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In the present paper, the dynamic interaction between a bogie of a modern railway passenger
car and a track is considered with the aid of a discrete-continuous mechanical model. This
model enables us to investigate the bending-torsional-axial vibrations of the wheelsets coupled
with the vertical and lateral vibrations of the track through the wheel-rail contact forces.
The numerical results are obtained in the form of natural frequencies, eigenfunctions and
frequency response functions for the linearized bogie-track system as well as in the form of
time histories and corresponding amplitude spectra of forced vibrations obtained by means of
computer simulation performed for the non-linear system. In the computational examples for
the bogie-track interaction, the influence of static and dynamic properties of several kinds of
the track on the system dynamic response is studied.

Keywords: railway bogie-track system, discrete-continuous mechanical model, coupled verti-
cal-longitudinal-lateral-torsional vibrations, numerical simulation.

1. INTRODUCTION

Dynamic investigations of the running gears of modern railway vehicles have
been performed for many years by many authors, [1 - 11]. Most of them fo-
cused the research on the low frequency range not exceeding 0-30 Hz, in order
to study the stability of motion of the railway vehicles and their travel comfort
properties, e.g. [1, 2, 6, 9]. The fast development of modern railway vehicles and
increasing travelling speeds are associated with the phenomena of early wheel
polygonalization and corrugation of rails, generation of the so-called “grumbling”
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noise of frequency ca. 100 Hz, as well as of frequently occurring fatigue damages
of wheelsets and car suspension elements. These detrimental effects are observed
not only in the case of very fast “superexpress” passenger trains, e.g. the ICE
trains in Germany or the TGV trains in France, but also in the case of “Inter-
City” passenger trains, the travelling speeds of which do not exceed 200 km/h.
From practical observations it follows that the above mentioned phenomena re-
sult from the dynamic interaction between the wheelsets and the track in the
so-called railway medium frequency range between 30 <+ 500 Hz, [7, 8, 10]. In or-
der to find the causes of the “grumbling” noise effects, the phenomenon of wheel
polygonalization and of several fatigue defects, it is necessary to introduce an
appropriate mechanical model to simulate the process of vehicle-track dynamic
interaction. This model must assure a sufficiently accurate representation of all
important system properties in the medium frequency range, as well as it should
be as simple as possible from the viewpoint of the parameter identification, com-
putational efficiency and ease of interpretation of the obtained results.

In order to achieve this purpose, in [12, 13] a discrete-continuous mechanical
model of the single railway wheelset interacting with the track has been applied.
By the use of this model in the medium frequency range, the bending-torsional-
~axial vibrations of the wheelset coupled with vertical-lateral vibrations of the
track were investigated. The most severe dynamic response of the considered
mechanical system was obtained in the form of parametric resonances for values
of the wheelset and the track parameters and for the train speed for which the
“grumbling” noise effects are in practice usually observed. In this paper, the
considerations are performed for the passenger car entire bogie with two wheelsets
interacting with the track. Here, the bogie-track system is also modelled by
means of a discrete-continuous model which has been developed from that applied
in [12, 13]. By using this model it is possible to investigate, in an effective
way, the vertical and lateral vibrations of the track coupled through the contact
forces with the bending-torsional-axial vibrations of the bogie wheelsets, running
with various speeds on straight and curved tracks of various static and dynamic
properties.

2. ASSUMPTIONS

The subject of consideration of the paper is a discrete-continuous mechanical
model of a modern passenger car bogie interacting with a track in the medium
frequency range. In this model, which is shown in Fig. 1, the wheelset axles
are represented by continuous axially rigid and torsionally deformable rotating
visco-elastic beams in the form of stepped shafts consisting of several cylindrical
segments. The wheels and brake disks are represented by rigid rings attached
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FiG. 1. Discrete-continuous mechanical model of the railway bogie-track system.
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to appropriate axle cross-sections by using massless elastic isotropic membranes.
These membranes make possible rotations of the rigid rings around their diam-
eters as well as translations along the wheelset axles, Fig. 1. Inertias of the roll
bearing housings are represented by the rigid bodies (1L), (2L) and the rigid
bodies (1R), (2R) fixed respectively at the left and right ends of the wheelset
axles. The wheelset axles are supported at their ends in vertical, longitudinal
and axial direction by means of visco-elastic springs corresponding respectively
to the vertical, longitudinal and lateral primary suspensions. The bogie frame is
represented by a rigid body (5B) of 6 degrees of freedom connected with the car
body of infinite inertia by the visco-elastic springs corresponding to the secondary
suspension.

The real wheelsets are characterized by brake disks of relatively great axial
stiffness in comparison with axial stiffness of the wheels. Thus, for the medium
frequency range one can assume infinite axial stiffness of the membranes which
connect the rigid rings corresponding to the brake disks with the wheelset axles.
According to the above, the lateral vibrations of the bogie are going to be in-
vestigated by using the seven-degrees-of-freedom discrete model consisting of the
rigid body (5B), the rigid bodies (71W), (72W) representing the entire masses
of the wheelset axles and brake disks as well as of the four rigid bodies (61L),
(62L), (61R) and (62R) representing masses of the wheels, see Fig. 1. Moreover,
according to reality, static and dynamic unbalances of the wheels and brake disks
are taken into consideration, which are a source of external excitations.

