ENGINEERING TRANSACTIONS e Engng. Trans. e 48, 4, 415-432, 2000
Polish Academy of Sciences e Institute of Fundamental Technological Research
10.24423/engtrans.584.2000

CONTINUUM FIELD MODEL OF STREET CANYON:
THEORETICAL DESCRIPTION. PART I

M.M. DURAS

INSTITUTE OF PHYSICS, CRACOW UNIVERSITY OF TECHNOLOGY
ul. Podchorazych 1, 30-084 Cracow, Poland
Email: mduras@riad.usk.pk.edu.pl

A general proecological urban road traffic control idea for the street canyon is proposed
with emphasis placed on development of advanced continuum field gasdynamical (hydrodynam-
ical) control model of the street canyon. The continuum field model of optimal control of street
canyon is studied. The mathematical physics’ approach (Eulerian approach) to vehicular move-
ment, to pollutants’ emission, and to pollutants’ dynamics is used. The rigorous mathematical
model is presented, using gasdynamical (hydrodynamical) theory for both air constituents and
vehicles, including many types of vehicles and many types of pollutant (exhaust gases) emitted
from vehicles. The six optimal control problems are formulated.

1. DESCRIPTION OF THE MODEL

In the present article we develop a continuum field model of the street canyon.
In the next article we will deal with numerical examples [1]. The vehicular flow
in the canyon is multilane bidirectional one-level rectilinear, and it is considered
with two coordinated signalized junctions [2, 3, 4]. The vehicles belong to differ-
ent vehicular classes: passenger cars, and trucks. Emissions from the vehicles are
based on technical measurements and many types of pollutants are considered
(carbon monoxide CO, hydrocarbons HC, nitrogen oxides NOy). The vehicular
dynamics is based on a hydrodynamical approach [5]. The governing equations
are the continuity equation for the number of vehicles, and Greenshields’ equi-
librium speed-density u-k model [6].

The model of dynamics of pollutants is also hydrodynamical. The model
consists of a set of mutually interconnected nonlinear, three-dimensional, time-
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dependent, partial differential equations with nonzero right-hand sides (sources),
and of boundary and of initial problem. The pollutants, oxygen, and the re-
maining gaseous constituents of air, are treated as mixture of noninteracting,
Newtonian, viscous fluid (perfect or ideal gases). The complete model incorpo-
rates as variables the following fields: density of the mixture, mass concentrations
of constituents of the mixture, velocity of mixture, temperature of mixture, pres-
sure of mixture, intrinsic (internal) energy of mixture, densities of vehicles, and
velocities of vehicles. The model is based on the assumption of local laws of
balance (conservation) of: mass of the mixture, masses of its constituents, mo-
mentum and energy of the mixture, the numbers of the vehicles, as well as of
the state equations (Clapeyron’s law and Greenshields’ model). The equations
of dynamics are solved by the finite difference scheme.

The six separate monocriterial optimization problems are formulated by defin-
ing the functionals of total travel time, of global emissions of pollutants, and of
global concentrations of pollutants, both in the studied street canyon and in its
two nearest neighbour substitute canyons. The vector of control is a five-tuple
composed of two cycle times, two green times, and one offset time between the
traffic lights. The optimal control problem consists of minimization of the six
functionals over the admissible control domain.

2. ASSUMPTIONS

The geometrical assumptions of the model are as follows:
G1. The street canyon is represented by a cuboid:

(2.1) Q =1[0,a] x [0,b] x [0,c],

with the boundary 92 composed of six walls:

VI
(2.2) 0= | 09,.
J=1

The structure of the canyon is simplified by the assumption that the walls of
the buildings and the road surface are rectangles. If we put the origin of the
Cartesian coordinate system (z,y, ) in cuboid’s corner, then we have two canyon
walls v, vy, at y = 0, y = b, and road’s surface Qvi, at z = 0. The remaining
three non-solid open surfaces of air Qy, Qy, Q1, have the coordinates z = 0,
Z = a, z = ¢, respectively. We assume that always:

(2.3) (z,9,2) €9,
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and
Y = {(z,y,2) € Q:z =0},
M = {(z,y,2) € Q: 2 = a},
o = {(z,y,2) € N: 2=},
(2.4)

My = {(a:,y,z) EQ:y=0},
My = {(*’E’yaz) EQ:y:b}a
vt = {(z,y,2z) € Q: 2 =0}.

