the plate properties: mass density per an unit area, rotational inertia
and bending stiffnesses, respectively.

The modelling procedure of the presented length-scale plate models is based
on three modelling assumptions formulated in [6 — 9]. Now we reduce those to
only one kinematic hypothesis.

The fundamental kinematic hypothesis is that the averaged plate deflection,
given by W(z1,22,¢) =< p >~ (22) < pw > (21,22,t), 21 € A, 22 € [0, Ly],
together with its all derivatives, are slowly varying functions of z,. Thus, W will
be referred to as the plate macrodeflection. Moreover, the deflection disturbances
given by v(z1,22,t) = w(z1,22,t) — W(z1,39,t), 1 € Ay, z9 € [0, Lo], are
assumed to be highly oscillating functions of x;.

Now the class of disturbances v(z1,22,t) is specified. Let us denote the plate
bending stiffness and the plate mass density per unit area by B(z1) and u(z1),
respectively, z; € Ag. At an arbitrary z9 € [0, Ly] the eigenvalue problem for a
function g4(y) is given by the equation
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(3.1) [B(y1)g* (1)l — w()(Aa)?g*(y1) =0, w1 €I(z1, =1 € A,

and by the periodic boundary conditions on the boundary of the interval I(z)
together with the continuity conditions inside I{(z;). Thus, ¢”(y1), 4 = 1,2, ...,
is a sequence of eigenfunctions defined on I(z;) and related to the sequence of
eigenvalues A4. In the modelling procedure this sequence is restricted to the
N > 1 eigenfunctions and g4(y1), y1 € I(z1), A =1,..., N, will be called mode-
shape functions g4. We assume that the mode-shape functions g (y;) are linear
independent, [-periodic functions, depending on the mesostructure length param-
eter [ and such that [=2g4(y1), l‘lgﬁ(yl), gﬁl(yl) are of order O(1). Moreover,
it can be shown that the eigenfunctions satisfy the condition < pg? >=0. In
the course of modelling, the disturbances v will be approximated by the finite
series

V(ylam%t) = gA(yl)QA($17x2at)a Y1 € I(ml)a T € A07 A= 1a '"7N7

where g4 (y;) are the known mode-shape functions, and QA(z1,x2,t) are some
extra unknowns being slowly varying functions in z;. In most problems the
analysis will be restricted to the simplest case N = 1 in which we take into
account only the lowest natural vibration mode related to Eq. (3.1).

After some manipulations, from the Kirchhoff plate theory assumptions and
the kinematic hypothesis, the governing equations of the length-scale model for
uniperiodic plates will be derived:

o Fquations of motion

(3.2) Mapapt <p>W = (<9 > W) o — (<9¢° >08),
— (<998 >QP)a=<p>+b<pu>.
o Constitutive equations
Mog =< dapysglag > QF +2< dapayg5 >Q%
+< dapnag® >Q%,,

M* =< daprs9s > Wapt < dapysgiasgls > QF +2< daapr9'hg%, >Q5

+< daapghsg® >Q5;,

(3.3)

R* = < dyapg” >Wap + < dapg”ahs >QF + 2< daaaegig® >Q5

+< dapang?g® >Q%,,
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(3.3)

o L= S dapng] >Wap + < drapy9895y >QP +2< daarsg’hg’} >QF

+< daazeghg® >Q5,.

o Evolution equations

(34)  (<pg?e” > +<9ghgB >)0P + < 9 SW1+ < 9g%g8 (8

~(< 99" >Wa + < 99498 >QB + < 9g4g"? >Q%) 2+ MA + R4,
—-2T5 = < pg" >,

where the underlined terms depend on the mesostructure length parameter {.
This model is called the uniperiodic plate model, [23]. For plates with periodic
structure along the z;-axis direction and constant along the zy-axis direction,
all coefficients in brackets < > in Eqs. (3.2) - (3.4) are constant (except < p >,
< pg* > which can be slowly varying functions of z1 and z5), and functions gt
are dependent only on z;.

The characteristic feature of the above averaged equations is that they de-
scribe the effect of the interval length [ on the overall dynamic behaviour of
uniperiodic plates.