The real railway track is an endless continuous structure possessing in the
vertical and lateral direction periodic properties due to equidistant supports on
sleepers. As it follows from [4, 8, 10, 13], in the medium frequency range the
track exhibits dynamic properties of the inertial-visco-elastic structure with a
clear discrete spectrum of natural frequencies. Separately for the so-called track
vertical and lateral dynamics, one can distinguish the first natural frequencies
corresponding to the eigenvibration mode, where the rails and the sleepers vi-
brate “in phase”. The second natural frequencies correspond to the eigenvibration
mode, where the rails and sleepers vibrate “in anti-phase”. The third natural fre-
quencies, both for the track vertical and lateral dynamics, correspond to the
so-called “pinned-pinned” mode, for which only the rails vibrate with nodes situ-
ated on the sleepers remaining in standstill, [8, 10, 13]. As it follows from [4, 7],
the wave propagation velocity in the track is greater than 1000 km/h. Instead of
the advanced track models in the form of infinite periodic structures investigated
for example in [8, 14|, in the medium frequency range for train speeds not ex-
ceeding 350 +400 km /h, for a simulation of the dynamic interaction between the
flexible wheelsets and the track it seems to be reasonable to introduce a simpler
model but characterized by the same or almost the same dynamic properties in
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the mentioned range of frequency and train velocities. Thus, in [12] the track
has been modelled by the inertial-visco-elastic oscillator of 6 degrees of freedom
and in [13] by the inertial-visco-elastic oscillator of 13 degrees of freedom, where
in [12] only the vertical dynamics was taken into consideration, and in [13] the
vertical-lateral dynamics of the track was investigated. In the both cases such
track models created a “dynamic cushion” interacting with a single wheelset. In
the case of entire bogie it was assumed that each wheelset interacts with its “own
dynamic cushion” represented by the identical inertial-visco-elastic oscillator of
13 degrees of freedom as that in [13]. These “cushions” are mutually coupled in
vertical and lateral direction by appropriate springs of stiffness k¢y, ke and ke, as
shown in Fig. 1, where k., denotes the flexural vertical stiffness, k¢ — the flexural
lateral one and k¢ is the proper rail torsional stiffness. Finally, one obtains the
resultant model of the track in the form of dynamic oscillator of 26 degrees of
freedom and of periodically fluctuating parameters, in which 12 degrees of free-
dom describe its vertical dynamics and 14 degrees of freedom describe its lateral
dynamics, as one can easily identify from Fig. 1.

For the so-called “small vibrations” it is assumed that free vibrations of the
oscillator in the vertical plane are not coupled with the lateral free vibrations.
According to the proper assumptions in {12, 13|, each “dynamic cushion” for the
interaction positions “between the sleepers” and “over the sleeper” must be char-
acterized by the static stiffness values as well as by the dynamic receptance func-
tions, respectively, very close to these obtained from experiments performed on a
real track. In the proposed track model in the vertical and lateral direction there
are assumed periodically variable stiffness and intensity of damping of the viscous
type. The dry friction effects in the subgrade have been omitted. Because during
a travel along the real track its dynamic properties vary periodically and continu-
ously from the interaction position “over the sleeper” and “between the sleepers”,
[4, 8], in the paper there are assumed two sets of parameters of the oscillator, i.e.
masses, damping and stiffness coefficients, separately for the vertical and lateral
dynamics each. One set of these parameters represent dynamic properties of the
“dynamic cushion” for the interaction position “over the sleeper” and the second
one corresponds to the position “between the sleepers”. Both sets of oscillator
parameters have been obtained separately for the vertical and lateral dynamics
by means of an iterative selection of values of masses, stiffness and damping co-
efficients, in order to achieve for the three above-mentioned track eigenvibration
modes natural frequencies as well as kinetic, potential and dissipation eigenener-
gies very close to the natural frequencies and eigenenergies, respectively, obtained
from experimental measurements performed on a real track, or almost identical
to these obtained from proper computations using the more accurate track model
in the form of the periodic endless structure, e.g. in [8, 14]. According to the
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above, separately for each “dynamic cushion” as well as separately for free vibra-
tions in the vertical and lateral direction, the mass values, stiffness and damping
coefficients of the oscillator must satisfy the following approximate relations:

1
2 2 2 2
5%m [mtlatlm + 2my2 (@am + 50044m)° + 2my3 (a3m + SoQtam)
2 2 ~ E .
F2Mg Qg | = EKtm,

1
(2.1) 5 [ktlaflm + 2kiz (ac1m — atom)” + 2ki3 (ai2m — azm)” + 2kt4af4m]
= EPtms
1
5%2,1 [dﬂa?lm + 2d (a1m — aom)” + 2di3 (at2m — at3m)?

