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The present paper concerns the application of the Charitonov theorem to an analysis
of stability of parametrically excited mechanical or physical systems with intervally changing
parameters of systems. In such systems the problems of stable solutions of the equation of
motion also arise. In some methods the stability analysis of the parametrically excited systems
with intervally changing parameters transformes into the analysis of stability of some n-th
degree interval polynomials. On the basis of ChT we can check that the solution is stable in
the whole interval of changing parameters, without constructing of the boundary of instability
regions. Examples of application of the ChT to the analysis of stability of some special systems
in steady states of the periodic parametric resonance are considered.

1. INTRODUCTION

The present paper concerns the application of the Charitonov theorem (ChT)
to an analysis of stability of parametrically excited mechanical or physical systems
with intervally changing parameters of systems or surroudings (e.g. physical or
geometrical parameters). Examples of application of the ChT to the analysis
of stability of some special systems in steady states of the periodic parametric
resonance are considered.

Parametric excitation of a physical or mechanical resonance system is a self-
excitation caused by a periodic variation of some parameters of the system. These
systems (parametric systems) are described by equations with periodically chang-
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ing coefficients. In many problems the motion of these systems is described by
Mathieu-Hill equation. In papers [1 - 5], the brief history of parametric phe-
nomena is given. In recent years many new applications of Mathieu equation
have appeared [6, 7], FORYS [8 — 10]. When proper relations between external
excitation frequency and natural frequencies of the system hold, the instability
regions (unstable solution regions) can occur.

Resonances in mechanical systems are usually undesirable phenomena — es-
pecially the parametric resonance is very dangerous. Hence our aim is to avoid
the unstable solutions. In some methods [15, 16}, the stability analysis of the
systems in the above resonance states transforms to the analysis of stability of
some n-th degree polynomials.

More often in physical and mechanical applications, the parameters of para-
metrically excited systems are changing in some intervals. In such systems the
problems of stable solutions of the equation of motion also arise. The meth-
ods of obtaining the instability regions are approximative and time-consuming,
especially in the cases of intervally changing parameters.

So the main problem of the paper can be formulated as follows: changing
some parameters of the systems in periodic parametric resonance state, we re-
quire the system to be stable in the whole interval of changing parameters. In
these cases one of the methods of verifying the stability of solutions in the whole
interval of changing parameters is application of ChT. In some methods the
stability analysis of the parametrically excited systems with intervally changing
parameters transformses into the analysis of stability of some n-th degree interval
polynomials. On the basis of ChT we can check that the solution is stable in the
whole interval of changing parameters, without constructing of the boundary of
instability regions.

2. STABILITY OF INTERVAL POLYNOMIALS. CHARITONOV THEOREM
First of all we consider the real polynomial of n-th degree

21) f2)=2"4a12" 1+ .. + anp, a; € R, 1=1,..,n.

We say that such a polynomial is stable if and only if all its roots have negative
real parts. In paper [11] some methods are proposed for checking stability of
the polynomials. The most useful ones are necessary and sufficient conditions
such as the Michajlov method which is a graphical method for polynomials with
real coeflicients or Routh criterion which is based on the Sturm method. As a
generalization of the above theorems for polynomials whose coefficients are not
necessarily real, we should recall the Schur criterion. Finally let us recall the
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Routh-Hurwitz theorem for polynomials with real coefficients. In this method
of checking stability we have to verify whether all the Hurwitz determinants are
positive. In [12] we find a generalization of the Routh method for the case when
there exists a coefficient of polynomial in the Sturm sequence which is equal to
zero. Additionally, in [12] we find a generalization of the Routh-Hurwitz theorem
for a case when some of the Hurwitz determinants are equal to zero.

