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YIELD SURFACES AND CRITERIA OF PLASTIC YIELDING
FOR A STRAIN HARDENING MATERIAL
PART 2. THEORETICAL ANALYSIS
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The paper presents the experimental verification of the generalized Mréz hardening hy-
pothesis under the conditions of complex state of stress. The analysis performed takes into
account the changes in size and position in the stress space of the triaxial ellipsoid illustrat-
ing the Huber-Mises-Hencky yield condition for the plane state of stress under definite plastic
strains.

1. INTRODUCTION

Real materials, most of all metals, under loading which leads to permanent
strains are hardened after unloading and subsequent loading. Up to now, many
hypotheses describing this phenomenon have been proposed. The most popular
concepts of great practical importance are:

e The hypothesis of isotropic strain hardening. Its full analysis was given by
HobpGE and PRAGER [8§].

e The hypothesis of kinematic strain hardening introduced and designated
by PRAGER [9]. It was later developed by SHIELD and ZIEGLER [10] in the nine-
dimensional space.

Both these hypotheses, in spite of their simplicity and facility, often do
not give satisfactory results in the description of real material behaviour.
KADASHEVITCH and NOVOZzHILOV [11] combined both the hypotheses introduc-
ing a concept of microstress which occurs in the material as a result of permanent
strains. It is a mathematical description similar to that by Ziegler. For a descrip-
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tion of hardening, PRAGER [1] suggested an idea of linear segments approximation
of the yield surface. BATDORF and BUDIANSKY [2] proposed the theory of hard-
ening based on the concept of the grain slip. The theory was modified by LIN [3].
BESSELING [4] based the hardening theory on the assumption that the mate-
rial is composed of sub-elements of certain elastic-plastic properties. Wells and
PASLAY [5] gave a similar description of strain hardening in the case of material
heterogeneity.

MROz [6] proposed the interesting hypothesis of strain hardening. It may be
modified according to the material properties and allows to obtain the results
which comply better with the experiments. However, the hypothesis was not
popular due to its complexity and difficulties at practical applications.

The hypothesis of isotropic hardening assumes that, as a result of the strain
process, the initial yield surface expands uniformly in all directions while its
position in the stress space as well as its geometrical form remain unchanged.
To define a new surface it is sufficient to know the point lying outside the initial
surface, which corresponds to the current state of stress. Through this point we
may draw (without turning) the surface similar to the initial one but of different
size.

The hypothesis of kinematic hardening assumes that the total yield surface,
in the stress space, translates as a rigid body (surface) under plastic strains. Its
form and size do not change then. Similarly to the isotropic hardening hypothesis,
if the point (in the stress space) corresponding to the current stress is known,
then it is possible to draw uniquely (without turning) the surface similar to the
initial one, of the same size but shifted with respect to the initial one.

Many other hypotheses describing the material hardening have been devel-
oped but they did not gain popularity. Despite the passage of time, the above-
mentioned hypotheses are still cited by the researchers in their considerations.
They are used to verify the new concepts both in the experimental and theoretical
investigation.

2. GENERALIZED MROZ THEORY FOR DESCRIPTION OF THE PLASTIC
DEFORMATION OF THE MATERIAL

In the Mroz strain hardening theory, the initial properties of the material are
approximated by a family of yield surfaces. The surfaces bound the fields of con-
stant hardening moduli in such a way that the o(g) curve may be approximated
by n linear segments to define the constant hardening moduli: K, K»,...K,. The
hardening moduli K; correspond to f; surfaces.
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The yield surfaces are defined by the yield functions:
(2.1) f(Sij - Ozij) = F()\)

where: «;; — position of the yield surface centre, o — parameter describing the
growth of the yield surface.

In the hypothesis, the new law of motion of the surfaces in the stress space
was moreover assumed. It is graphically presented in Fig. 1.

Fic. 1.

Under loading in the direction of do (Fig. 1), the centre Oy of the surface
fx moves towards PR defined in such a way that the normals to the surfaces fx
and fyy1 are parallel at the points P and R. If the stress varies by do, then the
centre of the surfaces moves by da:

(2.2) da = du x PR,

where dy is a scalar coefficient. Now let us consider a simple case to illustrate
the motion of the yield surface in the stress space.

For the initially isotropic material whose o(e) diagram is presented in Fig. 2a,
the surfaces f; are similar and have a common centre at the point 0. If the stress
point (Figs. 2a and 2b) moves from 0 towards C, it reaches the surface fo at
A and the surface fy moves together with the stress point until it contacts the
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surface f; at B. The two tangential surfaces fo and f; move together with the
stress point from B to C, where they reach the surface fo (Fig. 2c).

During the process of unloading, the surface fy starts to move when the stress
point reaches E and the two tangential surfaces fy and f; translate further from
F (Fig. 2d). Taking this way of the surface motion in the stress space, it is
assumed that the surfaces do not intersect each other but they remain in contact
and move together.

a) o

Fic. 2.

The Mréz hypothesis may be reduced to the Ziegler concept of kinematic
hardening [7] by assuming that all surfaces except the first one lie at infinity.
Then the vector da is parallel to the vector joining the stress point to the centre
of the yield surface. So we get the Eq. (2.1) proposed by Ziegler and field of the
hardening moduli is reduced to the linear hardening in the entire loading range,

(2.3) daij = dufoij — ouj)-

In the Mréz hypothesis it is also possible to change the size of the yield surface.
The parameter « responsible for it is defined as equivalent to the parameter  of
the equation:

(2.4) K= WP = /UijdEzP.
In the case of ¥ =0, also x = 0.
3. THEORETICAL ANALYSIS OF BEHAVIOUR OF THE PLASTIC DEFORMATION
OF THE MATERIAL BASED ON THE MROZ HARDENING HYPOTHESIS

Assume that the o(e) curve, for the material studied, is approximated by the
linear segments connecting the points corresponding to the following permanent
strains: 0%, 0.01%,0.02%, 0.03%, 0.04%, 0.05%, 0.1%,0.2%, 0.3%, 0.4%, 0.5%. It
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corresponds to the assumption of the family of yield surfaces bounding the fields
of constant hardening moduli shown Fig. 3.