+2dt4a%4m] = _EDtma m = 1, 2, 3,

where wy, denote the natural frequencies, myj, kij, dij, j = 1,2,3,4 are respec-
tively the inertial parameters of the rigid bodies, stiffness and damping coeffi-
cients for the vertical dynamics, if the subscript ¢ = V, or for the lateral dynamics
of the oscillator, if the subscript ¢ = L. For vibrations in the vertical and lat-
eral direction, the index j = 1 corresponds to the translational motion of the
rigid body (1[), j = 2 to the translational motion of the rigid bodies (2/L) and
(2IR) regarded as one rigid body and the index j = 3 corresponds to the transla-
tional motion of the rigid bodies (3/L) and (3IR) regarded also as one rigid body,
where | = 1,2 denotes the number of the “dynamic cushion” interacting directly
with the [-th wheelset. The index j = 4 corresponds to the rigid bodies (2(L),
(3IL) and (2(R), (3IR) regarded, respectively, as two rigid bodies in simultane-
ous identical rotational motions with respect to points S, Fig. 1, for the lateral
vibrations of the track model. Exun, Eptm, EDim are the kinetic, potential and
dissipation eigenenergies, respectively, corresponding to the m-th eigenmode of
the track estimated by means of proper experimental measurements for the free
vertical or lateral vibrations, i.e. for ¢t = V or t = L, sq is the radius of iner-
tia of the rail cross-section with respect of the rail foot and asim, @ = 1,2, 3,4,
m = 1,2,3, denote the appropriate eigenvector components. For example, for
t =V, i.e. for the vertical vibrations it is necessary to assume in (2.1) ay4m =0
and the remaining avy;;, correspond to the following eigenmodes: for m = 1 all
the rigid bodies vibrate “in phase”, for m = 2 the rigid bodies (2[L), (2/R), (3IL),
(3IR) vibrate together “in anti-phase” with respect to the rigid body (1/) and for
m = 3 only the rigid bodies (3[L), (3/[R) vibrate together, when the remaining
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rigid bodies are in standstill. For the lateral free vibrations, i.e. for ¢t = L,
the eigenvector components ar;, correspond to the mentioned successive three
eigenmodes in an analogous way as for ¢t = V. The two sets of inertial, stiffness
and damping parameters for the oscillator selected in this way result separately
for the vertical and lateral dynamics each in the following receptance functions
corresponding to the interaction position “over the sleeper” and “between the
sleepers” shown in Figs. 2 and 3. In Figure 2 there are presented vertical and
lateral dynamic receptances for the single “dynamic cushion” compared with the
corresponding receptances obtained by means of the measurements performed on
the Polish “soft” track of the static average vertical stiffness 0.82 - 103 N/m, the
rails of which are supported on wooden sleepers. Figure 3 presents the results
of an analogous comparison of the measured and calculated vertical and lateral
dynamic receptances for the Polish “hard” track with concrete sleepers and of the
static average vertical stiffness 2.03-10® N/m. The measurements have been car-
ried out by means of the well known techniques applied e.g. in [8]. To determine
the dynamic receptances, the track was excited by hammer impacts. The track
static vertical stiffness was sought in the form of a ratio of the known gravitational
load imposed on the track to the corresponding measured rail deflection.

The above demonstrated results of track property identification have been
obtained under the assumption of track symmetry with respect of its longitudi-
nal axis, which can be imagined as a single “double rail” supported on sleepers.
Thus, only the symmetrical eigenmodes have been identified. Identification of
the track anti-symmetrical eigenmodes requires further research. The dynamic
receptances of the proposed track model can be obtained in the above described
way separately for each single “dynamic cushion” or for both the “dynamic cush-
ions” vibrating mutually “in phase”. The relative motions of these “cushions” are,
in general, strongly influenced by the coupling stiffness k¢y, kg and k¢, numeri-
cal values of which have been also identified experimentally by means of proper
comparisons of the corresponding receptances measured directly at the excitation
points with these measured at the track points at the distance from the excitation
sites equal to the bogie wheelbase value 2b.

For the track model presented here it is assumed that the values of the deter-
mined sets of parameters change periodically and continuously from the set “over
the sleeper” to the set “between the sleepers” and then again to the set “over the
sleeper” and so on, according to the following function proposed in [4], which is
identical for the vertical and lateral dynamics

18 i is — P 2
(2.2) pi(t) = p ;—pw + P 5 Pib <cos ( 71”)0 (t— Atl)>
8§

-I-i (1 — cos <47lr:0 (t — Atﬂ))) ,
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FIG. 2. Dynamic vertical and lateral receptances for the “soft” track.
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1
where i =1,2,3,4,1=1,2, At; = ™ (2b — (entier (2b/1g)) - lg), Aty = — Aty
Vo

and for the [-th “dynamic cushion”, p;;(t) denotes the i-th particular mass, stiff-
ness or damping parameter of the oscillator, vg is the train speed, ¢ denotes time,
ls is the sleeper spacing, 2b is the bogie wheelbase and the subscripts s and b
denote the receptance positions “over the sleeper” and “between the sleepers”,
respectively. In the longitudinal direction the track is assumed to be rigid.

