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STATIC AND STABILITY ANALYSIS OF SHELLS
WITH LARGE DISPLACEMENTS AND FINITE ROTATIONS
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Wybrzeze Wyspiariskiego 27, 50-370 Wroctaw, Poland

The paper deals with large displacements and finite rotations of elastic shells subjected to
the action of external loads. The numerical approach to the problem based on the finite element
method in displacement formulation is presented. The degenerated finite element originally
introduced by AEMAD et al. [1] and subsequently supplemented by MARCINOWSKI [2] was used
in this paper. This very element was essentially suitable for shell problems exhibiting small
and moderate rotations, but there exists a possibility to apply it also to problems with finite
rotations, provided the updated Lagrangian formulation is adopted. Details of such an approach
were presented in the paper. Several examples taken from the literature and confirming the
correctness of the applied approach were included.

1. INTRODUCTION

There are many problems in which the shell analysis must be conducted
within the range of large displacements and finite rotations. Postbuckling analysis
of shells and plates are examples of such problems.

Large rotations frequently encountered in nonlinear analysis of shells can be
accounted for on the level of the adopted shell theory (cf. e.g. GRUTTMANN
et al. [3], BUECHTER and RAMM [4], CHROSCIELEWSKI [5], SANSOUR and
BUFLER [6]), or on the level of the shell element formulation, which takes into
account finite rotations (cf. e.g. SURANA [7]). This second approach will be
adopted generally in this paper.

The finite element originally introduced by AHMAD et al. [1] and then sup-
plemented by PAWSEY and CLOUGH [8] and ZIENKIEWICZ et al. [9], and after
that adjusted to nonlinear problems by MARCINOWSKI [2], was adopted in this
work. Due to linearisation of the displacement field with respect to the nodal
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rotational parameters, the element can be adopted only to geometrically nonlin-
ear problems with moderate rotations. In spite of this obvious drawback, there
is a possibility of applying it to problems with rotations of arbitrary magnitude.
The main idea of the presented approach consisits in successive changing of the
reference configurations performed in the course of nonlinear analysis. This ap-
proach is well known in mechanics of solids and is called the updated Lagrangian
formulation (cf. BATHE et al. [10], STRICKLIN and HAISLER [11]). The point is
that the whole analysis is divided into stages symbolically shown in Fig. 1. The
procedure begins with the initial undeformed configuration (Conf. 1 in Fig. 1)
and is continued till the largest registered nodal rotation assumes the limit value
given in advance (e.g. 0.05 rad). It is the signal for changing the reference
configuration from Conf. 1 to Conf. 2, shown symbolically in Fig. 1. Further
deformations of the shell are being described with respect to the configuration
Conf. 2 which is neither undeformed nor free of stresses. Of course, both these
factors must be taken into account in the governing equations which describe this
stage of analysis.

\

F1G. 1. Successive changing of reference configurations.

This approach guarantees that the displacement approximation applied in
the finite element will be always correct and arbitrarily large rotations will be
accounted for in a proper way.
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2. GOVERNING EQUATIONS

The general principle of mechanics of solids, the principle of virtual displace-
ments (cf. MALVERN [12]), will be the foundation on which the whole calculation
model will be constructed. This principle written for any reference configuration
takes the following form:

(2.1) / S1,6Er;dV — / forburdV — / 126urdS = 0,
1% 1 S

where V' and S denote the whole volume and the whole external surface of the
body in the current configuration which is not free of stresses and strains. S1J
are components of the second Piola-Kirchhoff stress tensor in the analysed con-
figuration, and 0 Ey; are the variations of components of the Green-Saint-Venant
strain tensor produced by virtual displacements duy. fo; and t9 are the body
forces and surface tractions (external loads) acting on the body.

Two last terms in Eq. (2.1) express the virtual work done by external (body
and surface) forces and because only conservative loadings are taken into account,
they are calculated in the first stage of analysis when the reference configuration
coincides with the initial unstrained and stress-free configuration.