Assume that these surfaces, under prestrains of the material, do not change
their size but translate in the stress space according to the rules of the Mroz
hardening hypothesis.

The stresses which would create prestrains of the material according to the
_ test programme, correspond to the points lying on the positive axis of o.

Moving from the point 0 along the trajectory of initial stress we reach the
point G (Fig. 3). From this point the surface of proportionality starts to move.
From point H, the two tangential surfaces start to move. With further increase
in stress oz, the corresponding surfaces start to move and all the above-defined
surfaces are already tangent at K. From that place they move together. When
the stress reaches the value of 124.5 MN/m? (it corresponds to the prestrains
equal to 1.74%), then the position of the surfaces in the stress space is such as
that shown in Fig. 4. In such a configuration of the yield surfaces, the point 0
lies outside the surface of proportionality.

Under unloading to the point 0 (during the test) (Fig. 4), position of the yield
surface does not change till it reaches the opposite edge of the proportionality
surface i.e. the point M. From this moment on, the surface of proportionality
moves to touch the point 0. The surfaces configuration shown in Fig. 5 corre-
sponds (according to the Mroz theory) to the total unloading of the material
after the earlier tension producing the permanent strains of 1.74%.

This configuration of the yield surfaces should appear (theoretically) at the
study of the material characterized by the above history of loading. Assuming the
homogeneous field of stress and strains for a large specimen, the small specimens



104 J. MIASTKOWSK], R.SZCZEBIOT

(cut out of the central part in the large one) exibit the same distribution of the
yield surfaces at the beginning (Part 1). Certainly, the position of the surface
will change under tension or compression of each small specimen but we were
interested in the point of meeting the specific surface in the prescribed direction
of loading, from the point 0 where it started to move. It corresponds to the
position of the yield surface after preloading.
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Similarly to the first level of the initial stress (124.5 MN/m?), the positions
for the others is obtained: 154.6 MN/m? and 185.5 MN/m?. But when the

stress reaches 154.6 MN/m?, the following three surfaces pass the point 0: the
proportionality surface, 0.01% and 0.02%. When the stress is 185.5 MN/m?,
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then the nine of the surfaces under consideration pass the point 0. These are
the following surfaces: the proportionality surface, 0.01%, 0.02%, 0.03%, 0.04%,
0.05%, 0.1%,0.2%, 0.3%.

The observed discrepancies between the obtained theoretical yield surfaces
and the experimental results show that changes of the yield sueface dimensions
due to plastic strains should be taken into account in theoretical.

As it was just mentioned, the Mréz hypothesis enables us to take into account
the change in size of the yield surface. Assume that the dimensions of the yield
surface will be experimentally determined by the parameters calculated by the
method of least squares, and these surfaces will move in accordance with the
Mréz theory rules.

Figure 6 presents the surfaces o g9 obtained experimentally (solid lines) and
the theoretical ones (dashed lines) for the material in initial state, and for the
three different values of prestrains. Similar comparisons are illustrated in Fig. 7
for the surfaces 0¢ 1, and in Fig. 8 for the surfaces oy 5.

0.02% surfaces

------- theoretical surfaces
(of R
y_[MPa] —— experimental surfaces

FiG. 6.

Figures 6, 7, 8 show a considerably better conformity of the experimental
surface with the Mréz theoretical ones than the Mroz surfaces which did not
change their size but were translated only. It is clearly seen in Figs. 7 and 8 that
the surfaces mentioned almost overlap. Slightly larger discrepancies remain for
the surfaces defined by the small plastic strains, what is illustrated in Fig. 6 for
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the surfaces ogo. After all, it is a significant improvement in comparison to the
considerations disregarding the isotropy.

------- theoretical surfaces
—— experimental surfaces

FiG. 7.

0.5% surfaces

------- theoretical surfaces
——experimental surfaces

Fic. 8.
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4. CONCLUSIONS

Basing on the investigation results, for the plastically strained material, an
analysis was performed of the quantitative participation of the isotropic and
kinematic hardening hypotheses in the behaviour of the yield surfaces.

The analysis enabled us to determine the change in size of the surface and the
position of its centre as functions of the initial plastic strain and, additionally, to
find a dependence of these parameters on various definitions of the surfaces.

The following conclusions result from the investigation performed and the
subsequent analysis: The parameters of the yield surfaces, for a plastically
strained material, depend on the size of the permanent deformations.

With increasing initial strains of the material, the size of the surface and
its displacement in the direction of the initial stress also grow. The intensity of
change in the surface size and the position of its centre gradually decreases as
the initial stress increases.

The parameters defining the size of the surface and the position of its centre
considerably depend on the accepted definition according to which these surfaces
were determined.

The largest displacement of the centre occurs for the surface of proportion-
ality. For the surfaces defined by larger permanent sets, these displacements
gradually decrease and then the surfaces (0.5 exhibit only a slight displacement
of the centre.

In the case of the strain diagrams considered in the article, the Mréz hypoth-
esis gives a good description of the behaviour of the material under plastic strains
but only when isotropy is taken into account.
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