Functions W, Q4 are the basic unknowns which have to be slowly varying
functions of z;. The function W is called the plate macrodeflection; functions
Q4 are called disturbance variables. In the case of a rectangular plate with
midplane II = (0, L) x (0, Ly), two boundary conditions should be defined on
the edges £, = 0, Ly and zy = 0, Ly, for the function W, for the functions Q4 two
boundary conditions should be defined only on the edges £o = 0, Lo. It is easy
to see that to obtain the above equations, we must previously derive the mode-
shape functions g4, A = 1,..., N, for every periodic plate under consideration
as solutions to the eigenvalue problem given by (3.1). In practice, a derivation
of these exact solutions is possible only for intervals with a structure which is
not too complicated. In most cases we have to look for an approximate form of
these solutions. We also restrict our considerations to a small number N of mode
shapes. In this paper we assume that N = 1 and denote g =gt

In the sequel it will be shown that for the interval I(z;) having not a very
complicated structure, we can assume the mode-shape function in an approximate
form of the solution to the eigenvalue problem.

At the end of this section let us observe that the homogenised model in-
vestigated in [6, 23] is a special case of Eqs. (3.2) - (3.4) obtained above. The
governing equations of the homogenised model are
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o FEquation of motion

(3.5) Mopopt <p>W = (KO>Wo)a=<p>+b<p>.

e Constitutive equations

(3.6) Mag =< dagys > Wast+ < daﬁ,y(sg’l?y(; > QB.

e Fquations for the disturbance variables

(3.7) < daﬂ’y&gzgggé > QB =< dag,ygg:?ﬂ; > Wag,
where the effect of mesostructure length parameter [ on the overall plate be-

haviour is not taken into account. The above equations can be obtained from
Eq. (3.2) — (3.4) by neglecting the underlined terms.

4. ANALYSIS OF A SPECIAL CASE

4.1. Free vibrations for a periodic plate band

In order to evaluate the differences between the application of an exact or
approximate form of mode-shape function g, free vibrations of a periodic plate
band will be considered. Equations (3.2) — (3.4) will be used. It will be assumed
that body forces b and loads p are neglected. Let us consider a plate band
simply supported on the edges z; = 0, L; with a periodically varying piece-wise
constant thickness. It is made of an isotropic, periodically varying piece-wise
homogeneous material. An example of a periodicity interval is shown in Fig. 2.
For the symmetric interval, a symmetric form of the mode-shape function g will
be assumed. For that function it can be shown that < d¢; >= 0. Denote z = z;,
L=1L;and Q = Q! as well as

3
B = %}—25, Dy =<dinign >, D =< dui(gn)” >,

m=< >, m!t =174 < pug? >, j=<9 >, F =12 <9(g1)? >,

where F is the plate Young’s modulus, v is the plate Poisson’s ratio, h is the

plate thickness. Substituting (3.3) to (3.2) and (3.4) with restriction A = N =1,
we arrive at

(4 1) < B> W,1111 + mW - jW,ll + DllQ,ll =0,
. DiWi + DQ + P(*m! +511Q = 0.
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Fic. 2. The periodicity interval for the plate band with periodically distributed concentrated
masses and with periodically varying p, E, h.

Introduce the wave number k£ = 27/L. Solutions to the above equations will be
assumed in the form satisfying boundary conditions for a simply supported plate
band. Hence, these solutions can be assumed as

(4.2) W (z) = Aw sin(kz) cos(wt), Q(z) = Ag sin(kz) cos(wt),

where Aw, Aq are amplitudes. Substituting these solutions to (4.1) we obtain
the system of linear algebraic equations for amplitudes Aw, Ag

<B>k*- w2(m +jk?2) _DllkZ Aw
2 21272, 11 | ~11 = {0},
—Dq1k D - w?l*(I*m!t + j11) Ag

which has non-trivial solutions if its determinant is equal to zero. After some ma-
nipulations, in the framework of the uniperiodic plate model we arrive at formulae
for a lower wy and a higher wy free vibration frequency

()2 = = {12(m + 5k (2mt 4 51 )}"1 {<B>kP@Em" + )

+D(m + jk?)

~VI< B> K R@m + 11 = D(m + jk)2 + 4(m + &) (il +j11)(D11)2k4} ,

(4.3)
-1
{lQ(m -i-jl~c2)(12m11 +j11)} {< B> k4l2(l2m” +j11)

N | =

(w2)? =

+ D(m + jk?)

