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The vertical track dynamic model is described in the paper as a periodic structure. It is
composed of rails modelled as Timoshenko or Bernoulli-Euler beams, sleepers (lumped masses)
and pads and ballast modelled as viscoelastic elements. Particular attention is paid to the
influence of pad characteristics on the dynamic stiffness of the track. One of the ideas of the
new pad generation is also presented in the paper. Some parameters of the pad are given.

1. INTRODUCTION

The conventional railway track is composed of two rails mounted on the
sleepers by means of pads. In this paper the case of free wave propagation
is investigated. In the system under consideration, a single rail is modelled as a
Timoshenko beam. The rails are coupled by means of periodically spaced sleepers
which are modelled as lumped bodies with one or two degrees of freedom, i.e.
vertical displacement and rotation. Dynamical analysis of the railway track as
a typical periodic system bases on Floquet’s theorem and makes it possible to
study the influence of the pad feature on the track dynamics.
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2. FORMULATION OF THE PROBLEM

The system under consideration consists of two parallel infinite subsystems
(rails), Fig. 1, which are coupled by means of equally spaced sleepers. Assuming
longitudinal symmetry of the track we model the rails as two Timoshenko beams
of the same parameters. The equations of motion of the Timoshenko beam resting
on a viscoelastic foundation, which is subjected to the load p(z,t), are taken in
the following form:

2
K£<§u—’— )— Aa—w— @3~qw+p(iﬂ,t)=0,

8z \ 0 P52 ~ Tt
(2.1)
(92 ow 62
E182+K(8 ) 8t2_0’

where: w = w(z,t) is the displacement, ¢ = ¢(z,t) is the rotation of a beam
cross-section due to the bending moment, both of them being functions of the
special variable z and time ¢. In Egs. (2.1) K = kG A denotes the shear stiffness,
EI is the flexural rigidity, pA is the beam mass per unit length, pI is the rotatory
inertia of a beam cross-section, ¢ and 7 denote the coeflicients of elasticity and
damping of the foundation, respectively. The periodicity of the railway track,
Fig. 1, results in the following boundary conditions for the functions w and ¢:

22)  winlo,t) = w(nle,?), (i, t) = plnlg, ),
(2.3) —EIZ—‘P(nl_,t) + EIZ—:(nl+, £ =0,
(2.4) K [ 220l 1) = plrl )| + K [Go0ls,) = plrlst)

—R(nl,t) =0,

where [ is the spacing of the sleepers, m is the support number (n €
{-00,...,—1,0,1,...,400}). Egs. (2.2) — (2.4) represent the continuity of the
displacement, rotation, bending moment and the equilibrium of shearing forces,
respectively, for the n-th periodic support. The sleeper-rail interaction force
R = R(nl,t) can be determined by means of the consideration concerning the
dynamics of sleepers.

The sleeper is modelled as a rigid body with two degrees of freedom (vertical
displacement and rotation) resting on a viscoelastic foundation, which is mounted
on the rails by means of the pads modelled as viscoelastic elements. The equations
of motion of the n-th sleeper read

(2.5) R = R(nl,t) = qp(w — u) +np (i—qf - %)
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Fi1G. 1. Model of one infinite subsystem.
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where u = u(nl,t) denotes the displacement of the n-th sleeper at the mounting
point, R is the force of the pad. The displacement u = u(nl,t) is described by
the following equation:

(2.6)

i du+ w=R

with the notation:

ms = psls | ¢=gals n=ngls

ls — sleeper length

15 — sleeper mass per unit length

gp - ballast elasticity coefficient per length
np - ballast damping coefficient per length
gp — pad elasticity coefficient

np — pad damping coefficient

For the steady-state motion with the frequency w, the interaction force R =
R(nL,7) determined for the n-th sleeper reads

(2.7)

where

R(nl,t) = (gp + inpw)[w(nl,t) — u(nl,1)],
R(nl,w) = A(w)w(nl,w),
(gp + iwnp)(~wms + g + iwn)

~w?ms + ¢+ qp +iw(np +n)’
R(nl,w) = (—mgsw? + niw + q)u.