G2. There are neither holes in the walls nor vegetation alongside the road.
The remaining three surfaces of the cuboid also do not have holes since they
simulate non-solid open rectangles of air.

G3. The road sections which constitute the bottom of the street canyon are
rectilinear.

G4. At each end of the street canyon there are entrance and exit junctions
(M = 2) with traffic signals (their coordinates are z = 0, z =a).

G5. The vehicles of VT distinguishable emission types are material points.
The vehicles are treated as hydrodynamical fluid. There are ny, = n; left lanes
and ny = ng right ones (the traffic is bidirectional).

The physical assumptions of this model are as follows (cf. papers [7 - 50]):

P1. The considered mixture of gases consists of N = Np— 1+ N4 gases. The
first Ng — 1 = 3 gases are the exhaust gases emitted by vehicle engines during
combustion (CO,CH,NOy, we neglect the presence of SO2). The remaining
N4 =9 gases are the constituents of air: Oz, N2, Ar, CO,, Ne, He, Kr, Xe, H, (we
neglect the presence of Hy0, O3).

P2. The walls of the canyon and the surface of the road are impervious for
all gases of the mixture. The remaining three surfaces of the cuboid are pervious
for external fluxes of exhaust gases and air constituents.

P3. The internal sources of air constituents are not present with the exception
of oxygen, i.e., Ng constituent of the gaseous mixture. There are internal mobile
sources of exhaust gases (passenger cars and trucks, with many types of engines:
diesel or petrol, and with different ages of engines). During combustion, the
engine consumes oxygen, therefore with each internal mobile source of exhaust
gases, a negative source of oxygen (sink) is connected.

P4. The gaseous mixture is treated as a compressible, Newtonian, and vis-
cous fluid. We assume that also the constituents of the mixture are compress-
ible, Newtonian, and viscous fluids. The constituents do not interact with each
other. The 4-th constituent possesses individual velocity v;(z,vy, z,t), density
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pi(z,y, z,t), and pressure p;(z,y, z,t), whereas the mixture possesses total veloc-
ity v(z,y, z,t), density p(z,y, 2,t), and pressure p(z,y, z,t). We assume that

Pz T,Y,2,t)
(2.5 v(z,y,2,t) (z,y,2,1),
) ’ ; p(z,y,2,1) il
N
(26) p(:c,y,z,t) = Zpi(x,y,Z,t),
=1
N
(2.7) p(z,y,2,t) = Y pi(%,9,2,1).
=1

In order to simplify the set of equations governing the dynamics of mixture, we
assume that the total velocity is equal to the velocities of the constituents

(2.8) v(z,y,2,t) = vi(z,y, 2, 1), i=1,..,N.

Hence, we can restrict our attention to the equations of balance of total mo-
mentum of mixture E1, of the total mass of mixture E2, of masses of constituents
E3, and of the energy of mixture E4. We assume that the equation of state for
mixture E5 is averaged over the constituents. We also consider equations of bal-
ances of the numbers of vehicles E6, as well as equations of state for vehicles E7.

3. VARIABLES

The following set of descriptive dynamic model variables AO0-A10 together
with their boundary B0-B8 (for ¢ > 0), and initial conditions C0-C7 (for t = 0),
and with the set of equations E1-E8 that governs their dynamics, is assumed [2].
We always consider
(3.1) (2,9,2,1) € 5,2 = Q% [0,Ts),

where ¥ is manifold of domains of the fields, T's > 0 is time of simulation. The
border 9% of ¥ is composed of six subsets 0% ;:

oz = |J 0%y,

(3.2)
0%y = 0y x [0,Ts], J=1..,VL

A0. T(z,y, z,t), temperature of the gaseous mixture.
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Al. v(z,y,2,1), total velocity of the gaseous mixture (compare Eq. (2.5)).
A2. p(z,y,2,1), total density of the gaseous mixture (compare Eq. (2.6)).
A3. ci(z,y,2,t), mass concentration of the i-th constituent of gaseous mix-
ture,
Pi (1‘, Y, Z2, t) .
3.3 i(z, t) = ————2~ =1,.,.N
(3.3) ¢i(z,y,2,1) oyag’ =L

(let us note that due to the condition

(3.4) ci(z,y,2,t) =1,

M=

1

1

one concentration of the constituent is a dependent variable).