The bogie with ideally round wheels running along the straight or circularly
curved track with perfectly even rails and without any turnouts or frogs is con-
sidered. The wheel tread is assumed to be conical from the outer edge y. to the
cross-section y, where the conicity passes into the flange fillet, as shown in Fig. 4
for the right wheel. Thus, a single-point contact as well as an elliptical contact
area between the rail head and wheel tread will arise. The rigid bodies (3[L)
and (3lR), | = 1,2, of the track model are connected with the rigid rings corre-
sponding to the respective wheelset wheels by means of non-linear visco-elastic
springs creating the bogie-track contact interface, Fig. 1. The spring character-
istics depend on the applied wheel-rail contact theory. In the proposed model
for the normal wheel-rail elastic contact the Hertz theory is used. The vertical
component of the normal wheel-rail contact stiffness k¢, is then expressed as a
non-linear function of the temporary normal positive contact force according to
the appropriate characteristic presented in [8]. However, for negative wheel-rail
normal contact force values, k¢, is assumed equal to zero creating in this way
unilateral constraints between the bogie wheelsets and the track. For a position
of the wheel-rail contact point in the conical range of the wheel tread, the tan-
gential wheel-rail contact is modelled by means of the longitudinal and lateral
contact forces expressed as functions of micro-slips between the wheel and the
rail using the non-linear theory of Kalker [5], modified by ZHANG and KNOTHE
in [15] for the wheel-rail contact in the wheel flange-fillet.

F1G. 4. Contact area of the wheel tread and rail head.
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In the paper, for positions of the wheel-rail contact point corresponding to
greater wheel cone angles than that of the conical range of the wheel tread § =
0.04+0.05 rad, i.e. for y smaller than yy, Fig. 4, the lateral tangential wheel-rail
contact forces expressed as micro-slip functions are gradually transformed into
lateral forces of the elastic type, i.e. expressed as functions of wheel-rail elastic
deflections. Then, the lateral component of the wheel-rail elastic contact stiffness
kap is assumed in the form of a horizontal projection of the normal stiffness kcp:

(2.3)  kap (Qp(1), Ayp(t)) = kcp (Qp(t)) - sin (arctan (o (Ayy(t)) ~ tan(d)))

f0r|Ayp(t)| 2 IAyOpl and kap (Qp(t)aAyp(t)) =0 for |Ayp(t)| < |A?10pla

ap - by

(Ayp(t) — Ayop + ap) - (Ayy(t) — Ayop + bp)
derivative with respect of Ay, (t) of the wheel-rail contact point trajectory approx-
imated by means of the analytical function, taking into consideration geometrical
shapes of the rail head and wheel tread, Ay,(¢) is the lateral relative displacement
of the wheel tread and rail head with respect of their mutual nominal position
Yop, Fig. 4, Ayop = Yop — Ysp, 0 is the nominal wheel cone angle, ¢ denotes time,
the index p = L, R indicates the left- and right-hand wheel/rail, respectively,
and ayp, b, are parameters taking into consideration geometrical dimensions and
shapes of the running profiles of the rail head and wheel tread.

where o, (Ayp(t)) =6 denotes the

3. FORMULATION OF THE PROBLEM

Further considerations are performed by using the orthogonal non-rotating
coordinate system Ozyz moving together with the bogie with the constant train
speed vg. The coordinate z-axis determines the longitudinal direction along the
vehicle motion, the y-axis is parallel to the rotation axes of the undeformed
wheelset axles with the origin set at the axle left-hand extreme cross-sections,
and the vertical z-axis is directed towards the track foundation, Fig. 1.

The wheelset axles are slender enough to apply the Bernoulli-Euler beam
theory for the medium frequency range. The equations describing the vertical
and longitudinal motion as well as the torsional motion of cross-sections of the
i-th cylindrical segment of the [-th wheelset axle are assumed in the following
form:

84vli(ya t) GBSUli(yat) + pAz 82Ulri(ya f)
oyt Oy*ot ot?

(31)1 EI, = =0,
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829%(@/7 t) 83911' (ya t) 829% (y7 t)
Nl _ —
(3:1)2 N\t apa | P e 0
where: wv;(y,t) = uu(y,t) + jwi(y,t), 5 = V-1, 1= 1,2,..,n+3, 1 = 1,2,

uy;(y,t) denotes the bending dlsplacemen’c in the vertlcal dlrection, wy;(y,t) de-
notes the bending displacement in the longitudinal direction, 6;;(y, t) is the angu-
lar displacement with respect of the wheelset rotational uniform motion with the
constant velocity {2, EI;, denotes the bending stiffness of the i-th axle segment
of the cross-section area A;, and n is the number of brake disks. The material
damping in the beams is represented by means of the Voigt model, where e and 7
denote the viscosity coefficients for bending and torsion, respectively. From the
proper estimations performed in [12, 13] it follows that in the realistic operating
conditions, the influence of gyroscopic and axial loads acting on the wheelset
axles on their bending vibrations is negligible. Thus, the appropriate gyroscopic
and axial load terms in Egs. (3.1); are omitted.