Alw) =
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For the analysis which follows we introduce the non-dimensional quantities which
are given in the table below.
The non-dimensional form of the equations of motion, Egs. (2.1), reads

1 0 (oW o*w ow
2ax (ax ~#) = B ~NGr QW POGT) =0,
(2.8)
0% ow 0%
X " & ( "’) P =0
The boundary conditions given by Egs. (2.2) — (2.4) take now the following form:
(29) W(nL—vT) = W('n'L+)7-)7 ’(/)(TLL..,T) = ¢(nL+,T)a
% 31/1
1 [OW 1 /oW ~
2. (L ~ (22 - - =
(2.11) . (aX )nL—+a (ax zp)m R(nL,7) =0,
where ~ a
(2.12) R(n,L) = EOA(w).
The rail parameters are:
X =zao T = two W(X,7) =w/wo
¥ = ¢/(aowo) | V=w/wo V=uv/uv
=1/m0 Q=q/E | a=p/Kv]

ﬁ:p/Ev(z, K = kAG L =1/ao

no=+vEp GO=W W0=\/E_/#

=poao/E | vo =wo/ao

In the next part of the paper we find the solution of Eqgs. (2.8) with the
conditions (2.9), (2.10) and (2.11) in the case of free wave propagation.

3. TRAVELLING WAVE PROPAGATION IN A RAILWAY TRACK

The solutions in the case of free wave propagation (P(X,7) = 0) can be
written in the following form:
W(X,7) = Aw(X ) - exp[i(AX + Q71)],
(3.1)
P(X, 1) = Ay(X, A) - exp[i(AX + Q7))
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We assume that the functions A, = Au(X,A), Ay = Ay(X, ) describe dy-
namically admissible displacement fields. According to Floquet’s theorem we
suppose they are periodic functions, i.e. functions which are independent
of the choice of a cell of the periodic structure, A,(X + LX) = Ay(X,)),
Ay(X 4+ LX) = Ay = (X, ). Introduction of the relations (3.1) into Egs. (2.8),
in which we put P(X,7) = 0, yields the following set of equations:

éDA(DAAw — Ay) + Q%A — iNQA, — QAy =0,

(3.2)
1
D3 Ay + ~(Dadv - Ay) + %A, = 0.

The differential operator D4 reads

d
. = —_—
(3.3) Djy=Dy(X, ) = 1,)\+dX

The conditions for the functions A, = Aw(X,A), Ay(X, ), which follow
from the boundary conditions given by Egs. (2.10) and (2.11), read

(3.4) Ay[(n +1)L] = Ay(nL), Ayl(n+1)L] = Ay(nL),
(3.5) —DAy[(n+1)L] 4+ DaAy(nL) =0,
(3.6) (D% + BO2) Ay[(n + 1) L] — (D + B Ay(nL) + A(Q)Aw(nL) = 0.
The solution of Eqgs. (3.2) can be written in the form
4

4
(3.7) Ay = 2 Q€8 %, Ay = Z a,/,mea"‘x.
m=1

m=1

In Egs. (3.7) we have

a12 = —i(A F 51), aza = —i(A F s2),

(38)  s1=y/(-b—VE—1c))/2, s = \/(7—bs+ b2 — 4c,)/2,

by = —02(a + ) + &(Q +iNQ), ¢ = (Q+iNQ - Q%)(1 - af?).

Introduction of Egs. (3.7) into the boundary conditions given by Eqgs. (3.4) -
(3.6) yields A, and Ay. In the case of a beam described by the Bernoulli-Euler
beam theory, the displacement is given by the following expression:

(3.9) W(X,7) = Aw(&,\) expli(AnL + Q1))
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where

(3.10) Au(€,)) = [sin Sée*, 4+ sin S(L — €)](cos AL — cos SL)+
—[sinhS¢&e*r + sinhS(L — €)](cos AL — cos SL),

in the case when

X e (mL,noL), €=X-mL, ¢€(0,L), S%=./Q2-iNQ-Q.