Ada. p(z,y,z,t), pressure of gaseous mixture (compare Egs. (2.7), (7.16)).

A4b. pi(z,y,2,t), i = 1,..., N, partial pressure of the i-th constituent of
gaseous mixture (compare Eqgs. 2.7), (7.16), (7.17)).

A5. kivt(z,t), density of vehicles of type vt on the [-th lane measured in
[veh - m™!], where for ny = np, lanes s = 1 and [ is the left lane’s number,
l=1,..,n, whereas for ny = ng lanes s = 2 and [ is the right lane’s number,
I =1,...,ng, vt is the vehicular type number, vt =1, ..., VT.

A6. wj ,(z,t), velocity of vehicles of type vt on the I-th lane.

AT. €] ;4 (7, 1), emissivity of ctth constituent of exhaust gases from vehicles
of type vt on lth lane measured in [kg-m™!-s7!], ¢t is number of constituent,
c=1,..,CT.

A8. uy = (gm, Cn, F), vector of control on the m-th junction, m =1,..., M
(M = 2), which contains traffic signals green times g, and cycle times C,,, and
offset time F between the traffic signals. The vector of control u reads:

(35) u= (glyclvg2a02,F)‘

The admissible control domain set U2d™ for this vector in the simulation time
period T reads:

(3.6) U™ ={(g1,Cy,g2,Co, F):
Im € (gm,min,gm,ma.X)v Cpn € (Cm,mim Cm,max)a Fe (Fmin:Fmax)a

m=1,.., M},

whereas gmmax = Cm — gm,orth, Where gp, ortn are green times on orthogonal
direction of the junctions (on the canyons orthogonal to the one studied), Fpax =
C3 —6F, where dF is unit step in direction of F in parameter space (compare Fo).
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A9. G™,(gm,Cm, F, 1), traffic signal on mth junction at z = z,. For z; =a
the traffic signal G}, governs all left lanes (outgoing vehicles) and all right lanes
(incoming vehicles), whereas for zo = 0 the traffic signal G?2,. governs all right
lanes (outgoing vehicles) and all left lanes (incoming vehicles). For the signals
we assume the Boolean output values: GREEN and RED.

A10. o} ,,(z,1), rate of change of linear density of energy connected to heat
produced by engines of vehicles of type vt on I-th lane measured in [J - m~!.s71.

4. BOUNDARY CONDITIONS

We assume the following boundary conditions [2]:
Boa-BOc. Tlos, = Tkly -

B0d-BOf. V,T)os, = 0.

Bla-Ble. voz, = Vkly -

B1d-B1if. V,v|ss, = O.

B2a-B2c. ploz, = PK|E’K .

B2d-B2f. Vyplos, = 0.

B3a-B3c. cilox, = ci,K|E'K-
B3d-B3f. Vncilos, = 0.

Bda-Bdc. plozy = pxly -

B4d-B4f. Vplox, = 0.

B5a-B5d. kf,(Tm,t) = kf ;,p(t)-
B6a-B6d. W}, (Zm,t) = Wi, p(t).
B7a-B7d. €f ; ,1(Tm,t) = €] ot 01, p(t)-
B8a-B8d. 07 ,,(Tm,t) = 0], p(t).

