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SEMI-EMPIRICAL MODEL OF TIRE-PAVEMENT CONTACT
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Mathematical model of the tire-pavement interaction is presented in the paper. One of the
main features of the model is easy identification of the parameter values by means typical testing
equipment. In the model the contact zone of the tire is divided into the adhesion zone and the
slip zone. Influence of the water wedge has been examined. Some typical tire characteristics

are shown as a result of application of the proposed model.
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1. INTRODUCTION

The forces acting between the vehicle tires and the pavement (so-called tan-
gential forces) belong to more important parameters, decisive for the safety of
drive.

Values and directions of these forces can be estimated using mathematical
models of tyres. There are many well-known excellent empirical or semi-empirical
tire models (BABBEL [1]; PACEJKA and BAKKER [6], PACEJKA and BESSELINK
[7]). These models have one inconvenience: they require estimation of the pa-
rameter values difficult for identification. These parameters are usually obtained
by means of specialistic, not easily accessible, testing equipment (BAKKER and
OOSTEN [2]; LEISTER [3]).

One of the main aims of preparation of the new tire model was to avoid
these difficulties and to construct the new model with easy identification of the
parameters. The values of these parameters should be obtained by means of a
typical testing cquipment. Simultaneously, the model should take into account
phenomena occurring on the tire-pavement contact under difficult exploitation
conditions, such as driving on wet pavement during which the appearing water
wedge reduces the force of adhesion.
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The following assumptions have been introduced:

a) the tire plane is perpendicular to the pavement plane,

b) geometry of the contact zone depends on the vertical force between tire
and pavement,

c) distribution of pressure under the tire in the direction perpendicular to the
tire plane is constant,

d) static deflection of tires is approximately equal to the dynamic deflection.

In the general case, the contact zone can be divided into smaller areas (Fig. 1):
adhesion zone (where there is no relative motion between the tire and pavement),
slip zone, and — on wet pavement — zone of water wedge (water zone).

@

slip adhesion  water
zone zone zone

Fi1G. 1. Contact zones of the tire model.

2. DISTRIBUTION OF PRESSURE BETWEEN TIRE AND PAVEMENT

The vertical load F, of the wheel is transferred mostly by inflation pressure
p inside the tire. We assume that, in normal circumstances, the vertical forces
transferred by the tire are relatively small. Thus the area Agg of contact zone

(2.1) Ag = 2.
p

The shape of the contact zone can be approximated by two extreme figures:
the rectangle Asgmax = B - L and the ellipse Asgmin = 7+ B - L. The real zone
of contact lies between these both figures (Fig. 2). Introducing the coefficient
kskg = Ask/Askmax, where: m < ksg < 1, the contact zone area Agy can be
written as:

(2.2) Asg =ksg - B- L,
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whence the length of the contact zone is

(2.3) L= Ak _ B
ksk-B ksg-B-p

.

F1G. 2. Shape of the contact zone; 1 — eliptic; 2 — real; 3 — rectangular.

According to the assumption that distribution of pressure is constant in the
direction perpendicular to the tire plane (Fig. 3), the model of the tire on smooth
pavement can be reduced to a two-dimensional model.

contact zone

Fic. 3. Two-dimensional distribution of pressure.

Reaction of the pavement R, = —F, for the zero longitudinal velocity of the
tire (v = 0) and zero tangential forces is applied in the center of the contact zone.
When the longitudinal forces act, the reaction R, is displaced, but in the model
described, this is not taken into account.

Distribution of pressures can be described by a polynomial, which satisfies
the following conditions:

(24) p(=L/2) =0,
(2.5) p:(L/2) = 0.
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Comparing the vertical force and the distribution of pressures, we obtain the

following condition:
L/2

(2.6) / p.(z) - Bdz = F,.

~L/2
Conditions (2.4) ~ (2.6) are satisfied by the polynomial of the second order:
(2.7) p=(z) = paz® + ppz + po-

To determine the coefficients p4, pp and pc, one should substitute Eq. (2.7)
into the Egs. (2.4), (2.5) and (2.6):

1 1

(2.8) 7PA L* - 5PB - L +pc =0,
1 1

(2.9) 2PA L+ 3B L+pc =0,
1

(2.10) 704" L4+ pc=F,/(B-L).