‘Eq. (3.9) describes a travelling wave in periodic structure of the shape given by
function (3.10). The dispersion relation between frequency © and wave number
A is given by the following equation:

(3.11) f(A, Q) = cos® AL — cos AL [cos SL + coshSL

+A4,(5'2) (sinSL — sinhSL)| 4 cos SLcoshSL
+A4.(S'S§) (sinSLcoshSL —sinhSLcos SL) = 0.

In the general viscoelastic case the dispersion relation (3.11) is satisfied by a
complex wave number A = Ag 4+ 1A;, with the wave number Ag = Re()) and the
attenuation number A\; = Im(A). The solution given by Eq. (3.9) takes the form

(3.12) W(X,7) = Aw(&, A) - exp{—XinL + i[(AgnL + Q7)]},
with
(3.13) Ap(&0) = Au(X, ) exp(i€)).

In a purely elastic case (n = 0, np = 0,np = 0, A(Q) = const) one can
distinguish two characteristic cases. For A; = 0, Ag # 0, travelling waves given
by Eq. (3.12) propagate in the whole infinite structure, which corresponds to the
so-called ‘passing bands’ in the (£, A)-plane, (BRILLOUIN [2]). For \; # 0, the
waves cannot propagate and their attenuation in space is determined by the term
exp(—ArnL), which corresponds to ‘stopping bands’ in the (Q, A)-plane.

Numerical calculations have been carried out for the Bernoulli-Euler beam
(a =0, 8=0) (BOGACZ et al. [1]), and for the system parameters presented in
Table 1. The first Brillouin zone (or propagation zone), (BRILLOUIN [2]), (MEAD
[5]) for I = 0.6 m reads Ag € (—n/l,7/l) = (—5.24 rad/m, 5.24 rad/m).

The case shown in Fig. 2 illustrates the displacement of rails and sleepers for

given frequencies and time 0, §T’ ZIT’ and §T’ respectively.
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Table 1. System parameters, the Bernoulli-Euler beam (o = 0, 8 = 0).

E=2110" ﬂz
m

7,:4104%
m
gp = 2.6 108 N
m

gp = 1.525 108 ;11\12

I =3.052 107°m*
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_ 4
e =6.3 10 o
Ng
— 4

kg
m
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u=60.31

kg
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V=0 m/s, 0=490 Hz , F=1 N
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F1G. 2. Displacement of rails and sleepers for given frequency and time 0, =T and =T.

8

The stopping and passing bands in the frequency ranges are presented in Table 2.

Table 2. Configuration of the bands [Hz], (o = 0,3 = 0).

Passing bands

(156.2, 263.9)

(481.4, 1422.4)

(1547.1, 5690.0)

Stopping bands

(0, 156.2)

(263.9, 481.4)

1422.4, 1547.1)

For a frequency equal to 277.0 Hz, which is an in-phase eigenfrequency of the
system pad-sleeper-ballast, the contrast force in a pad tends to infinity and the
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flexible supports become rigid ones what results in a decoupling of the adjacent
cells of the periodic system (Table 3).

Table 3. Selected system of eigenfrequencies and corresponding eigenforms, (@ = 0, 8 = 0).

Frequency [Hz] | Phase relation of | Phase relation of
a sleeper and rail points above
a rail point above it | adjacent sleepers

156.2(154.4) in-phase in-phase

263.9(271.7) in-phase out-of-phase

481.4(487.0) out-of-phase in-phase
1547.1(1547.3) out-of-phase out-of-phase

In the frequency range (277.0, 481.4) Hz we have the so-called ‘propagating and
attenuating waves’. The frequency 1422.4 Hz is the eigenfrequency of a simply
supported beam of the same length and the same other parameters as the pe-
riodic cell. The corresponding eigenform is the so-called ‘pinned-pinned’ mode,
(KRzYZYKSKI [4]), with nodes at the periodic supports. The dispersion relations
(3.11) calculated for the elastic and viscoelastic case are given in the above quoted

paper. The dynamic stiffness for the case of small and large damping (dashed
line) is illustrated in Fig. 3.