Next we consider the family of n-th degree polynomials — called the interval
polynomial

22) F={f)=2"+a"""+..+ay, a; € [y, B, a; < B,
i=1,..,n}

We say that an interval polynomial is stable if all the polynomials of the family
(2.2) are stable. The elegant and useful method of checking stability of inter-
val polynomials was published by CHARITONOV in [13] in 1978. Charitonov’s
theorem gives a necessary and sufficient condition for stability of the interval
polynomial, which requires checking only four polynomials of the family (2.2). If
these four polynomials are stable, we are sure that the whole family of polynomi-
als (2.2) is stable. The coefficients of four polynomials f1(z), f2(2), f3(2), fa(2)
are given by the following relations.

For fi(z):
a _ ) ap_gx for k —odd,
n=2k =\ B,_ok for k — even,
(2.3)
_ Ap_2k—1 for k—Odd,
On—2k-1 = Bn—ok—1 for k —even,
For fo(z):
) oap—gr for k —even,
Gn=2k =3 B o for k—odd,
_} ap_gk—1 for k —even,
=21 = By_gk_1 for k—odd.
For f3(z):
_ ) ap_g9r for k —even,
=2k =\ B, ok for k—odd,
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a _ ) On-2k—1 for k — odd,
n=2k-1 Bn—ok—1 for k — even,

For fa(z):

a _ ] ook for k — odd,
n—2k Bn_or for k — even,

_— ) ap—gk—1 for k — even,
n=2k-1 Br_ok—1 for k—odd.

For example, on the basis of Egs. (2.2) and (2.3), for a 4-th degree interval
polynomial

(2.4) Fy={f(z)= 24 a12d +ax2? +azz + aq, a; € [ay, Bi,
a; < Bi, =1, -~-a4}7

we have to check stability of the following polynomials (cf. [13]):

f1(z) = 2 + 01 2% + a92® + Baz + By,

fa(2) = 21+ B123 + Boz® + gz + oy,
(2.5)
f3(z) = 24 + 012% + B22® + Bsz + ay,

fa(z) = 24+ B12° + 2® + a3z + By

For the third order interval polynomial

(2.6) Fy ={f(2) = 2* + a12% + agz + a3, a; € [y, Bi], o < B,

i=1,.3}
we have to check the stability of the following four polynomials:

fi(z) = 2%+ @12? + Boz + B3,

fQ(Z) = 23 + ,B1Z2 + o2z + a3,

f3(z) = 25+ B12% + faz + a3,

fi(z) = 224+ o2 + apz + Bs.
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3. PARAMETRICALLY EXCITED SYSTEMS — EQUATIONS OF MOTION

The equation of motion of undamped parametrically excited mechanical sys-
tems (e.g. elastic elements) has the following form (cf. [9):

2
(31) M(h) [%t—“’} + (0] + B(6)Bsfw] =0,
where h is the vector of parameters (physical parameters, e.g. stiffness, or geo-
metrical cross-sectional parameters such as area of the cross-section of the rods or
thickness of the plate), M, S, P - are the inertia, elasticity and stability linear
operators. The form of these operators depends on the kinds of mechanical ele-
ments to be considered (beams, plates etc.), w(z,t) is a transversal displacement
of a vibrating system, B(t) is a periodic function of .
We look for an approximate solution of the above problem in the form

N
(3.2) w = ka(t)(pk(m'ayaz)a

k=1

where fi(t) are unknown functions of time and & are eigenfunctions of the eigen-
value problem

(3.3) [S(h) - w’M(h)| 2® = 0.

Inserting (3.2) to (3.1) and applying Galerkin’s method, one obtains the system
of ordinary differential equations of the second order in the matrix form (cf. [1])
d?

(3.4) M(h)—

+[S(h) + (t)Ps] f = 0,

where M, S, Py are the inertia, elasticity and parametric excitation matrices
which depend on h, f = col[f1(¢), f2(t)......fa(t)] is the column matrix of the
generalized coordinates. The elements of matrices are

My, = / @; M (h)[P]dr = (&;, M(h)[d}]) = JI),
D
(3.5) Sik, = / @;S(h)[®]dr = (8;,S(h)[&;]) = JIP),
D

P = [ 9Pyldilir = (@, Py(h)[eg]) = I
D
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Introducing the following matrices, cf. FORYS, BoLoTIN: B(h) = S~1Pg,
C(h) = S7!M, the Eq. (3.4) assumes the form

d*f

(3.6) =5

+ C(h)YE + B(t)B(R)]f = 0.