Equation (3.1);, are solved under appropriate boundary conditions which,
beyond the respective geometrical conformity conditions for displacements and
inclinations, contain linear and non-linear equations of equilibrium for the in-
ertial, elastic, contact, gravitational and external damping forces, support reac-
tions, gyroscopic moments as well as for static and dynamic unbalance forces and
moments. The equations for the boundary conditions corresponding to the I-th
axle suspension at the left-hand side, Fig. 1, have the following form:

oy o v {3011 dqr dap
(321 my +EL (33/3 +68y38t + dviRe 5t dt Clb——]

ov d
+kviRe [’U[l - qr + ClbaB] + ]dHll [ lefl B %]

+7kmImvy —qr] =0,

32’011 0’ 9? Ui
(3.2)2 -JléW'f-Ell (8—y2+68y a +]I[)198 e 0,

9% 06 06, %0
(32)3 101 {1 1 GJ()l < 1 1

6t2 D1 ot + 8—y+’f—85-a—£>:0 fory=0.

The conformity of displacements and inclinations for the cross-sections to which
the wheels and brake disks are attached, i.e. for the “bordering” cross-sections
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between the adjacent (i — 1)-th and i-th cylindrical segment of the I-th wheelset
axle, are expressed by simple equations:

v i-1(y,t) _ Ovi(y,t)

(3-2)4 v,i-1(y,t) = vi(y, 1), L
i—1

OLi-1(y,t) = Ou(y,t)  fory=) Iy, i=23,..,n+3, =12
k=1

The dynamic boundary conditions for these cross-sections have the following
form:

vy, oy oy Puior v
(32)5 ml—g—t—i— -+ EIl —5:17?;— + eaySat - EI;..I 8y3 +e 8y38t

+kci(Qui(t) - (Re[vi] — z31:) + 7 F113(Qui(¢)) - Im {a;:]

) 00,; .
+iroF11s(Qui(t)) 8—tl = Gui + jF10i(Qui (1))

805\ 2 T =~ 020); .
<~Q+ 5 ) exp (J (5 - @li)> ~ 5 eXP (—J@m) s

Py Py vy Buig
3.2 EI, —FEI_ : ’
(3-2) < y? + 68y26t T oy? te dy?ot

+MmEL

a’Ui
+ i (Wi - 5;-) =0,

d?py; vy , doy;
(3.2)7 J; d;’;l + 1 (9011' - 8—;) - ]IOiQ% — Fooui(Qui(t), Ayii(t))

d R do i = 80 i
% [lei%exp@]@n) + Iyi(2) (Q + aé )] = Fo3i(Qui(t)),




ON DISCRETE-CONTINUOUS MODELLING OF THE RAILWAY BOGIE... 165

0(9[ i—1 826[ i—1 d d‘ﬂlz]
3.2 G G : + T 2 i .
( )8 JO, 1 ( ay 9y5t t {Re[lyl (t)] Re I: 7

dey; 1 i = ; x
+Im([I;(t)] - Im { 2l } + g mic [aavtl exp(7@u) + %QXP(—JQU)]}

dt ot

a0y, 0%0,; 020y [avli]
GJ01<8 +7 P 6t> + Ioi—— BYE +TOF11l1(le( )) Im Ot

00;;

+7“3F111i(Q1i(75))—3t— = roF101(Qui(1)),

where
Iyli(t) = Lyzli€XP ( ( 9!1)) + Ixyliexp(—j@)v

i-1
@ll(yat) = Qt+9lz(yat) +Ali3 fOI‘yZ Zlka 1=2,3,..,n+3.
k=1
Equations for the boundary conditions corresponding to the [-th axle suspension
on the right-hand side have an analogous form as those for the left-hand side,

v ny3 Poings | O'vings
3.2 : - FEJ : :
( )9 Mn44 3752 n+3 ayB + e 8y38t

Quinys dQR dap
dyiRe | ——= b———
Havi e[ ot o T

+ kviRe[vynts — qr + (bap)

) Ov d
+jdg1Im [——la:—H (;]: + jkmiImlv i3 — qr] =0,
(3.2) _J Puinis v nis te Fvinis
0 " ayat? " oy dy?ot
. 82”!,71—{-3
+JIO,n+4QW =0,
%01 513 b nv3 001 13 %0 143
‘2 3 ) ] — 0
B2u Jomra—p— + Dnpa—pg,— + GJonss dy T 50t