The matrix form of this system of equations is the following:

1

2
4L 2L 1 .
P, pa
EL2 0 1

3. TIRE DEFORMATION

Circumferential tire deformation Az (connected with the longitudinal slip s;)
and lateral deformation Ay (connected with the slip angle &) can be estimated in
the following manner. During the time period %y, axis of the tire will be shifted
by distance

ag - t3

2 1
where v, i a, denote longitudinal velocity and acceleration. We have assumed
that, during the time period #o, acceleration a, is approximately constant and
zp < x4 (see Fig. 1). At the same time, the tire point which entered in contact
with the pavement is displaced by the distance:

(31) Tk =g to+
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w - t3 t3

)-(R-zo)=w-(R—zo)-t0+w-(R—zo)-5,

(32) Xo = (w ~tg +

where w is the rotational speed of the tire.
Using the definition of longitudinal slip (for the case of braking):

vy —w- (R = 2)

(33) Sg = s
Uz
we have:
(3.4) w-(R—20) = (1~ sz)- v
After differentiation:
(3.5) w-(R—20) =ag- (1 —8;)— Sz vg.

Substituting formulas (3.4) and (3.5) into (3.2), we have:

2
(3.6) -TOZ(1_Sz)'vm't0+[(1_Sz)'az—sx’vz]’éq-
Thus the circumferential tire deformation is:
t2
(3.7) Aa:():a:k—xg=v$-s$~t0+(s$-az+sz-vz)-50.

Time %y is very short, eg. ¢y < 0.02 s for the velocity 5 m/s and the length of
contact zone 0.1 m. So, after omission of the last element of Eq. (3.7), we obtain:

(3.8) Azy = vy - 84+ 1.

Since time t, of the tire axis displacement by distance z, (length of the
contact zone) is equal

Lq
3.9 tg = —
(39) =2

the total circumferential tire deformation in the adhesion zone:
(3.10) Azg = x4 - 5z.

Assuming that the circumferential deformation in the adhesion zone can be
described by a linear function, we have:

(3.11) Az(z) = imaa . (é——mw—x> =8z - (%—xw—a,) .
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This assumption is true only in the adhesion zone, where no relative motion
between the tire elements and pavement appears.

Lateral tire deformation can be obtained in a similar manner. Recording
lateral velocity of the first tire contact point (for slip angle «), we obtain:

(3.12) vy = U - tana,
so that the total lateral tire deformation in the adhesion zone is
(3.13) Aya = vy - tq = T, - tano.

In accordance with the assumption on linear deformation, we obtain:

(3.14) Ay(z) = =73 (£ — Ty — w) = tana - (% — Ty — 1:) .

Zq 2

4. LENGTH OF THE WATER WEDGE

We assume that pavement is covered by a layer of water of constant thickness
ho. Rolling tire on a wet pavement causes “pumping” of water from the contact
zone — mostly in the direction perpendicular to the direction of rolling. The linear
speed vy, of outflow of the water can be determined from the Bernoulli law:

_ o @P? _ [2pu(@)
(4.1) puw(z) = — 9 = vw(T) = T

where: p,, — pressure of water, p — density of water.
Elementary discharge of water is

3

(4.2) dQ = vy, - dS,

where dS — element of the surface area. Thus, the total discharge of water flowing
out from the water wedge zones is

(4.3) Q=2 / o () - v () = %- / (@) - ho()d,

where hy, (1) — average thickness of the water film in the water wedge zone.

During the time t,, = z,,/v, the tire is displaced by a distance equal to the
length of the water wedge. In total time, volume V of water is squeezed out from
under the tires,

(4.4) V=Kyu- B- (hg C Ty — /whw(z)dm> ,
0
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where Ko; - coefficient depending on the geometry of tire tread. For a smooth
tire K1 = 1, for a real tread Ky, < 1. Let us assume the height of tread elements
is hp. If the water film thickness hy < hp, then

|2 Awy
Ve  Awy + Awpg’
where: Vpr, — volume of water pressed out by a smooth tire, Ayy — total area
of protruding elements of the tread in the contact zone, Awp — total area of
hollowed elements of the tread in the contact zone (Awp = Agx — Awy).
Time iy, is very short. For example, for v = 5 m/s and w, = 0.05 m time
tw = 0.01 s. One can so assume that discharge of water in that time

(4.5) Ko =

(4.6) 0=V -k, B (ho Ly — /whw(m)dw) 2.
0

tw m'LU

Comparing (4.6) and (4.3) one can calculate the length of the water wedge.
In the paper of MOONEY and WoOD [4], hydraulic pressure between the tire
and pavement is examined similarly to the method applied for estimation of the
pressure in the slide bearing. So the pressure p,(z) in the water wedge can be
determined in the following manner:
(4.7) pu(e) = Koo Mo 1=y,

where: Koy — coeflicient describing texture of pavement and tire geometry, 1, —
coefficient of dynamic viscosity of water (n, ~ 1 kPa-s at temperature 20° C).
For the linear function describing variability of the water wedge thickness