The principle of virtual displacements can be written in a discrete form
by means of the finite element method in displacement formulation (cf.
MARCINOWSKI [2]). For this very element it is possible to write the components
of strains and stresses in the following form (cf. MARCINOWSKI [2]):

(2.2) ¥ = (BF + Wkd))d; + €k,
(2.3) o* = D! — &) + ok,

or

(2.4) o* = D*(Bl + Wd;)d; + o,

where ¢! and o? are initial strains and initial stresses present in the reference
configuration. B¥ and Wi’;- are the quantities with two and three indices (respec-
tively), dependent on the shape functions and the geometry of finite element, and
not dependent on the nodal displacements d;. Wl’; is symmetric with respect to
the pair ¢, 7. Only linearly elastic materials are considered and D*! is the matrix
of material constants (cf. MARCINOWSKI [2]).

Because nodal displacements d; are measured with respect to the reference
configuration (they are not total displacements), at the beginning of the analysis
all d; = 0, so that
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(2.5) e =¢, ol=o0
as follows from Egs. (2.2) and (2.4).
Let us write the variation of strains using Eq. (2.2).

k

(26)  deF = gg;édm = B bdm +2WEdidd; = (BE, + 2W}id))sd;.
It is seen that the initial strains 2 do not act upon the variations of strains.

Let us assume that the intensity of all forces is defined by the single parameter
A. According to the finite element method (cf. ZIENKIEWCZ [13]), all external
forces on the reference level defined by A = 1, are replaced by nodal forces F;
calculated only once at the very beginning of the analysis. Therefore, the actual
state of loading is determined by products AF;.

After these modifications, the principle of virtual displacements (2.1) can be
expressed as follows:

(2.7) > ( / o*seFdv — )\Fiédi) =0,
() \ye

where V¢ denotes the volume of finite element e in the current configuration, the
symbol 3,y denotes summation over all finite elements (cf. ZIENKIEWICZ [13]).
Substituting Eqs. (2.4) and (2.6) into (2.7) one obtains

2.8 > ( / (BF + 2wk d;)dd; [D“(Bﬁn + Wiinn)dm + ai.‘] dv — AFiédi) =0.
() \vye

This relationship must be true for all nodal virtual displacements §d;. Hence

(2~9) \I’i({d}v )‘) = Z {Kim + [(szn + Cz’nm + Hijmndj)dn] dm
(e)

+ R?+S5d; — AF} =0,

where

(210) K = / BEDMBLdv,  Gign = / BEDMWL, . dv,
ve ve

(2.11)  Cinm = 2 / WEDHMBL dv,  Hijmn =2 / WEDM W}, dv,
VE

(2.12) R = / Bfokdv, S5 =2 / WEokdv.
Ve
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The relationship (2.9) can be expressed in traditional, matrix notation in the
following way:

(2.13) {¥({d}, N} = [Knl{d} - MF} + {R} = {0},

where the vector { R}follows from the summation of terms R? + S ’;d;. This is the
nonlinear set of algebraic equations with respect to unknown nodal dlsplacements
di. The collection of solutions of this set of equations for the chosen range of
loading parameter X creates the curve in the load-displacements hyperspace called
the equilibrium path. The nonlinearity of the set (2.13) is embedded in the
nonlinear stiffness matrix [Kn] (cf. (2.9)) and it is seen that this is the polynomial
relationship.

3. SOLUTION OF THE NONLINEAR SET OF EQUILIBRIUM EQUATIONS

To solve the nonlinear set of equilibrium equations, the Newton-Raphson
method is applied. To this end let us assume that the approximate solution of
the set (2.13) {d°}, A® is known in advance. The exact solution will be searched
in the form

(3.1) {d} = {d°} + A{d}, X=X+ A\

The value of the vector {¥({d}, \)} at this point will be searched in the form
of linear expansion about the point {d¢}, A:

©2) {0y = ey en + F s+ X ar= o)
or using the index notation
(33)  Ti({d},)) = U,({d°}, 3°) + ‘?93’ Ad+aa‘§ AA=0, i=12 N

where N is the number of degrees of freedom.
Knowing the explicit form of ¥; (cf. (2.9)) one can calculate:

oY, [
ad;

0v;