+ VI< B> K PR(PmIT + j1) Z D(m + jk2)2 + 4(m + jk2) 2 (Pmil +j11)(D11)2k4} ,
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depending on the mesostructure length parameter /. In order to compare the
results obtained within the presented model, the homogenised model will be also
applied. From Egs. (3.5) - (3.7) for the plate band under consideration, with
restriction A = N = 1, we obtain only one equation

(4.4) [< B > —(D11)2D_1] Wi + mW —jW,u = 0.

Assuming a solution to the above equation in the form (4.2);, after some
manipulations we arrive at the following formula for only one — a lower wy free
vibration frequency:

(4.5) (wo)? = [< B> —(D11)2D*1] k4 (m + jk2) 7L,

without terms depending on the mesostructure length parameter [.

Comparing the obtained results (formulae (4.2) and (4.5)) it can be confirmed
that, within the homogenised model, the length-scale effect on the dynamic plate
behaviour can not be investigated. In the framework of the model we can anal-
yse only one (lower) free vibration frequency. However, higher free vibration
frequency can be investigated only within the uniperiodic plate model.

4.2. Analysis of the eigenvalue problem for different cases of periodicity
interval

Let us consider a plate band with span L. The periodicity interval of the plate
I; = (-1/2,1/2) is shown in Fig. 2. The plate periodicity is caused by periodically
distributed concentrated masses M and periodically varying plate properties.
Only Poisson’s ratio v is constant. Functions describing those properties are
assumed in the following form:

e the Young’s modulus E as

{EO itz € (=1/2,71/2),
E(z) =
B if ze[-1/2,—y1/2Uyl/2,1/2), ~e€[0,1],

(4.6a)

e the mass density p as

{ po if z € (=v1/2,71/2),

pr if z€[=1/2, =/ U/2,1/2], v el0,1],

(4.6b)  p(z) =

¢ and the plate thickness h as
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(460) h(m):{ ho I € (0l/2,9172)

hi itz e [=1/2, /21U [y1/2,1/2], ~€0,1].
The periodicity cell will be treated as a plate band with thickness h and span [.

Denote a derivative (-)' = (-) ;. Eigenfunctions for the interval will be obtained
by solving the eigenvalue problem (3.1) which takes the form

(4.7) [B(z)g"(z)]" — w(@)A?g(z) = 0,

where g are [-periodic functions related to eigenvalues A\ = al (ar is the wave
number); and < pug >= 0. We will look for the solution to the eigenvalue
problem using the Krylov-Prager functions

S(az) = % [cosh(az) + cos(az)], Ular)= % [cosh(az) — cos(az)],
(4.8)

T(az) = % [sinh(az) + sin(az)], V(az) = % [sinh(az) - sin(az)].

Introduce the following dimensionless coefficients:
(=M(<pu>D71 e = E/Ey, © = p1/po, n = hy/hy, no = ho/l,

where ( > 0; €, ¢, 7 € [0,1]. Two cases of a plate band will be considered below.

4.2.1. A plate band with periodically distributed concentrated masses. Let us consider
a simply supported plate band of span L. The plate periodicity is caused only
by periodically distributed concentrated masses M. In this case we have ¢ #0,
€ = ¢ =7 = 1. Using (4.8), the solution to the eigenvalue problem (4.7) is looked
for in the form

[ A(N)S (A%) +U <>\§) : if ze [—%z,o} ,

AN {S (z\%)

whee a0y = = oy +¢s (D)o (W] {r s x¢s ()]
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C is constant. Restricting our considerations to symmetric vibrations, the equa-
tion for the eigenvalue A takes the form

{T(A) +CA [5 (—;—A)r} {T()\) + O [U (%A)]Q}
- [V(A) +0AS (%A) U (%A)]z 0.

From the above equation we can derive eigenvalues A4q, A = 1,2,....., but we
restrict our analysis to A = N = 1. Hence, we obtain the smallest eigenvalue A
dependent on the quotient ¢, and the exact form of the mode-shape function g
related to this eigenvalue is given by (4.9).