For example for parametrically excited beams, the inertia, elasticity and stability
operators have the form

82 . 02
(3.7) S(h) = 5 [ oh aﬁ}
62
P8 = g7

the function of state ¢ satisfies the equation of state (3.2) given below:
(3.8) [Kah?(2)9"(2)]" — ph(z)w®(z) =0,

where h(z) is a geometrical parameter, the area of the cross-section, K,
EA,, E is Young’s modulus, A, is a constant connected with the geometry of
cross-sections and depending on a(a = 1,2,3), and p is the mass density.

When C~! = diag[w?] is the diagonal matrix, we can describe the paramet-
rically excited systems with damping by equations

d2
(3.9) Ték +2e(h) 7

df

j=1

N
+wk( )[fk+ﬁ(t)zbk]fj} :07 k:1>27'-"N7

where we introduce the damping matrix E and where ex = ¢4 are the damping
matrix elements. The Egs. (3.9) form a set of coupled linear equations with
variable coefficients.

Equations (3.6) and (3.9) are sets of coupled Mathieu equations for multiple-
degree of freedom systems, which have been studied by BOLOTIN [1], CARTMEL
[2], NaYFEH and MOOK [3], Hsu [14] and TAKAHASHI [15, 16].

When the matrix B(h) = S™!Pj is additionally diagonal, the analized sys-
tems are described by a non-coupled set of Mathieu-Hill equations (cf. [9])

d2
o L G+ AR S =0, k=12.0m,

where in Egs. (3.9) and (3.10) the quantities:

(3.10)
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_ (@ Sm)e]) I L 1
(3.11) wi = (@, M(0)[Br]) J?k) and B = o

(@, S()[@e) _ S
@ Palee]) P

are eigenvalues of proper eigenvalue problems; the functionals Jl(k), ék), J:,Ek)
were introduced in (3.5). The quantities €, wy, by depend on h.

In many physical problems, the systems are described by one of Mathieu-Hill
equations like (3.10) (cf. [7, 16]). The Equations (3.6), (3.9), (3.10) are the
examples of equations with periodically changing coefficients.

3.1. Floquet theorem. Solutions of equations of motion and stability

Next we determine the behavior of systems governed by linear ordinary dif-
ferential equations with periodic coefficients ([1 — 3, 15]). The Floquet theory
may be applied to characterizing the functional behavior of such systems, [17].
On the basis of the analysis of Eq. (3.6), the solution takes the form, [1, 2, 16]:

(3.12) fi(t) = eTMPrg (1),

where g () are periodic vector functions with period T and p; are characteristic
roots. Now we define the characteristic exponent

(3.13) H = %lnp.

Let us take (t) = By cos 0t in Eq. (3.6). We look for the solution of Eq. (3.6) in
the form

oo
(3.14) f(t) = et %bo + Z (ay sin kOt + by cos kbt) | ,
k=1,2,3...

where by, ag, by are vectors which do not depend on the time variable.
Inserting (3.14) into Eq. (3.6) and applying the harmonic balance method we
obtain the system of homogeneous algebraic equations

([No] - H[N;] — H*[N2])X =0,

or in a short form
(3.15) GX =0,
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where [No] , [N1], [Ny] are coefficient matrices of the zero (constant), first and
second powers of H, respectively, and X is the column vector consisting of by,
ak, bk.

To find any solution to this system, not including the trivial one, the deter-
minant of the coefficient matrix must be equal to zero. Thus the equation for
determining the characteristic exponent is obtained as follows (cf. [14, 15]):

(3.16) detG = det([Ny] — H[N;] — H?[Ny]) = 0.

To obtain the value H in Eq. (3.16), one can make use of the method which
determines the eigenvalue of the special double-size matrix (cf. [15]).