Ad; + N

(3.4)

m + Sim)Ady, — F;AN],

(e)

where

(3.5) Qfm = Kim + [2Gimn + Cinm + Cimn + (2Hijmn + Himjn)dg'] d%-
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In this manner the ¢-th linear algebraic equation for the corrections Ad,,, AX
sought for, is obtained in the following form:

(3.6) S0, + Son)Adm — ANF] = —T;({d°}, X°).
(o)

The procedure is of an iterative character. Ady,, A\ obtained from (3.6) are
substituted to (3.1) and this result is treated as the approximate solution to the
following steps of iterations. Details of the procedure are presented in the paper
of MARCINOWSKI [2].

In the set (3.6) only ¥§ is being updated whereas Qf, + S5, are kept in
the form which they have taken at the first iteration step. Such a procedure is
characteristic for the modified Newton-Raphson method.

The iteration process is finished when the condition

AL} AN _
L -

is fulfilled. € is the dimensionless value given in advance. In most cases it was
assumed that € = 1-10~% and only in some particular problems it was reduced
to the value € = 1- 107°. Norms present in the formula (3.7) were calculated as
follows:

(3.8)  |A{d}, AN = VAGAT + AN, [{d}, N = \/did; + A2,

As far as the calculation of nonlinear equilibrium paths is concerned, the
procedure was exactly the same as the one presented by MARCINOWSKI [2] and by
MARCINOWSKI and ANTONIAK [14]. The approximate solution was constructed
also as a cubic Taylor expansion about the last known point on the path (cf.
MARCINOWSKI [2]).

(3.7)

4. GENERAL STRATEGY OF CALCULATIONS

As mentioned in the Introduction, there is a necessity to apply the updated
Lagrangian description. The reference configuration will be updated every time
when the maximum nodal rotation exceeds the limiting value given in advance.
To ensure that the adopted linear displacement approximation with respect to
nodal rotations is true, this limiting value must be smaller than 0.1 rad (5.73°). In
this way the maximum error caused by the adopted displacement approximation
will never exceed 0.5 %.

The general strategy of the proposed approach will be presented in the form of
succeeding operations, which should be executed to ensure that the given problem
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dealing with geometrically nonlinear shells with large displacements and finite
rotations is solved correctly. For better clarity, the description was illustrated by
Fig. 1.

STAGE I - the description of motion with respect to the initial, undeformed
and stress-free configuration (Conf.1 in Fig. 1).

¢ Reading the geometrical and material data.

e The nonlinear analysis controlled by the chosen displacement parameter
exactly as in the case of moderate rotations (cf. MARCINOWSKI [2]).

e At the instant when the maximum nodal rotation exceeds the limiting value
ajim (e.g. 0.05 rad) given in advance:

— storing of final displacements of the stage I {d’},

- storing of final stresses o of this stage at every Gauss point of all elements,

— generation of new nodal coordinates corresponding to final displacements
of this stage; it means updating the reference configuration (details below).

STAGE II — the description of motion with respect to the deformed configu-
ration Conf. 2.

¢ Reading the new geometrical data referring to the new configuration Conf. 2.

¢ Reading the stresses calculated in the previous stage (details below).

e The nonlinear analysis controlled by the chosen displacement parameter
based on the principle of virtual displacements in which initial stresses were
taken into account.

e At the instant when the maximum nodal rotation exceeds the limiting value
Qlim (€.g. 0.05 rad) given in advance:

~ generation of global nodal displacements for this stage {d’’},

— generation of total nodal displacements {d'} = {d'} + {d!T},

— calculation of final stresses ¢$ of this stage at every Gauss point of all
elements,

— generation of new nodal coordinates corresponding to final displacements
of this stage (actualisation of the reference configuration).

STAGE HI and succeeding stages — the description of motion with respect to
the deformed configuration Conf. 3 and succeeding configurations (respectively):

e Operations similar to those from the Stage II.

It is worthy to discuss in details two of the operations specified above. The
first of them is actualisation of geometry on the basis of the calculated nodal
displacements.