We define additional sets:
T = {21 : (2,5,2t) € T} = Ty,

Z)IIII = {(x?y,t) : (337y,2;t) € Z}a

and we assume that K = LILIII, L = IV,V,VI. The gradient operator Vy
works in direction of unit normal outward vector n to border 0X. VgV is
gradient of vector (so it is a tensor of rank 2), O is a zero tensor. P = in,out, is
the input and output index, and we have the following combinations of triads of

(4.1)



CONTINUUM FIELD MODEL OF STREET CANYON: THEORETICAL DESCRIPTION 421

indices: (s, P,m) = (1,in,2),(2,in,1), (1,0ut, 1), (2, out,2), respectively for B5-
B8. Conditions B1d-B1f result from viscosity of the gaseous mixture since the
velocity of viscous fluid on immobile and impervious surface is zero. Similarly,
conditions B0d-BOf, B2d-B2f, B3d-B3f, B4d-B4f result from the fact that the
walls and the surface of the road are impervious solid bodies. According to [5],
we assume the boundary conditions B5a-B5d in the form:

B5aS-B5dS.

kivt,P(t) = kls,’ut,a.rrival’ if GGt(Cm, gm, Fyt) = GREEN, and QUEUE(zy) =
FALSE,

kls,vt,P(t) = kivt,sat’ if Govs (Cm, gm, Fyt) = GREEN, and QUEUE(zy,) =
TRUE,

kf,vt,P(t) = kivt,jam’ if G (Cm, gm, Fyt) = RED,

where QUEUE(z,,) = TRUE/FALSE means that there exist/does not exist a
queue at & = Zm, and K, orivals Kyt sat @0 Ky jam, are arrival, saturation,
and jam vehicular densities, respectively (compare Tables 3, and 8 of [1]).

The existence of the queues at the entrances to the canyon (at z2 = 0 for the
left lanes, and at z; = a for the right lanes) is determined by the values of the
vehicular densities changing in the following way:

B5aSS-B5dSS.

(4.2) kivt(€87 t) = kf,'ut,Q’ fOI‘ t S AS )
+o00
(4.3) Green = [0,Ts]N |J [ts +nC1,ts +nC1 +g1),
n=—o
(4.4) Ao = [0,Ts] - Agpeen, @ = GREEN, RED,
(4.5) 1= —bz, Ea=a+0d; t1=0, ty=F,

where K} vt GREEN: k} ,t RED> 2re green and red vehicular densities, respectively
[1], and d; is the unit step in x-direction in the domain space X.

REMARK

The functions: T, vy, ps, ¢i.5, PJ, kivt’P, wf’vt,P, ef,ct’vt,P, aivt’P, are given
and they fulfill the natural constraints:

N
(4.6) Z ¢iJ(z,y,2,t) = 1.
i=1
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5. INITIAL CONDITIONS

The initial conditions are as follows [2]:

CO. T|s, = Tolo.
Cl. v|g, = vo|q-
C2. pls, = pola-
C3. cils, = cipla-
C4. plx, = pola-

C5a-C5b. k} ,(z,0) = kj 4 o(2).
C6a-C6b. wj ,(z,0) = W} ut,0(2)-
CTa-CTb. €] 5, ,(x,0) = €] o1 1 0(2).
C8a-C8b. 0f,,(z,0) = 07 ,,.0(2).

REMARK

The functions: To, Vo, o, €i,0, P0s ki ut.00 Wit,00 €letot,00 Tvt,00 aT€ given and
they fulfill the natural constraint:

N
(5.1) Zci,o(a:,y,z, t) =1

6. SOURCES

In order to represent the emission process, we assume the following internal
sources [2]:

DO. o(z,y, z,t), the rate of change of the volume density of internal sources
of energy connected with the production of heat by vehicular engines, measured
in [J-m™-s7!]. We assume that the sources of energy are situated in ng left
and right lanes at y = y7, at the level of the road z = 0:

1 2 ng
(61) O'(iL' y,zt b_c— Z ZalvtmtXDs( T,Y,2 )
s=1 =1 vt=1

where
(6.2) D} ={(2,9,0) : (z,9,0) € Q,y = y[},
are the vehicular lanes, and

1 for (z,y,2) € D
(63) XD(wvya Z) = )

0 for (z,y,2) ¢ D

is the characteristic function of set D.
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D1. S(z,y,zt), the rate of change of the volume density of internal
sources of gaseous mixture consisting of exhaust gases and oxygen, measured
in kg -m™!-s71).