n+3

for y = Z lg.
k=1
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In Eqs (3.2); and (3.2)g the complex functions ¢,(t) = 2,(t) + jz,(t), p = L, R,
are generalized co-ordinates describing the motion of the rigid body (5B) rep-
resenting inertia of the bogie frame, where z,(t) and z,(t) denote, respectively,
the vertical and longitudinal displacements of its left- and right-hand side, and
apg(t) is the angular coordinate with respect of the axis parallel to the wheelset
axles, (; = 1forl =1 and ¢ = —1 for [ = 2. It should be remarked that in
Egs. (3.2)1 - (3.2)3 and (3.2)5 — (3.2)11, arguments of the displacement functions
vii(y,t) and 0 (y,t) have been omitted for convenience. In Egs. (3.2); - (3.2)3
and (3.2)5 — (3.2)11 m; denote masses of the rigid bodies in the wheelset model
and J;, Ip; are their diametral and polar mass moments of inertia, respectively,
1=1,2,..,n+4, 1 =1,2. The products GJy; denote the torsional stiffness of the
i-th axle segment of length [;, dy; and ky; are, respectively, the damping and
stiffness coeflicients of the wheelset vertical primary suspension, dg1, kg1 are the
damping and stiffness coefficients of the longitudinal primary suspension. The
symbols Gy,; for ¢ = 2,n + 3 denote the components of the static forces perpen-
dicular to the undeformed wheelset axle, pressing down the wheelset wheels to
the rails. Values of these forces are determined by proper assumptions, applied
e.g. in [1], for the analysis of motion of the railway vehicle during its run along
the straight or circularly curved track with a superelevation. For the remaining
i, Gyi = 0. The symbols Dy, Dp14 denote the coefficients of absolute damping
in the wheelset bearings. Angular displacements of the rigid rings representing
masses of the wheels and brake disks are in (3.2)g, (3.2)7, (3.2)g expressed by
the complex functions ¢;;(t) = ¢1i(t) + j9u(t), where ¢y;(t) and 9y;(t) denote
the angular displacements in the vertical and horizontal plane, respectively. The
constants u; are the bending stiffnesses of the membranes connecting the rigid
rings with the axles. It should be remarked that in contradistinction to the gy-
roscopic forces omitted in Eq. (3.1);, acting on the wheelset axle, the boundary
condition (3.2)7 describes the gyroscopic moments acting on the wheels and brake
disks. The dynamic unbalances of the rigid rings are described by the products
of inertia Iy, Izz1, Iy.i;- The static unbalances are expressed as the radial ec-
centrices gy; of the rigid ring centers of gravity with the appropriate phase angles
Ay, 1 =2,3,...,n+3, with regard of the longitudinal z-axis of the assumed coor-
dinate system Ozyz, kcy; is the variable vertical wheel-rail Hertz’s stiffness, and
z3li = 2311, for @ = 2 and z3;; = z3;p for i = n + 3 denote the appropriate general-
ized coordinates of the track model. The symbols Fy;(Qy;(t)), k = 10,11,22, 23,
denote the non-linear contact functions of the dynamic wheel-rail normal force
Qui(t) determined by means of the Kalker’s theory, |5, 15]. The expressions de-
scribing particular forms of Fy;(Qy;(t)) are derived by means of the fundamental
relations for the non-linear theory of Kalker demonstrated in [5, 15], assuming
the following forms of micro-slip components:
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e for the longitudinal micro-slips:

1 (Owiy,t)  90u(y, t)) Gia -
Usli 0 ( o T 7o g + 2R, or y kz::llka

e for the Spil’l l’l’liCI‘O-SlipSZ
1 d(Ayli(t))
Uyli %_—t_’

o for the spin micro-slips:

=05 ( Ay ()G .
UOzli:‘—él(—:j)M, i=2,n+3,1=1,2,

where

Ayia(t) = yar(t) — rodia(t) — yain(t) — soyair(t),
Ayin+3(t) = yeir(t) — rodint3(t) — yair(t) — soyar(t),
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G2=-1 and (43 =1,

Y3IL, Y4IL, Y6lL, Y3IR, Y4IR, Yeir denote the appropriate generalized coordinates of
the track model and of the rigid rings representing wheels, a denotes the nominal
rail spacing, and sg is the radius of inertia of the rail cross-section with respect
of the rail foot. The track curvature radius Ry is assumed to be positive for left
turns and negative for right turns. Then, the contact functions Fj;(Qui(t)) are

obtained in the following form:

GC
Fu(Qu(t) = oy —2
Vo

Fi1(Qu(t)) =0 fori=3,4,...,n +2,

Ki[Qu()]5  fori=2,n+3,

Fioi(Qu(t)) = Ciali‘%gKl [Qu(t)]S fori=2,n+3,
Fro(Qui(t)) =0 fori=3,4,..,n+2,
2 Ay,
Fooi(Qui (1), Ayis(t)) = oy G K (TO[Qli(t)]g +lei(t)) : 9(_3;@
Vo

+rokai(Qui(t), Ayii(t)) - (Ayii(t) — Ayo;) for i =2,n + 3,

FQQli(Qli(t)a Ayll(t)) =0 fori= 3747 ey T+ 27
.GC33K3

Fo31:(Qui(t)) = — (013015 (Ayui(t)) (0023K2in(t) - JT[Qli(t)]%)
fori =2,n+3,
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FQ?:li(Qli(t)) =0 fori= 374’7 ey T 2, CZ = -1 and <n+3 =1, =12,

wher
) . 31 -72)1° . s 3(1-7)
L= i) 0 =Y Ba By
_ 3(1 - 7?) s
Ky = (m-n)*- E(A+B)] !