Let us consider the local coordinate system at the node ¢ of the finite element
(cf. Fig. 2). We will find the displacement of the point A as a result of two
succeeding rotations of the unit segment OA. After the rotation by angle o;
around the axis determined by the vector vs;, the point A will take the position
A’ Coordinates of this point in the local coordinate system are: siney, 0 cosa;.
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After the succeeding rotation by the angle §; around the axis determined by the
vector vy; the point A’ will take the position A”. Coordinates of this point in
the local coordinate system are: sina;, — cos «;sinf;, cos a; cos B;. The vector
F = AA” will be equal to

(4.1) F = sinq;vy; — cos a; sin B;vy; + (cos ¢ cos f; — 1)vs;.

FiG. 2. Rotational transformation.

New coordinates of the top nodes (index t) and the bottom nodes (index b)
corresponding to the node 7 of arbitrary element are calculated as follows:

t t m

new | z od | z U F;
ti
y = Yy -+ v +—2‘ Fiy y
z R 2 . R Fi
2 2 1
(4.2)

new | = b old [ = b ™ . Fiy
v = v +yv g —353 B g
z R z R w R Fiz

1 1 1

where u, v, w are components of displacements of the middle node (index m) in
the global coordinate system and ¢; is the thickness of the shell at the node .

It is worthy to mention that the above formula corresponds to the exact
rotational transformation relationship when two succeeding rotations are super-
imposed. Taking these formulae in their exact form is very important from the
point of view of the precision of further solutions.

The other step of the presented procedure deserving a detailed discussion is
the calculation of stresses at the beginning of the new configuration using the
stresses known from the last step of the previous configuration.
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Let us focus our attention on any configuration. Let it be the configuration
Conf. i in Fig. 3. Stresses are calculated in consecutive cycles of the current
stage in the reference configuration because they are the second Piola-Kirchhoff
stresses. They are measured with respect to the surface of the reference configu-
ration in the local coordinate system z¢ of this very configuration. At the instant
of changing of the reference configuration from Conf. ¢ to Conf. ¢ + 1, there is
need to write the stresses calculated at the last cycle of the stage in the new local
coordinate system z¢ (cf. Fig. 3) of the configuration Conf. i+ 1. As a matter of
fact, this new coordinate directions are just convections of material coordinates
(cf. ODEN [15], KLEIBER [16]) from the configuration Conf. i. One can prove
that there exists the following relationship (cf. KLEIBER [16])

X
f ] > Current
Consecutive steps stage
of the current stage .
y J
\J .
Conf. i+1
FiG. 3. Stresses in convected coordinates.
|
(4.3) Skr = ZSkr,

where Sk, are components of stresses in the current configuration Conf. i + 1
in the convected coordinate system z}, and Sk are their counterparts in the
configuration Conf. i in the coordinate system z?. Both stresses are the second

9.
Piola-Kirchhoff stresses. J = det [i] is the determinant of the deformation

0X;
gradient (cf. MALVERN [12]). Stresses Sk are the initial stresses (denoted by o?
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in Eq. (2.3) and in the subsequent formulae) needed in succeeding cycles of the
analysis in the whole next stage.

The determinant J can be easily calculated at every Gauss point from the
formula (cf. MALVERN [12]):

dv

Zl+tezt+ey+e,,
where dv and dV are infinitesimal volumes in configurations Conf. i + 1 and
Conf. i (respectively), €z, €y, €, are strains in directions z, y, z registered in the
current stage.

In the local coordinate system adopted here (cf. MARCINOWSKI [2]) €, = 0,
and therefore

(4.5) J =1 +ez+¢y.

The sequence of operations described above was implemented in the com-
puter program applied then to the solution of many problems. Some examples
confirming the correctness of the adopted approach are presented below.

5. ILLUSTRATIVE EXAMPLES

5.1. Cantilever bent by the moment

There exists an analytical solution of the beam shown in Fig. 4. This is the
reason why this very problem is very often taken as the method of verification of
procedures in which large rotations were taken into account.