4.2.2. A plate band with periodic structure. Let us consider a simply supported plate
band of span L and periodically varying piece-wise constant properties: Young’s
modulus E, mass density p and thickness h, without concentrated masses. The
periodicity interval can be treated as a plate band with span [. In this case we
have ( =0,e <1, p <1, n < 1. Using (4.8) and denoting

=7 (390 + [y {S (317 [%(1 - ()
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the solution to the eigenvalue problem (4.7) is sought in the form
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w0 () (7 1) (5)
(4.10) gz 2= + [6((,07]2)3]_% T (%’)’)\ v l:)\ (|?_‘ 4 _;—’y> (g;%) %]}

2
ik 1
i —~l, =1
if |z| € (27,2],

where A()\) = —CZ;(A\)T'1(A)7L, C is constant. Restricting our considerations to
symmetric vibrations, the equation for the eigenvalue A takes the form

['1(A)E2(A) = T2(A)E1(A) = 0.

From the above equation we can derive eigenvalues Ay, A = 1,2, .... Our analysis
is restricted to A = 1. Hence, we obtain the smallest eigenvalue A dependent on
the parameters ¢, €, 7, and the exact form of the mode-shape function g related
to this eigenvalue is defined by (4.10).

5. NUMERICAL RESULTS
In this section it will be shown that the mode-shape function g for the interval

in Fig. 2 related to the eigenvalue A (for A = N = 1) can be assumed in the
approximate form
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(56.1) 9(z) = 1*[cos(2nz /1) + ], xz € (=1/2,1/2),

where the constant c is derived from the condition < pg >=0isc =< yu >"1
< peos(2mz /1) >.

9.1. The application of exact and approzimate form of mode-shape functions
to analyse free vibrations of a periodic plate band

In order to evaluate the differences between the results obtained by using
exact (4.9) or (4.10) and approximate form (5.1) of mode-shape function, free
vibration frequencies of the periodic plate bands from Sec. 4 will be analysed.
Taking into account (4.3) we denote the frequencies obtained for the approximate
form (5.1) of mode-shape function by @, and those for the exact form (4.9) or
(4.10) by w. Introduce dimensionless coefficients:

qu/L, Q_E(}:}l/wl, Q+E@2/w2,

where ¢ is called the dimensionless mesostructure parameter, 2~ and Q% are the
ratios of lower and higher free vibration frequencies, respectively. Some numerical
results are presented below.

e A plate band with periodically distributed concentrated masses

For the plate band with constant properties and with periodically distributed
concentrated masses M we have: { # 0, ¢ = ¢ = n = 1. The diagram of Q+
versus the parameter ¢ € [0,50] is presented in Fig. 3a. This diagram is made
for no = 0.1, ¢ = 0.01.

e A plate band with periodically varying mass density P

For the plate band without masses and with periodically varying mass density
p given by (4.6b) we have { =0, e =17 =1, p < 1. Diagrams of ratio Q% versus
the parameter ¢ € [0.2,1] are shown in Fig. 3b. It is made for parameters
no = 0.1, ¢ = 0.01, v = 0.25, 0.5, 0.75.

e A plate band with periodically varying Young’s modulus E

For the plate band with periodically varying Young’s modulus E given by
(d.6a),i. e. (=0, p=n=1,¢ <1, diagrams of ratios 27, Q1 versus the
parameter ¢ € [0.1,1] are shown in Fig. 4. It is made for parameters ny = 0.1,
q=0.01, y=10.25, 0.5, 0.75.

e A plate band with periodically varying thickness h

For the plate band with the plate thickness A periodically varying according
to (4.6¢), i. e. ( =0, =¢ =1, n < 1, diagrams of ratios 2=, QF versus the
parameter 77 € [0.7,1] are shown in Fig. 5. It is made for parameters no = 0.1,
q=0.01, vy =0.25, 0.5, 0.75.
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F1G. 5. Diagrams of ratios Q7, Q* for the plate band with periodically varying thickness h.

5.2. Discussion of the obtained results

1° We can observe that in the framework of both (the uniperiodic and ho-
mogenised plate) models, the lower free vibration frequencies obtained by using
the approximate form of mode-shape function (5.1) are identical with those ob-
tained by the exact form of that function for the following cases:

- plates having constant thickness and all material properties, with periodi-
cally distributed concentrated masses,

— plates having constant thickness and all material properties except the mass
density p being periodically variable (given by (4.6b)).