When the analysed system is described by Eq. (3.6) the algebraic Eq. (3.15)
takes the form (one parametr h)

(H2C(h) + E)bg + ;B(h)b; =0,
(3.17) (H? - k*6?)C(h)ay + 2HKOC(h)by + Eay, + 5t%B(h)(ak_1 + agy1) =0,

1
(H? - k%6%)C(h)by + 2HEOIC(h)ay, + Eby, + BizB(h)(br-1 + be11) =0,
a=0, k=123, ..

The non-zero solution of the set of algebraic Egs. (3.17) exists if the following
determinant is equal to zero (cf. [1]):

(H? - 62)C(h) + E %ﬁtB(h) 2HOC(h)
(3.18) BiB(h) H?C(h) + E 0
—2HOC(h) 0 (H - 62)C(h) + E

If eigenvalues H; are distinct, the solution is stable if all roots have non-
positive real parts.When parameter k& which characterises the parametric systems
takes values in the interval

h €< hy,hy >

then Eq. (3.18) has the form of the interval polynomial (2.2). The analysis of
stability of Eq. (3.6) is reduced to the analysis of stability of interval polynomials
(3.18), and ChT plays an important role (cf. Sec. 2).

Our main problem is the analysis of the paramertrically excited system with
intervally changing parameters. We require stable solutions of the equation of
motion of parametrically excited system in the whole interval of variable param-
eters.
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4. EXAMPLES

Now we consider the one-dimensional parametrically excited systems, (Fig. 1)
- the elastic or viscoelastic rods with variable cross-section and with different
boundary conditions (cf. [9]).

b)
ML P

_gT
Nl

777777

Fic. 1. Parametrically excited systems (beams) with different boundary conditions: a) simple
supported beam, b) fixed-simple supported beam.

Equation of motion of a non-prismatic rod excited by force 8(¢t) = P(t) which
is longitudinal and periodically varying in time, has the form

o2 00w o Pw & w 0w
Ey) K,h 82+ 7Ky h 92201 + ph(z )8t2 +ﬂ()a$2_0,

where w(z,t) is a transverse displacement of the cross-section z at time ¢, h(z)
is cross-sectional area, (cf. (15)), p mass density, 7 = n/E, n is a coefficient of
internal damping.

For example we consider two different cases (Fig. 1): simply supported beam
(Fig. 1a) and partly fixed, partly simply supported beam (Fig. 1b). The boundary
conditions are as follows:

(4.1)

o Pw o OPw
w(0,t) = 0, [Kah 5o T TKah® 5 28t] (0,t) = 0,
(4.2)
o Pw o Ow
w(l,t) =0, lKah 5oz + TKah® 5 26t] (1,t) =0,
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and
w(0,6) = 92(0,0) =0,
(4.3) ””
0‘62 TK h® —— Fw It
w(l,t) = 0, | Kah® S + TKah® 2 | (1) =

We look for approximate solutions of the above problems in the form of a series
of eigenfunctions of natural vibrations of prismatic beams (cf. (3.2) and (3.8)).
For the beam in Fig. la, the eigenfunction @; has the form:

(4.4) $; = sininz/l.
For the beam in Fig. 1b, the eigenfunction @; has the form:
(4.5) &; = cos~y;(shy;z/l — siny;z/l) — sin-y;(chy;z/l — cosy;z /1),
A 11 = 3.9266.

After discretization (Galerkin’s method) and some rearrangement we get the sys-
tems (3.4) of ordinary differential equations with the following matrix elements:

l

(46) My =p [ h@)B@()ds,  Sa= [1()8@)F()ds,
0

Pﬂik = /@;'(x)@k(a:)dm
0

Now we introduce some parameters @, % describing the rod’s shape, (Fig. 2).
For the case such as that in Fig. 1a we assume that the side a(@, %, z) of quadratic
section of the rod changes as a quadratic function of z (Fig. 2a) and has the form

2 =z
(4.7) a(@,®,z) = {4~ <£2 - —l—> + 1} = ap(R, ),

where
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a)

ey

- )

Y yAAIA Y - -

N T e
. Wix, t)

F1G. 2. The shapes and geometrical parameters of the beams.