D2. SE(z,y, 2,t), the rate of change of the volume density of internal sources
(the emission rate) of the ct-th constituent of exhaust gases emitted by all vehi-
cles in the canyon, measured in [kg-m™!-s™!]. We assume that the sources of
exhaust gases are situated in n, left and right lanes y = g, at the level of the
road z = 0:

1 2 ns VT
(6.4) SE(x,y, 2,t) =1a ZZ Z €l ct,wt(Z: )X D3 (7,9, 2).

1vi=1

SﬁE (z,y,2,t), the volume density of negative internal sources (the emis-
sion rate) of oxygen absorbed by all vehicles in the canyon, measured in
[kg-m™!-s71]. We assume that

SﬁE(m,y,z,t) = ONOX - SﬁE_l(m,y, z,t),

where ONOX = —0.5308. The following relation holds:

Ng
(6.5) S(z,y,2,t) = Z S,i(z,y,z,t).

ne=1

7. EQUATIONS OF DYNAMICS

Under the above model specifications, the complete set of equations of dy-
namics of the model is formulated as follows (we follow the general idea presented
in {7, 8]):

E1. Balance of momentum of mixture - Navier Stokes equation.

(7.1)  p- (g—: +(v0V)v) +S5.-v=~Vp+n - Av+ (§+ g) - V(divv) + F,
where 7 is the first viscosity coefficient (n = 18.1-107°% [kg-m™!-s7!] for air
at temperature T' = 293.16 [K]), ¢ is the second viscosity coefficient ({§ = 15.6 -
1078 [kg - m~! - s71] for air at temperature T = 293.16[K], compare [51]), F = pg
is the gravitational body force density, g is the gravitational acceleration of Earth
(g = (0,0,—9.81)[m -s72]), Vv is gradient of the vector (so it is a tensor of
rank 2). We assume that the gaseous mixture is a compressible and viscous fluid.
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E2. Balance of mass of mixture — Equation of continuity.

a
(7.2) 9P+ div(pv) = 8.
ot
We have assumed the source D1.
E3. Balances of masses of constituents of mixture — Diffusion equations.
E3a.

(7.3) p- (% +vqu) =8F _¢8

ot
gy . kTm .
+ Z (Dimn — Din) - div |pV (Cm-l-T"VT , 1=1,..,Ng.
m=1
E3b.
(7.4) p- (%—Cti +vo Vci> = —¢S
N-1 kT
+ Z {(Dim — D;n) - div [pv (Cm + T’m . VT)} } ,
m=1

1= (NE-I—I),...,N,

where D;y, = Dp,; is the mutual diffusivity coefficient from the i-th constituent
to m-th one, and D;; is the autodiffusivity coefficient of the i-th constituent,
and kryy, is the thermodiffusion ratio of the m-th constituent. The diffusivity
coefficients and thermodiffusion ratios are constant and known (compare [52]).
In E3a we have assumed the sources D1-D2. In E3b only the source D1 is taken
into account. Since the mixture is in motion, we cannot neglect the convection
term: voVc;. We assume that the barodiffusion and gravitodiffusion coefficients
are equal to zero.
E4. Balance of energy of mixture.

(75)  p- (%+vove> =—(—%v2+e) S+t : Vv +div(—q) + o,

where € is the mass density of intrinsic (internal) energy of the air mixture, t is
the stress tensor, symbol : denotes the contraction operation, q is the vector of
flux of heat. We assume that [2]:

N
(7.6) € = Zei,
=1



CONTINUUM FIELD MODEL OF STREET CANYON: THEORETICAL DESCRIPTION 425

(7.7) € = mi; {cikBTexp (—%) . [(..;) . (1 — exp (_%))