2° Differences between higher free vibration frequencies obtained for the two
above cases of plates by using the exact or approximate forms of mode-shape

function are very small (for large value of mass M, ¢ = 50, the difference is less
than 2%).

3° For plates having periodically varying Young’s modulus E or thickness A
(given by (4.6a) or (4.6¢)) and all the remaining properties constant, differences
between the free vibration frequencies obtained by using the exact or approximate
form of mode-shape function are visible not only for higher but also for lower free
vibration frequencies:

— differences between lower free vibration frequencies are greater than 10%
for & <0.25 or than 5% for < 0.70,

— differences between higher free vibration frequencies are greater than 15%
for £ <0.25 or than 10% for n < 0.70.
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4° Differences between lower free vibration frequencies obtained in the frame-
work of the uniperiodic plate model and the homogenised model are smaller than
1074, i. e. negligibly small.

6. CORRECTNESS OF THE MODEL

In order to test the physical correctness of the presented uniperiodic plate
model, a special case of free vibrations of a periodic plate band will be analysed
in this section. It will be shown that oscillations of plate deflections can be
described by using only one mode-shape function.

6.1. The uniperiodic plate model

Let us consider a simply supported plate band with periodically varying thick-
ness h and with span L along the z-axis, and made of an isotropic homogeneous
material. The periodicity interval is shown in Fig. 6. The thickness h is given by

ho if z € (—(1+)/4, -1 -1/4)U((l-7)/4,
(1+7)1/4),

hy if ze[-1/2,—(1+y)/AU[—(1-y)i/4,
L=/ Ud+y)/4,1/2), ~e€[0,1].

! o
D B D R N

l ) ito’ N
I A — —>
A

" —=" '
- . v,
(pua (1-y)I12 _n (1-y)i/4
i - T A -

1

F1G. 6. The periodicity interval with the mode-shape function g.

Moreover, we would like to analyse oscillations of plate deflections described
by one mode-shape function assumed as an approximate solution to eigenvalue
problem (4.7):

(6.2) g(z) = I? sin(27z/1).

It can be shown that < pg >=0, < 9g1 >= 0. To investigate free vibrations of
the plate band within the uniperiodic plate model we will apply Egs. (4.1). For
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the plate and the assumed mode-shape function it can be shown that Dy = 0.
Hence, those equations take the form

< B> W,llll + mW —jW,H = 0,

(6.3) .

DQ+P(*m' + Q= o,
where we have two uncoupled differential equations — the first one for the
macrodeflection W, the second one for the disturbance variable Q. Solutions
to the above equations will be assumed in the form (4.2). After some manipu-
lations we obtain the following formulae of the lower w; and the higher w, free
vibration frequency:

6.4) (@1)? = < B> kY(m+ k),
6.4
(w2)? = DI"%(12m!! + 4=

where k = 2m/L. It can be observed that for the plate under consideration
and the assumed mode-shape function, only the higher frequency wy depends on
the mesostructure length parameter /. In the sequel, our considerations will be
restricted only to the analysis of the higher free vibration frequency ws. Using
notations of D, B, m!! and j!! from Sec. 4, we have

2E 73

D = < B(gn)*>= 30 =07

{(n} = )y + sin(ry)] + whi )

_ 1 :
m! =171 < pg® >= Z—;p{(ho — hy)[sin(ny) + my] + 7whi},

. . 1 .
g =17 < d(ga)? >= gm{(hg ~ h)[my = sin(my)] + whi} .

Substituting the above coefficients to (6.4), the higher frequency @, is given by
E
(1—=v2)p

Art {(hd — h3)[my + sin(my)] + mhi}
{302[(ho = h1)(sin(my) + ) + wha] + w2[(hd — B3)(my — sin(ry)) + 7h3]} 2

(6.5) (@o)? =

6.2. The Ritz method

In order to evaluate the results obtained above let us consider a simply sup-
ported plate band with span [ and with varying thickness h, Eq. (6.1). The plate
is shown in Fig. 6. The Ritz method will be used to investigate free vibrations of
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the plate under assumptions of the Kirchhoff plate theory. For the plate we can
write the following formulae of the potential £ and the kinetic K energy:

/2 h/2
=3 / / Capys€apysdzda, =3 / / dzda
—h/2 —h/2

Using the well known Kirchhoff plate theory relations and assuming the plate
band deflection in the form

w = Asin(2nz/l) cos(dt),

the maximal potential and kinetic energy can be written as

E 3
hy — B3)(my + sin(my)) + whi),

_ 42 L
gmax =A 3(1 — I/2) 3 [(

1 .
Kimax = 47020 { -1l(ho — ha) 7y + sin(7)) + ]

T
l

L L
12

(8~ Ky = sin(ry) + w1 |

The Ritz method demands that
d(gma.x - ]Cma.x)

=0.
dA
Hence, we arrive at the formula for the free vibration frequency w
E
6.6 =
(66) YT

4t {(hd — h)[ry + sin(my)] + whi}
{312[(ko — h1)(sin(m) + my) + wha] + w2[((h§ — b3)(wy — sin(ry)) + whi]H2’

which is identical with the higher frequency (6.5). Summing up, it can be ob-
served that for special cases, the results obtained in the framework of the pre-
sented uniperiodic plate model can be verified by the known method, such as the
Ritz method.

7. FINAL REMARKS

The length-scale model derived in [23] has been applied in the paper to anal-
yse vibrations of plates with periodic structure along one direction and constant
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structure along the perpendicular direction. The refined models, formulated in
the framework of the averaged length-scale theory of periodic bodies [21 - 22],
were applied to many dynamic problems of periodic structures in several papers
2, 4, 6 -9, 11, 16 — 20] aforementioned in Sec. 1. The models are physically rea-
sonable and simple enough to be applied in the analysis of engineering problems.

The presented modelling procedure for periodic plates leads to a system of
differential equations with constant coefficients for the macrodeflection W and
the disturbance variables Q#, A = 1,..., N. The governing equations (3.2) - (3.4)
take into account the length-scale effect on the plate behaviour by certain coef-
ficients (underlined in these equations) dependent on the mesostructure length
parameter [. The length-scale effect is described by the extra unknowns Q4,
A =1,..,N, called disturbance variables, and by additional mode-shape func-
tions g#. Mode-shape functions g4 describe oscillations of deflections inside the
periodicity intervals. These functions should be obtained as properly chosen ap-
proximations of solutions to the eigenvalue problems for natural vibrations of
separated periodicity intervals. It was shown in Sec. 3 and 4. For uniperiodic
plates, the mode-shape functions g# are I-periodic functions.

Mode-shape functions obtained in Sec. 4 for special cases of a plate band
were used to analyse free vibrations for those plates in Sec. 5. The results
presented there make it possible to evaluate the differences between the free
vibration frequencies obtained by using the approximate and exact forms of the
mode-shape function. Analysing these results, we can formulate the following
general conclusions:

1° For many special problems the mode-shape functions g%, A =1, ..., N, can
be assumed as approximate solutions to the eigenvalue problem for the periodicity
interval. It is sufficient from the computational point of view.

— Plates with all properties constant and with periodically distributed con-
centrated masses or with periodically varying mass density p, can be analysed by
using the approximate form (5.1) of mode-shape function.

— Plates with all properties constant excluding the Young’s modulus E or
thickness h which are periodically variable, can be investigated by using the
approximate form of mode-shape function if differences between the values of the
Young’s modulus or the thickness inside the periodicity interval are relatively
small, i. e. € > 0.25 or > 0.70; for ¢ < 0.25 or n < 0.70 the exact form of
mode-shape function should be used.

2° Comparing the results obtained in the framework of both the models — the
uniperiodic plate and the homogenised models, it can be observed that

— higher free vibration frequencies (and also higher order vibrations) caused
by a periodic plate structure can be analysed only in the framework of the pre-
sented uniperiodic plate model,
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— lower free vibration frequencies (and also lower vibrations) can be investi-
gated within the homogenised model.

3° Comparison between the results obtained for the special case of the plate
band by using the uniperiodic plate model and the Ritz method makes it possible
to confirm that the presented model is physically correct.

Summarising, the analytical exact solutions to the eigenvalue problem (3.1)
can be obtained only for plates having intervals with rather not very complicated
structure. In most cases, instead of the exact solutions to eigenvalue problems,
we have to look for an approximate form of mode-shape functions.
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