For the case shown in Fig. 1b we assume that the side of quadratic section of
the rod changes as a linear function of z (Fig. 2b):

(4.8) o(@%z) =T (1 - Eif-) =GR, 7),

where

—, a(0)=a, a(l)= B, E¢ (=00, 1].
So we obtain the area of cross-section and cross-sectional moment of inertia
(4.9) h(z) = [@p(R,2)?, I =1/12[a0(%,z)]*.

Inserting these formulas to (4.6) we get the system of ordinary equations of
motion in the form

!
(4.10) > [fMik +7fSik + (Sik + 5(t)Pz‘k)f] =0,

1=1

where

l
My = plal? [ lo(R,2)0:(z)0(a)dr,
0
l
(4.11) alt )1 (2) ¥} (z)dz,
e e

Poik = / ®)(2)0x(@)da
0
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The elements of matrix (4.11) for one degree of freedom and for Case I (Fig. 1a,
Fig. 2a ) have the form

Ea? 72
(4.12) M =p@lfu(s),  S=-5fs(x), P=-,
where
far = 0.3910%2 — 0.8693% + 0.500,
(4.13)

fs = 2.701%* — 11.64%> + 19.01%? — 14.12F + 4.058.

The elements of matrix (4.11) for one degree of freedom and for Case II (Fig. 1b,
Fig. 2b) have the form

Eat 5.7518
(4.14) M = pa®l (k) S= *leS("C), P = -
where
far = 0.174782 — 0.5680% + 0.500,
(4.15)
fs = 1.253%* — 7.153%> + 15.94%% — 17.06% + 9.89.

4.1. Dynamic stability

For one degree of freedom, the system of Eq. (4.10) is reduced to one equation
in the form

(4.16) f+2ef + (W +B(t)e)f =0,
where (cf. (3.11) and (4.6))

l
B 0/ (o'

S Jo
W= == = —, 25=7'w2,
M { Ji
p/[w]2@2dw
(4.17) l°
/@dwdm
P 0 _J3
¢ = M TN



CHARITONOV THEOREM AND STABILITY... 111

Substituting in (4.16) B(t) = P(t) = Py + P, cos 0t, after some rearrangement
(cf. [8]) we have
(4.18) F+2ef + 02%1 = 2ucosbt) f =0,

where we define the quantity

Bo

(4.19) 20h) = w1+ fob(h) = wlh) 1 - 250,

and the excitation parameter u

___ Bib(h) _ Bt
2(1+ Bob(h))  2(Ber(h) — Bo)

connected with constant part Sy and amplitude f§; of the oscillating part of ex-
ternal parametric excitation §(t), where

c P, 1 _{2_ S

(4'21) b(h') = ;2‘ = -57 b(h') = “1/5cr, Ber = “‘a = _J3 = —I—DE.

(4.20) u(h) =

We can analyse the stability of Eq. (4.18) in the (6/2/42, u) space. The
most popular and very effective method of determining the instability region
is Bolotin’s method (cf. {1]). This method is valid only for 4 <« 1 - it is a
disadvantage of the method. The instability regions in the (8/2/42, 1) space are
illustrated in Fig. 3. The first most important instability region is illustrated in
Fig. 4.

Instability regions

”' t
, = /j
z(ﬁcr LO)

F1G. 3. The instability regions in the (/2/12, u) space.
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Now for B(t) = P(t) = P;cos 6t we transform the equation of motion (4.18)
into classical form of the Mathieu equation

4 d?u _
(4.22) ) + (p — 2qcos 22)u = 0,
where . 02
"
g
| S 1
] |
/
46Q2u")
|
] \
| i .
] |
| §
! t
7 2p* _ H

F1G. 4. The first most important instability region.