(48) o) = 22 (o .20 - 2

one can derive the following formula for the length of the water wedge:

(4.9) Ty = Ky - ho - Vv,

where Ky, — coefficient taking into account the tire and the pavement parameters:
(4.10) Ky = %—\/_IfT\%

The formula for computing of critical tire speed on a thin water film has the
form ( NAVIN [5]):

(4.11) g = 0.056\/p + 3.33”;—3 +16.67 exp(9 — 3000k + 429hp),
0

where: p — inflation pressure, hp - tire tread height, hg — thickness of water film.
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If we assume, that at a speed equal to the critical speed, the length of water
wedge is equal to the length of the contact zone, i.e. Ty(y=ykr) = L, then:

L

(4.12) Ky=———.
ho * /Vkr

5. BOUNDARIES OF THE ADHESION AND SLIDE ZONES

If deformations of a tire occur in a linear area, then the circumferential stress
7, and lateral stress 7, are proportional to the deformations Az and Ay:

(5.1) Ty = Kx . ASL‘,
(5.2) Ty = Ky - Ay,

where K, K, — coefficient of circumferential and lateral stress referred to a
unitary area.

Total shearing stress is limited by the maximum adhesive forces. According
to the well known dependence between the coefficients g 1 py of static friction
in the longitudinal and the lateral directions, we have

2 2
(5.3) ( fo ) + <—H-‘f—) =1,
HzMAX HyMAX
As a result of this formula we obtain the following inequality satisfied in the
adhesion zone:

2 2
(5.4) J(#) +<—f—)) < palo).

Solving this inequality, one can calculate the length of the adhesion zone.

6. SHEARING FORCES IN THE CONTACT ZONE

Total shearing forces acting in the contact zone are the sum of the shearing
forces acting in the adhesion zone and the forces acting in the slip zone.

Shearing forces acting in the water wedge zone are negligibly small compared
to the forces acting in other zones. Elementary longitudinal force f4, acting on
area df) in the adhesion zone equals:

(6.1) faz =77 - dSQ,
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so that the total force Fy;:

L/2—zw
(62) Fap= / / To-dQ = / K, - Az(z)dQ
A L/2~zw—za
L/2—1xy
=K;-B- / Az(z)dz.
L/2—%w—2a

In a similar manner one can write the forces acting in the lateral direction:

(6.3) Fay =1y d,
L)2—zu
(6.4) Fuy = / / 7, dQ = / K, - Ay(z)dS
A L/2—%~za
L/2—%w
=Ky, -B- / Ay(z)dz.
L/2—%w—%q

Unitary shearing forces acting in the slip zone are equal:
(6.5) fse = p2(2) - pzmop - 42,

(6.6) fsy = p(z) - pymon - A2,

where, instead of static adhesion coefficients 3 and pj, the modified coefficients

tamop and pgyop are applied, resulting from the motion in the longitudinal and
lateral directions.

It was assumed, that the adhesive coefficients of friction p7 and pj fulfil the
following dependence:

s 2 s 2
(6.7) (——“IMSOD) + <———“ yM;”’) =1
Hy Hy

Additionally, the condition into account was taken:

,LI:S
(6.8) ZyMOD tanagp,

S
KzmoD
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where ap - the angle between the direction of total tangential force and the 0X
axis.

Solving the system of Egs. (6.7) — (6.8) one can compute the coeficients u2y,0p,
and py\op. Assuming that direction of the total tangential force activity com-
plies with the direction of relative motion of the tire and of pavement, angle ap
can be determined from the following formula:

t
(6.9) tanap = ana7
Sg
Finally:
Kz [y - Sz
(6.10) HgMOD = L ;

V#5)? - 52+ (u3)? - (tancr)?

Kz * py - tana
V()2 - 8%+ (43)? - (tana)?2

(6.11) ByMOD =

Components Fg; i Fgy of the total force Fs acting in the slip zone in the
direction z and y are equal:

L/2—zy—xq
(6.12) Fgyp = //Pz(m) " Bzmopd§2 = / p2(2) - tigmopdf
5 ~Lj2
L/2—zy—24
= pgmop - B - / p(z)dz,
~Ly2
L/2—2y—2a
613)  Fsy= [ [5.0) mpond®= [ p:(0) - mriopd®
5 ~Lj2
L[2—Zy~za
= tynmop * B pz(e)dz.
~L/2

Total tangential force Fyy acting in the contact zone

(6.14) Foy = \[F2 + F2,
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where:
(6'15) F, = Fpz + Fsy,
(6.16) Fy = Fay + Fg,.