- exp (—wﬂ} + fics,

kT
~ ﬁ
(7.8) Hi = m;’
h2 %
— i ir 2
(7.9) ui = kgT - {ln [(Cip)(kBT) 173 (Ta—) ( i ) J}+mi|g|2,
m; my;

| 3 3 Du,

(7.10) t:Vv = Z Ztmk-a—zk,
_ vy,  Ovp 2 ) Ov,

T1) bk = =phms+- G+ G = 3 div(v) ) |

+ & [(6mi div(v))?, m,k=1,..,3,

(7.12) mq = i{[(-'&—T-i-ﬁz) 'ji} ‘f‘[(""ﬂ)'VT]}a

i=1 Qi

-1
Ofti
(7.13) @i = pDy; - [( ) J ,
601 (Cn)n=1,.,_,N,i;én,T,P

kr Ofii
(7.14) Bi = [pDy] - {%‘ B [(%)(c ) p]

~ -1
(5 |
80‘ (c’n)n=l,...,N,i#n ,T,P ’

(7.15) ji==pDi- (4 222 vr),

where ¢; is the mass density of intrinsic (internal) energy of the ith con-
stituent of the air mixture, m; the molecular mass of the ith constituent,
kp = 1.3807 - 10723[J - K~'] is Boltzmann’s constant, ; is the complete partial
chemical potential of the ith constituent of the air mixture (it is complete since it
is composed of chemical potential without external force field and of external po-
tential), mair = 28.966 [u] is the molecular mass of air (1[u] = 1.66054-10~27 [kg]),
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Smk is Kronecker’s delta, cp; is the specific heat at constant pressure of the ith
constituent of air mixture, h = 6.62608 - 10~3* [J - 5] is Planck’s constant, j; is
the vector of flux of mass of the ith constituent of the air mixture, and  is the
coefficient of thermal conductivity of air. These magnitudes are derived from
Grand Canonical ensemble with external gravitational Newtonian field.

E5. Equation of state of the mixture — Constitutive equation — Clapeyron’s
equation.

R

(7.16) P p
P Majr

is Clapeyron’s equation of state for a gaseous mixture, where R = 8.3145
[J - mole! - K] is the gas constant.

-
(7.17) P =i —= .
m;
are partial pressures of constituents according to Dalton’s law.
E6. Balances of numbers of vehicles — Equations of continuity of vehicles.

6kf)vt H 8 S
(718) —a't—— + dlv(kl,vtwl,vt) = 0.
E7. Equations of state of vehicles — Greenshields model.
S
l, (.’E,t)
(719) w?,vt(mvt) = (wf,vt,f ' (1 - k:t ) 7030) .
l,vt,jam

The Greenshields equilibrium speed-density u-k model is assumed [6]. The
values of maximum free flow speed wy,, ¢, and of jam vehicular densities k] am,
are given in Tables 3 and 8 of [1].

E8. Technical parameters.

The dependence of emissivity on the density and velocity of vehicles is as-
sumed in the form [54]:

E8a.

s oy )
W} e (@,2)| — Wepot,iy
Wet,wt,i+1 — Wet,vt,i

(720) e?,ct,vt(xi t) = k“f,vt(x’t) ' [(

- (Cetutig+1 — Eetwtyiy) T Cctwtyis |

where We e, are experimental velocities, |wf’vt(m,t)| € (Wet,utiy» Wet i +1),
€ct,ut,i, are experimental emissions of the ctth exhaust gas from single vehicle
of vtth type at velocities eyt s, respectively, measured in [kg- veh™'-s71],
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4 = 1,...,Ngpr, Ngas is the number of experimental measurements. Similarly,
the dependence of the change of the linear density of energy on the density and
velocity of vehicles is taken in the form:

o Wiz, 1)]
Wit (%) — Wy 4
(7'21) Uf,vt(w’t) = Qut kivt(xvt) : [( —’vt. — U ”)
Wot,i+1 — Wt

: (th,i1+1 - th,iz) + th,il}a

where 0y ;,, are experimental values of consumption of gasoline/diesel for a single
vehicle of vtth type at velocities Wyt,i;» Tespectively, measured in [kg - veh™! - s~1],
Qu¢ is the emitted combustion energy per unit mass of gasoline/diesel [J - kg™!]
(compare [53)).

8. OPTIMIZATION PROBLEMS

Our control task is the minimization of the measures of the total travel time
(TTT) [5], emissions (E), and concentrations (C) of exhaust gases in the street
canyon, therefore the appropriate optimization problems may be formulated as
follows [2]:

F0. Vector of control.