1
g

Fundamentally
unstable region

\ Fundamentally
‘\

stable region

)
g=0,p<0/ K / 9=0,p>0
olic W

Unstable hyperb Stable circle functions
functions

pP=-2q

Fic. 5. Approximate graph of stability of Mathieu equation — qualitative consideration,
(cf. [17)).
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Now we analyse the stability of Eq. (4.22) in the (p, ¢) space. There are many
methods of analysis of stability of Eq. (4.22) (e.g. the method of small parameter,
method of multiple scales etc.). The determination of the boundary between the
stable and unstable solution it is a difficult problem — we can do it on the basis of
approximate methods. In Fig. 5 we illustrate the approximate graph of stability
of the Mathieu equation obtained on the basis of qualitative consideration. In
Fig. 6 we illustrate accurate graph of the boundary of instability regions obtained
on the basis of the small parameter method valid for ¢ < 1.

When the parameter of the systems changes is some interval, the values of p
and ¢ also change in intervals and this influences the instability region.

On the basis of the Floguet theory we look for the approximate solutions of
Eq. (4.18) or (4.22) in the form

k
1
HOETE. 550 + E (ak sin kOt + by, cos kot) | |
k=13,5...

and we determine the stability point by point for different values of parameters.

Unstable region

=2 -~
%/

Unstable region 4}

Unstable region

) ‘ i L I
-2 0 Z 4 [y 8 ) 2
///\ \ A
-2

Fic. 6. Precise graph of the boundary of instability regions of Mathieu equation — small
parameter method, (cf. [17]).

If we look for stable solutions of Eq. (4.18) or (4.22), we may also look for the
conditions under which the algebraic equation like (3.17) (the proper polynomial
for H) has no roots with positive real parts.
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When the parameter h which characterises the parametric systems changes
in the interval, e.g.
h €< hy,hy >,

the polynomial of H has the form of the interval polynomial (2.2). The analysis of
stability of (4.18) or (4.22) reduced to the analysis of stability of proper interval
polynomials, and ChT plays an important role.

Because our infinite determinants (3.18) belong to the class of convergent
determinants, the so-called normal determinants, we limit ourselves to a finite
sum in (3.14). Applying the procedure of Sec. 3.1 to the analysis of stability of
the system described by Eq. (4.18), we have to find (for £ = 1) the solution of
the following polynomial of 6-th degree:

(4.24) H® + ay(h)H* + ay(h)H? + as(h) = 0.

Changing the parameter h (e.g. geometrical parameters @, 8 of the shape of the
beam or parameters of external longitudinal force £y, ;) in some interval, we
have an interval polynomial of 3-rd degree to analyse the stability

(4.25) Fs={f(z) = 22+ a122 + asz + as, where H?> =2z ;€ [evi, B,
(673 S ﬂi, 1= 1, 3}

When four polynomials (2.7) are stable, the parametrically excited system
(4.18) or (4.22) is stable in the whole interval of variation of parameter h. Because
H? = 2, one concludes that if all roots of (4.25) are real, negative and different,
the sixth order polynomial (4.24) has no roots with positive real parts. So we
must check an interval polynomial of 3-rd degree to analyse the stability. So on
the basis of ChT we must check the stability of four polynomials of the form
(2.7).

fi(z) = 22 + a12% + Boz + s,

(4.26)

4.2. Numerical results and conclusions

In our first numerical example the analysed parametrically excited beams are
prismatic and elastic. The interval parameter equals the amplitude of oscillating
part of the external excitation h = f;, and its values change in the interval
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h €< Btl,ﬁtz >, Btl < Bf. The constat part of external excitation equals zero,
Bo = 0. Changing the parameter h = f; of the beam in periodic parametric
resonance state in interval < S}, 57 >, we require the stable solutions, in the
whole interval of the changing parameters. Under proper selection of the interval
the solutions are stable in the whole interval of the changing parameters.