The stabilizing moment:
(6.17) M, =My, + Mg,

where: M4, — component of moment acting in the adhesion zone, Mg, — compo-
nent of moment acting in the slip zone.

Moments M4, and Mg, are the results of tire deformation and of unsymmet-
ric distribution of lateral force with respect to the y axis.

Components My, and Mg, of the stabilizing moment can be calculated from
the following dependencies:

L/2—zy L/2~2
(6.18) My, = / B-1y-(x—Az)-dz + / B .1, - Ay-dzx,
L/2—zy—~x, L/2—zy—2q
L/2—zy—Ta
(6.19) Mg, = / p2(z) - finion - B (z — Az) - da
—L/2
L/2—zy~xq
+ pz(%) - pamop * B - Ay - dz.
~L/2

After substituting the formulae describing Az(z), Ay(z), 7z(z) and 7,(z) - i.e.
formulae (3.11), (3.14), (5.1) and (5.2), for pure cornering (s, = 0) we have:

L/2—xzy 1
(6.20) My, = B- Ky - tan(a) - / (§L~L-m—xw-x—x2> dx,
L/2~xy—xq
L/2—zy—2q
(6.21) Ms, = B- / p2(T) - py - x - da.

~L/2
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7. EXAMPLES

To verify the qualitative correctness of the tire characteristics obtained from
the proposed model, a few calculations have been done for the following data:
R=0.3m, hg =6mm, K, =1-10" N/m?, Ky =0.8- 107 N/m3, p = 0.15 MPa,
B = 0.15 m, kSK = 0.9, HeMAX = 1.0, HyMAX = 0.8, u; = 0.7, ,U,ZS/ = 0.6,
F, = 3 kN. For the above data, the length of the contact zone L = 0.15 m is
obtained.

25
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Fic. 4. Longitudinal force [kN] versus slip s, for thickness of the water film ho = 0,3,4 and
5 mm.

In Figs. 4 and 5 are shown the relations between the longitudinal force
Fy versus slip s; and between the lateral force Fyy and slip angle a for various
values of thickness of the water film. Shape of these characteristics is such as the
characteristics obtained in experimental investigations.
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FiG. 5. Lateral force [kN] versus slip angle a for thickness of the water film ho = 0, 3, 4 and
5 mm.
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The same conclusion can be formulated for the examples shown in Figs. 6
and 7, for the relation between longitudinal and lateral forces, and in the case of
combined slip (s; # 0 and « # 0).

0 0.2 04 0.6 08 s 1

Fic. 6. Longitudinal force [kN] versus slip for slip angle 0, 0.25, 0.5, 0.75 and 1.0 rad.

On the graphs of Fig. 8 is shown the relation between longitudinal and lateral
forces for various values of the slip angle. Dependence between the stabilization
moment and the slip angle is shown in Fig. 9.

0 02 04 06 08 o 1

Fia. 7. Lateral force [kN] versus slip angle [rad] for slip s, = 0, 0.25, 0.5, 0.75 and 1.0.

Results presented in Figs. 10 and 11 show that length of the water zone rapidly
grows for the water film of 3 mm thickness and simultaneously, the height of tread
elements has no significant influence on this parameter.
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FiG. 8. Lateral force [kN] versus longitudinal force [kN] for slip angle a = 2°, 4°, 6°, 8° and
108
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F1G. 9. Self-aligning moment [Nm] versus slip angle [deg] for pure cornering (s; = 0).
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Fi1G. 10. Length of the water zone [m] versus thickness of the water film [mm]| for velocity
ve = 10, 20 and 30 m/s.

[218]
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FiG. 11. Length of the water zone [m] versus height of the tread elements [mm] for velocity
vz = 5, 10, 20 and 30 m/s.

8. FINAL REMARKS

Correct calculations of the tangential forces which act between the tire and
pavement depend on the tire model. There are many excellent tire models known
in the literature. However, values of their parameters depend on the type of
applied tires and very frequently they are unknown. It means that values of these
parameters should be determined experimentally way using, as a rule, special
experimental measurement stands. Such stands are not always easily accessible.

All parameters necessary for the presented tire model can be obtained by
means of typical testing equipment. Simultaneously the tire model takes into
account the influence of water wedge and other effects important from the point
of view of safety.

The examples presented confirm the correctness of the estimated tire charac-
teristics and usefulness of the model in computer simulation of vehicles motion.
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