According to the Euler-Bernoulli theory of bending, there exists linear re-
lationship between the bending moment M and the angle ¢. This relationship
takes the form

ET
1 M="=

3
where L is the length of cantilever, F is Young’s modulus, I = 17 is the moment
of inertia of the beam cross-section.
Let us introduce the dimensionless angle parameter 7 defined as follows:

© ML

2 ¥ _
(5:2) = 9% T ED’
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and dimensionless displacements of the cantilever tip (cf. Fig. 4)

_ Uk singp sin 27 _ wr 1

5.3 = —==1- =1~ - % = (1 —

(63) =" ; G Te= = (- cosy)
= L (1 - cos2m)
- 271,,0 S 271]),

2rET
where M € (0, WL ), and 1 € (0,1).
>

ANNRNNAN

FiG. 4. The cantilever bent by a moment.

Geometrical and material data adopted in the numerical analysis are shown
in Fig. 5. The discrete model of the plate strip was obtained as a result of division
of the strip into five 8-node (40 degrees of freedom (d.o.f.)) elements. As a result,
the discrete model of 140 d.o.f. was obtained. The reference configurations were
changed when maximum rotations have reached 0.05 rad (in the initial stage of
analysis) or 0.02 rad (in the final stage of analysis). Results of the numerical
analysis of this problem are shown in Fig. 5 by markers. The analytical solution
is shown by solid lines. Characteristic configurations corresponding to angles

3
p= —g, 7, —m and 27 are shown in the figure as well. The quite good agreement
between the numerical and analytical solutions is seen in the figure.
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F1G. 5. Bending of a cantilever. Numerical and analytical solutions.

5.2. Cantilever bent by the concentrated force

This is the other problem, which can be used for verification of the numerical
program. The analytical solution of the problem was presented by FRISCH-FAY
[17]. Knowing all geometrical and material parameters shown in Fig. 6, one can
calculate coordinates of the current point C of the cantilever from the formulae

(5.4)

_L
G

z

{cosa[2E(p,n) — 2E(p,m) — F(p,n) + F(p, m)]

+ 2p-sina - (cosm —cosn)} ,
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(5.5) Y= % {2p cos a(cosm — cosn) + sina[F(p,n) — F(p,m)

— 2E(p,n) + 2E(p,m)]},

. +
sin — sin £
, n = arcsin —p,
p p

(5.6) p =sin 2 ;— 7, m = arcsin

_L*P
" EI’
7 is the angle of rotation of the free end of the cantilever and ¢ is the angle of

rotation of the current point of the rod axis (cf. Fig. 6). F(p,n) and E(p,n) are
elliptic functions of the first and second kind (respectively):

C

n dp n —
(6.7  Flpn)= | -————  Elp,n)= | /1~ p’sin®pdi.
nr 0/\/1—p2sin2¢ e '0/

P
El !ax

AN

F1G. 6. The cantilever bent by a concentrated force.

To calculate coordinates z, y of an arbitrary point of the rod axis, the angle
v is assumed first and then the corresponding force P is calculated from the
formula:

(5.8) p=Z

= 7K ®) - Fo,m)P,
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where K (p is the elliptic integral of the first kind (abso-

) /w/2 dyp

0 /1-—p2sin?e
lute), and parameters p and m are obtained from formulae (5.6). Taking then the
whole series of angles ¢ from the interval (0,7) and calculating the coefficient ¢
from the formula (5.6), both coordinates z, y of the current point of the rod axis
are calculated from formulae (5.4) and (5.5). In this way the deformed shape of
the cantilever beam was obtained analytically.

As far as the numerical analysis of this problem is concerned, exactly the
same geometrical and material data as those used in the previous example were
adopted. Also the same finite element mesh was assumed.

The cantilever in various stages of deformations was shown in Fig. 7. The
comparison between numerical and analytical solutions is presented in the Ta-
ble 1.