E

damping .

»
-3

Dynamic stiffness N/m 10*
3 -

Frequency H:z

F1c. 3. Dynamic stiffness for almost elastic and viscoelastic case (dashed line).

As we can see, very high growth of dynamic stiffness may occur in relatively
small range of frequency.

The influence of the pad elasticity g, on the dynamic stiffness of the rail-
sleeper-ballast system is illustrated in Fig. 4. The curve No. 1 represents the
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system described by parameters given in Table 1. The curve No. 2 is obtained
for two times greater value of the nominal g, i.e. (g, = 5.2-108 N/m). The curve
No. 3 represents value of g, = 1.04 - 10° N/m and the curve No. 4 corresponds
to gp = 2.08 - 10° N/m.
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Fic. 4. Dynamic stiffness versus frequency for chosen values of pad elasticity.

As follows from the curves presented on the graphs, the dynamic stiffness
versus parameter of pad elasticity has a progressive characteristic. Also the
frequency and its range is growing with pad stiffness.

The results of the above investigations show that the choice of viscoelas-
tic parameters of the pad can be very important for proper wheel/rail system
interaction. The characteristic of the rail/sleeper interaction depends on such
parameters as: temperature, frequency, humidity, time in service and other.

The dependence of the number of cycles of loading in the case of a new
generation of the pad used by Polish Railway and PANDROL company and
tested on the set shown in Fig. 5, is illustrated in Fig. 6.

We can state that the static displacement is systematically growing but the
change of stiffness is negligible. The influence of temperature on the pad dynamic
characteristics for two kinds of pads at temperature +20° C and —25° C is shown
in Fig. 7. Dashed line shows the UIC-864-5 standard edited by Kamiriski, and
the continuous line describes this dependence for the new shape of pad.

One can notice that the stiffness of the UIC pad is much higher than the new
one and has greater influence on the temperature lowering, while the disadvantage
of the new pad is the increase in deflection difference at load limits. The change
of characteristics for the case of the standard German pad (type Zw 700) at the
temperature between +50° C and —30° C is rather large, what is shown in Fig. 8.
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F1G. 5. The pad of new generation (PKW60K1) and shema of the stand for investigation of
pads under cycling loading.
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Fi1G. 6. The force versus displacement for loops at frequency 10 Hz for 1°*, 200000, 600000,
and 1000000 cycles, respectively.
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F1G. 7. Force-displacement relations for two kinds of pads, dashed line denotes UIC. Standard,
continuous line — new pad.
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FiG. 8. The force-displacement characteristics for the pad ZW 700 at the temperature -30° C,
—20° C, —10° C, 0° C and +50° C, respectively.
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4. CONCLUSIONS

The method applied in the paper consists in the direct application of Floquet’s
theorem to differential equations of motion of the beam. Arranging the periodic
boundary conditions for the whole infinite system makes it possible to reduce the
analysis to one cell of the periodic structure. There are two forms of travelling
wave propagation in the case of an unloaded periodic structure.

As follows from the investigations, the very high increase in the dynamic
stiffness of the pad occurs in the case of relatively stiff pads. This is the reason
why the initiation of the corrugation takes place in the areas located over the
sleepers. We hope that further optimisation of the pad features will enable better
conditions of wheel/rail interaction.

The analysis of dynamic pad stiffness, which takes into account the influence
of ballast and subgrade dynamics proposed in this paper, has been carried out
for a relatively simple track model. This approach can be easily extended and
applied to more complex models which will be the sub ject of the author’s further
publications.
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