(81) u= (917017927C2aF) € Uadm,

where u is vector of boundary control, gm are green times, Cy, are cycle times,
F is offset time, and U™ is 3 set of admissible control variables (compare A8,
A9, B5, B5S, B5SS).

We define six functionals F1-F6 of the total travel time, emissions, and con-
centrations of pollutants in single canyon, and in canyon with the nearest neigh-
bour substitute canyons, respectively.

F1. Total travel time for a single canyon.

2 Ts
(8.2) Jrrr(u) =Y //kf,vt(:c,t)dm dt.
00

2
(8.3) Je(u) =) 33 % / / € ot vt (%, t)dz dt.
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F3. Global pollutants concentration for a single canyon.

Ng-1 ¢ Ts

(8.4) Jc(u) = pstp - Z ////c, z,y, 2, t)dz dy dz dt.
=1 0 0

F4. Total travel time for the canyon in street subnetwork.

g
(8.5) JTTT,GXC( u) = Jrrr(u) +a- Z aTTT ext Z Z ki wtjam ' Cs = gs)-
I=1vi=1

F5. Global emission for the canyon in street subnetwork.

ng CT VT

(8-6) JE ,ext (u) + a- Z aE ext Z Z Z 61 ct,vt,jam (C )

=1 ct=1vt=1

F6. Global pollutants concentration for the canyon in street subnetwork.

Ng-1 2
(8.7) Jeext(u) = Jc(u) + psTp-a-b-c: Z Ci,STP * ZaCext (Cs — gs)-
i=1 s=1

The integrands kl . el ctuts Ci in functionals F1-F6 depend on the control
vector u FO through the boundary conditions B0-B8, through the equations of
dynamics E1-E8, as well as, through the sources D0-D2. The value of the vec-
tor of control u directly affects the boundary conditions B5, B5S, B5SS, and
then the boundary conditions B6-B8 for vehicular densities, velocities, and emis-
sivities. It also affects the sources D0-D2. Next, it propagates to the equa-
tions of dynamics E1-E8 and then it influences the values of functionals F1-
F6. We only deal with six monocriterial optimization problems 01-06, and not
with one multicriterial problem. We put the scaling parameters equal to unity:
OFTText = OFext = XC,ext = 1.0, In functionals F4-F6. pgrp is the density of
air at standard temperature and pressure STP, ¢; gTp is concentration of the ith
constituent of air at standard temperature and pressure. Jrrt and JTTText are
measured in [veh - s], Jg and Jgex; are measured in [kg], and Jc and Jgext are
measured in [kg - s|, respectively.

Now we formulate six separate monocriterial optimization problems 01-06
that consist in minimization of functionals F1-F6 with respect to control vector
F0 over admissible domain, while the equations of dynamics E1-E8 are fulfilled.

O1. Minimization of total travel time for a single canyon.

(88) J*TTT = JTTT(“%‘TT) = mln{u € Uadm : JTTT(U)};
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02. Minimization of global emission for a single canyon.
(8.9) Ji = Je(uf) = min{u € U™ : Jg(u)};

03. Minimization of global pollutants concentration for a single canyon.
(8.10) JE = Jo(ug) = min{u € U™ : Jo(u)};

04. Minimization of total travel time for a canyon in street subnetwork.
(8.11) :Ik‘TT,ext = JTTText (U}TT,ext) = min{u € gHm ; JTTText(u) };

05. Minimization of global emission for a canyon in street subnetwork.
(8.12) JE,ext = JE,ext(uE,ext) = min{u ey, JE,EXt(u)};

06. Minimization of global pollutants concentration for a canyon in street
subnetwork.

(813) Jé,ext = JC,eXt(uE,ext) = min{u € Uadm : ']C,ext(u)},

* * * * I
where Jipr, JE, JE JITT exts JE ext> JC,ext, are the minimal values of the func-
1 * * * * * *
tionals F1-F6, and ufpr, uf, U, Whpr ey UF exys UG exty aT€ control vectors at
which the functionals reach the minima, respectively.
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