N N
S L BN
J 500 1000 1500 2000
\
~
~
N\ . e 0.181
N \\ 4803N
\ ™.
500
\ N 0.483
\ 138.83N ; {

1000

45593 N Rl 054

1500

L =2000 mm
b E=210GPa
h% b=30 mm
. h= 10 mm
ﬁ-535 v=00

2000 2721.38 N “ J l I I

Fi1G. 7. Bending of the cantilever.
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Table 1.
Analytical solution Numerical solution — relative error
Pk W U P W error Ug, €rror P error
[rad] {mm] |mm] [N] fmm] | % | [mm] % [N] %

0.18055 | 240.03 17.369 47.967 | 240.00 | 0.01 17.37 1 0.01 48.03 | 0.12
0.48258 | 630.07 | 123.43 138.369 | 630.00 | 0.01 | 123.40 | 0.02 138.83 | 0.33
1.05408 | 1274.84 | 581.207 | 453.517 | 1275.00 | 0.01 | 581.25 | 0.01 455.93 | 0.53
1.53533 | 1741.24 | 1376.850 | 2702.240 | 1745.00 | 0.22 | 1380.42 | 0.26 | 2721.38 [ 0.71

It is seen that the maximum relative error does not exceed 0.71%. It means
that the coincidence of both solutions is nearly ideal.

5.8. Large deformations of the thin plate ring

The problem was presented by BUECHTER and RAMM [4]. It is a very severe
test for programs taking into account finite rotations. The geometrical data of
the ring and material properties are shown in Fig. 8a. The ring is cut along the
segment AB. One side of this segment is completely fixed, the other is free and
loaded by the vertical, uniformly distributed load of intensity ¢ = 100 N/m.

t=0.03m,
a) E=210GPa, v=00.

F1G. 8. Bending of the ring plate.
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The finite element mesh is shown in Fig. 8a as well. The resulting discrete
model has 365 d.o.f. The plate ring deforms due to the action of load increasing
gradually. The deformed configuration for the load intensity 60q is shown in
Fig. 8b. The maximum vertical displacements exceeds 15 m and the maximum
angle of rotation reaches 1 rad.

Nonlinear equilibrium paths of three nodes of the plate ring are shown in
Fig. 9. The obtained results were compared with those of BUECHTER and RAMM
[4]. The correspondence of both solutions is satisfactory.

60

50
[/
/ wc
[ Wa
40
/ w,
0 /]
" 4
/
20 /
4
10 / /

-5 0 5 10 15 20
Vertical displacements {m]

QS
\
~

Load intensity A

F1G. 9. Nonlinear equilibrium paths.

5.4. Large displacements and stability of the L-shaped plate strip

The L-shaped plate strip is shown in Fig. 10. The supporting manner and the
whole geometry is shown in the same figure. The plate is of constant thickness
t = 0.6 mm. Two cases of loading were considered. In the first case, load F; = AP
and was applied at the point C. In the second case F; = —AP and was applied
at the same point (cf. Fig. 10). Two finite element meshes were adopted. The
first corresponds to the division into 15 elements (390 d.o.f.) and the other — into
60 elements (1225 d.o.f.). Both meshes are shown in Fig. 10.
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F1G. 10. L-shaped plate strip loaded by a concentrated force.

The analysis starts from the calculation of the fundamental paths. It has
been found that the determinant of the tangent stiffness matrix changed its sign
on the level F; = 1.2P in the first case of loading, and on the level F, = —0.71P
in the second case of loading. It was the proof that the bifurcation paths existed
on these levels of loads. Both bifurcation paths were determined by means of
the load perturbation method, the details of which were presented elsewhere
(cf. MARCINOWSKI [18]). As the perturbation load, the force F, = 0.001 N
was applied at the point C. This force was removed when the load-imperfection
curve has reached the level A = 1.2 or A = —0.7 (the second case of loading).
Fundamental and bifurcation paths are shown in Fig. 11 for both cases of loading
and for both finite element meshes. Modes of deformations along bifurcation
paths are shown as well. It is seen from paths A(u.) that both bifurcation points
are stable, symmetric points of bifurcation. Bifurcation paths are stable and it
means that the plate strip has growing load carrying capacity in the postbuckling
range.