The methods of checking that the solutions are stable in the whole interval of
changing parameters are based on application of ChT. Repeating the procedure
of Sec. 3.1 to analyse the stability of beams, we analyse the stability of the
polynomial of 6-th degree with respect to the characteristic exponent H (cf.
(3.13)). In our example the determinant (3.18) takes the following form:

H? +w2, 0, Bic
(4.27) detG = 0 H? + w? - 9? —2H¢ =0,
Bic/2 2HO H? +w? - 62

or in the form of the 3-rd degree interval polynomial (4.25), where
a1 = 3w® +20%, ag = 2kw? + k% + 40%w® — B2d, a3 = k*w? — BEdk,
(4.28)
d=c*/2, kE=w?-6%

125:
.
t 15;:‘ -
5 "
1.06+ -
:J -
0.955 ™
a.as—i .
] .
O T e 5 a3 sae s H

F1G. 7. Numerical results: stable (O0) and unstable (®) points — characteristic exponent method.
Instability regions.
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Because H2 = 2, one concludes that if all roots of interval polynomial (4.25)
are real, negative and different, the sixth order polynomial (4.25) has no roots
with positive real parts. So we must check the interval polynomial of 3-rd degree
(4.28) to analyse the stability. On the basis of ChT we must check the stability
of four polynomials of the form (2.7).

The numerical results are illustrated in the Fig. 7. In the (6/2/£2, u) space
we illustrate the stable (marked by O) points and unstable points (marked by
W) checked on the basis of the stability analysis of the polynomial (4.25) with
coefficients (4.28). We can draw the boundary of the instability region. The main
problem of the paper is changing the parameter B;(u) of the system, so that the
system is stable in the whole interval of the changing parameters.

We can choose one of the stable points e.g. point 1, and verify how the ChT
works. When we choose the interval of changing SB;(u) so that the stable point
2 is the second end of the interval, the four polynomials (2.7) are stable (Fig. 8,
Table 1, Table 2). If the end of the interval of changing of B;(u) is e.g. point 3
or 4, at least one of polynomials (2.7) is unstable (Fig. 8, Table 1, Table 2).

The main result of our considerations is that on the basis of ChT we can
check that the solution of parametrically excited system (beam) is stable in the
whole interval of changing parameters without construction of the boundary of
instability regions. We can change the geometrical parameters of the shape, e.g.
o, R, in any interval so that the solution is stable. On the basis of ChT we can
check that the solution of the parametrically excited system (beam) is stable in
the whole interval of changing of parameters of shape, without construction of
the boundary of instability regions.
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FiG. 8. Stable and unstable intervals of changing of parameters 8, verified by ChT. Stability
of four polynomials.
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Table 1.
Interval a as as O/2w, Polynomials
(4.26)
I ar =5 s =4.57-10° | a3z =2.63-10" | 0.8, f1(z) - stable

=1.79-10° | B2 =4.65-10° | B3 =2.92-10" | 0.05 0.3 | f2(2) - stable
f3(z) — stable
fa(z) — stable

11 a1 =5 a2 =4.57-10° | a3 =2.63-10"% | 0.8 f1(2) ~ unstable
=1.79-10° | B2 =4.49-10° | B3 =3.16-10" | 0.05 —0.4 | fa(2) — stable
f3(z) — stable
fa(z) — stable
111 a1 =B ag =5.47-10° | az = 3.84-10*® | 0.85, f1(z) - stable

1.94-10° B2 =5.53-10° | B3 =4.01-10"® | 0.01 —0.25 | f2(2) - stable
fa(z) — stable
fa(z) — stable

v ar =B g =5.44-10° | a3 =3.84-10" | 0.85, fi(z) - stable
1.94-10° B2 =5.53-10° | B3 =4.20-10" | 0.01 —0.30 | f2(z) - stable

f3(z) — stable

fa(z) — unstable

\Y% o) = az =6.54-10° | a3 =5.41-10" | 0.90 f1(2) - stable
2.09 - 10° B2 =6.58-10° | Bz =5.50-10*% | 0.05 — 0.15 | fa(2) — stable
B = fa(z) — stable
2.10 - 10° fa(z) — stable

VII a; = @y =7.75-10° | a3 =7.38-10*° | 0.95 f1(2) - ustable
2.25 - 10° B2 =7.80-10° | B3 =7.67-10"® | 0.05 —0.25 | fa(z) — ustable
B = fa(z) — ustable
2.10 - 10° fa(2) - stable
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