Deformations in the postbuckling range are accompanied by large rotations.
It is the reason that this problem can be solved only by means of programs which
take into account finite rotations. Many authors have solved this problem and
hence it is a good method of verification. The results of comparative analysis
are presented in Fig. 12 in the form of bifurcation paths A(w.) in a much wider
range than it was shown in Fig. 11. Results of ARGYRIS et al. [19] and SiMO
and VU-QUOC [20] refer to the beam model with large rotations and differ from
the results of GRUTTMANN et al. [3], SIMO et al. [21] and CHROSCIELEWSKI et
al. [5], obtained by means of shell models with large rotations. Three different
solutions were taken from the paper of CHROSCIELEWSKI et al. [5]. They refer
to two different kinds of finite elements. e4 denotes the quadrilateral four-node
element whereas e9 means the quadrilateral nine-node element.
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2.0

Fundamental paths

Bifurcation paths ————— 60 elem.
1.1884 1.1852 /
aths 60 elem. 15 elem. 15 elem,/——

Bifurcation p

Load intensity factor A
(=]

60 elem, 07038/ | B:
0.5 |
l ?4: Displacements w, [mm]
0.0 ]
-20 -10 0 10 20
20 , ,
Bifurcation path
T TN
15| 160 elem.
Bifurcation path
1.5 J—
1.1884 Bifurcation path
< . =
5 60 elc|m. 60 elem.
& 1.1852 o ’Bz
10 15 elem. Bifurcation path
g Bifurcation path \ 15 elem)
g T Bl |
°
g T 0.7038
-1
Displacements u. [mm]
1

0.0 0.5 1.5 25

Fi1G. 11. Equilibrium paths A(w.) and Auc.

On the background of solutions of other authors, the present results were
shown and these solutions are labelled 1 to 5. Curves 1, 2, 3 were obtained by
means of a program which does not take into account large rotations. The curve
1 refers to the mesh of 15 elements whereas all other curves refer to the mesh of
60 elements. Curves 4 and 5 were obtained by means of the program in which the
approach presented in the paper was implemented. Both refer to the mesh of 60
elements. Reference configurations were updated every time when the maximum
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nodal rotation exceeded 0.05 rad in the initial range, and 0.02 rad in the final
range of analysis.

The differences between the present solution (curve 4) and solutions of
CHROSCIELEWSKI seem to be very small. Unfortunately, none of the authors
has presented the bifurcation path splitting at point B;. There is no possibility
of comparison of this solution. Small difference between solutions 2 and 5 can
be explained by the absence of sufficiently large rotations (compare the mode of
deformation in Fig. 12). The greatest one does not exceed 0.15 rad. In the first
case of loading, the maximum rotation exceeded 0.75 rad and it is the source of
such a considerable difference between solutions 3 and 4.

20 1 | Y4
Chréscielewski et al. (44 €9) /\_ 4 \
------ Chréscielewski et al. (68 e4) Y L I b
— — — — Chréscielewski et al. (176 ed) Vi /2
l 5 //, v

Load intensity factor A
=

(=)
[
w
%

A Gruttmann et al. A
o Simo et al.
o Argyrisetal. § :
x Simo & Vu-Quoc
0.0 L l I
0 10 20 30 40 50 60

Displacements w, [mm]

Fia. 12. A comparative analysis.

6. FINAL REMARKS

The idea of successive variation of the reference configuration presented in
this paper in details, has made possible the description of deformations of shells
with large rotations by means of the finite element formulation adequate es-
sentially to problems with small or moderate rotations. It turned out that the
degenerated finite element, being so effective in geometrically nonlinear problems
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of shells with small or moderate rotations, can be used as well in geometrically
nonlinear problems of shells with finite rotations. The governing equations of
the problem were derived from the principle of virtual displacements written for
the deformed configuration not free from stresses. This principle was reformu-
lated into a discrete form according to the adopted degenerated finite element.
Important problems related to the actualisation of reference configurations and
to the calculation of stresses during the transition from the one reference con-
figuration to the other were successfully solved. Details of the procedures used
were presented. The idea of convected material coordinates turned out to be very
effective in this case.

The presented examples have confirmed that the proposed approach is correct
and can be applied to other problems concerning statics and stability of shells
with large displacements and finite rotations.
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