A=1/r., B=1/ry, G, E are respectively Kirchhoff’s and Young’s moduli, Ch,
Cao, Caz, Cas are the Kalker coefficients, oy, = 01i(Vali, Vyli, Vozti, Qui(t)) denote
the coefficients expressing the nonlinear Kalker’s theory, which are determined
using the proper algorithm described in details in {15], 7 denotes the curvature
radius of the rail head at the contact point, 7 is the Poisson number, and the
parameters of the contact ellipses taken from Kalker’s tabulation scheme are
denoted by m and n, [5]. The lateral wheel-rail contact stiffness ka; is defined
by formula (2.3).

From Eqs. (3.2) it follows that the static and dynamic unbalances described
in the boundary conditions as well as the contact forces and moments, couple the
bending vibrations of the wheelset axles with the torsional vibrations. Moreover,
the contact forces and moments couple the bending vibrations with the axial
vibrations of both the wheelsets, and in this way also the vertical vibrations
of the track with its lateral vibrations. The motion of the track model and the
lateral vibrations of the bogie are governed by the following system of parametric
ordinary differential equations which are coupled with Egs. (3.2)1, (3.2)s, (3.2)7
and (32)9

(3.3) My (vot)8(t) + Dr(vot)$(t) + Kr(vot)s(t) = R(2),

where
s(t) = col |z (t), zL(t), 2311 (t), 2L (t), z121(2), 2211 (1),

zr(t), zr(t), TR(Y), B (), yarr (t), ysie (£), yar (), yn (), yair (t),

ya1r(t), yair(t), ysB(t), yeiL(t), veir(t), ynw(t)]
and

R(t) = R (010, ), v nta(Anta, ), via(A2, 1), Vi3 (Antss ), @r2(t),

k—1
Oinis(t),Ge, Fvg, Ro)),  1=1,2, M= L
j=1
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In Egs. (3.3) My, Dy and K7 denote respectively the mass, damping and
stiffness matrix expressed as periodic functions of the parameters (2.2). The
terms F'(vg, Ro) and G, represent external excitation due to centrifugal forces
and the component of the gravitational force parallel to the undeformed wheelset
axle, respectively, both acting on one half of the car mass and on the entire mass
of the bogie frame during its run along the straight or circularly curved track with
a superelevation. The components z,(t), zp(t), p = L, R, and ap(t) of vector s(t)
are generalized coordinates describing the vertical and longitudinal motion of the
bogie frame, z;;(t), 7 = 3IL, 2IL, 111, 12!, 2[R, 3R, are generalized coordinates
describing the vertical vibrations of the track model, y;k(t), k = 4IL, 3IL, 2IL,
I1, 2[R, 3IR, 4IR, are generalized coordinates describing the lateral vibrations of
the track model, and y;,,(t), m = 5B, 6L, 6/R, 7IW, are generalized coordinates
describing the lateral vibrations of the bogie model, I = 1, 2.

8.1. Natural vibration analysis

For the proposed model of the bogie and the track, the results of natural
vibration analysis are not only essential for further simulation of forced vibrations,
but these results give us a better insight into some qualitative dynamic properties
of the investigated system. In order to perform an analysis of natural elastic
vibrations, all the forcing, viscous, non-linear and unbalance terms standing in the
boundary conditions (3.2) have been omitted. Moreover, the variable components
of coefficients (2.2) in the parametric equations (3.3) describing motion of the
track model and lateral vibrations of the bogie have been also neglected. Thus,
one obtains the boundary conditions for the bogie-track model in the following
simplified form:

0% Bv
(3.4)1 mi 8t2ll + FL ayél + ky1Re [U“ —qr + CbaB]
+jkmgiIm v — qr] =0,
83’011 62’011 82'Ull
. - EI ] =
(3 4)2 Ji 8y8t2 + 1 8y2 +JI01.Qayat 0,
920 00
3.4)3 —Ipi—5 +GJp—= =0 fory=0,
( 01 52 1 By Y

vy i-1(y,t) _ Ovy(y,t)
dy dy

01i-1(y,t) = 0ii(y, 1),

(3.4)4 vi-1(y, 1) = vy, 1),
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&%v 3 vy .
(34)s m; athZ By - EIL_ 8;3 * + ke (Re [vi] — 23u) = 0,
0? Vy; 32’0[ i—1 Ovy;
(3-4)6 El; y 2Z El_4 8y22 + (‘Pli - a;) =0,
4%y, Ovy; RN
(3.4)7 Ji dtgZ pi (‘Pli - 8_3;> - 31019—871 =0,
920, 00,1 00, =
(34)s  Ioi—75 +GJyi—1—— — GJy; =0 for y=> I,
ot? Jy Jy bt
1=2,3,...,n+ 3,
5% v
(3.4)9 M4 alI;;H—B - EIn+3$ + kyv1Re [Ul,n+3 —qRr + CbaB]
+ikmIm [V nq3 — qr] =0,
Pvinys Vin4s vin+s
4 _ , _ : . Fvings _
(3-4)10 In+4 B0 v 3Ion+a82 Byt 0,
20 0 n+3
(34)n1 Io,n+4a—-al-’§ﬁ + GJon+ts 9 (l9n+3 0 fory=> I
¢ Y k=1

where [ = 1,2. Due to the truncation of the parametric, viscous and nonlinear
terms describing the unbalances, contact forces and contact moments, the bend-
ing, torsional and lateral vibrations of the bogie as well as the vertical and lateral
vibrations of the track are mutually decoupled. Thus, as it follows from (3.4),
the elastic torsional eigenvalue problem can be solved separately and Eqs. (3.3)
have been split into three following subsystems of linearized ordinary differential
equations. The first one describes the vertical elastic vibrations of the track:

(3.5) My z(t) + Kyz(t) = R(t),
where

z(t) = col [21(t), 2311, (t), 2L (1), 2111 (L), 2121 (t), 2R () 231R (1), 2R (), @B (t)],
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R(t) = col [kV1Ul1 (0,1), kciguin(May 1), kcina3tnts(Anis, t)
kvivinis(Anra, y)],

and I:JCH, 1 =2,n+4+ 3,1 = 1,2, denotes the mean value of the vertical wheel-
rail Hertz stiffness corresponding to the static gravitational load. The symbols
My, Ky represent, respectively, the matrices of inertial parameters of the bogie
frame and stiffness coefficients of the bogie vertical secondary suspension as well
as of mean values of the mass and stiffness coefficients expressed by the first
components of the sums in (2.2) for the vertical track dynamics, i.e. for t = V.
Eq. (3.5) is coupled with Egs. (3.4), (3.4)5 and (3.4)g. This means that, upon
the performed linearization, natural bending vibrations of the wheelsets are still
coupled with natural vertical vibrations of the track.

The two next equations describe the lateral natural vibrations of the track
and the lateral natural vibrations of the bogie:

(3.6)1 M yr(t) + Kryr(t) = 0,

(3.6)2 Mwyw(t) + Kwyw(t) =0,

where yr(t) = collyair (t), yair (t), yaur (£), yur (1), yaur (1), yair (), yarr (1)), yw (t) =
collzr,(t), ys (1), yeir (1), verr(t), yuw (), zr(t)], | = 1,2, Mz, K are matrices
of the mean values of mass and stiffness coefficients expressed appropriately by
the first components of the sums in (2.2) for the track lateral dynamics, i.e. for
t = L, and My, Ky denote the mass and stiffness matrices of the bogie model
under the lateral vibrations.

The equations of motion (3.1) are solved by means of the well known sepa-
ration of variables approach

i1 i
B wily,t) =Vuly) - T(8),0u(y, 1) = Ouly) - T(t) for Y L <y< > I,
k=1 k=1

t=1,2,...,n+3,

where
Vit () — (k)" Viily) = 0, Vii(y) = Uily) + iWa(y),

2
Ofitw) + (£) @ulp) =0, T+ T() =0

A; P G
=4 =, k=4 ws, e=4/—, [=1,2.
xi =4/ Vs \/p

and
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Then, the eigenmode functions are sought in the following form:

Vii(y) = A sin(ksy) + Aoy cos(kiy) + Asysinh(kiy) + Agicosh(kiy),

i—1 i
(3.8) Ou;(y) = Byisin (%y> + Bay; cos (%y> for Y L <y< >,
k=1 k=1
1=1,2,...,n+3,

bii(t) = Duexp(jwt), hu(t) = Wuexp(jwt), 2z5(t) = Zsexp(jwt),
T(t) = exp(jwi),
where
Apsi = AR 4G AR Bi=xk, m=1,2,3,4, i=1,2..,n+3,
s = 3IL, 2L, 111,121, 2R, 3IR, [ =1,2.
Upon a substitution of the solutions (3.8) into the boundary conditions (3.4),

one obtains separate characteristic equations for the considered eigenvalue prob-

lems:
e for natural bending vibrations

C(w)eD =0,
(3.9)
e for natural torsional vibrations
E(w)eF =0,
where
C(w) —is the characteristic complex matrix ((8(n + 3) + 17)
X (8(n + 3) + 17)),
D = col(Aun, Aoy Az, Aanns Avzs A2y oo Asints, Adints,
Zr, Zoars Z1u, Z12ts Zar, Z3iRr, Z1, Zry A, X1, XR),
and

E(w) —is the characteristic real matrix (4(n + 3) x 4(n + 3)),

F = col(By1, Bui, Bii2, Bz, s Biin+3, Ban+s), | =1,2.

Thus, determination of natural frequencies reduces to searching for the values of
w, for which the characteristic determinants of the matrices C and E are equal
to zero. The eigenmode functions are then obtained by solving the characteristic
equations (3.9). In order to find the natural frequencies and eigenvectors for Eqs.
(3.6)1, (3.6)2, the respective generalized eigenvalue problems must be solved.
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3.2. Forced vibration analysis

For the forced vibration analysis, Eq. (3.1) are solved using the Fourier so-
lutions in the form of series in eigenfunctions obtained by means of the natural
elastic vibration analysis. Then, the Fourier solutions applied for the forced
vibration analysis have the following form:

o0

Uy y, Z Ulzm 7 Wy y, Z lzm

2i(t) = io: Zikm&m (t),

m=1

(3~10) ¢l] stljmfm a ¢l] Zwljmnm

m=1

elz y, Z @lzm
t) = Z Zpm€m(t), ap(t) = Z Am&m(t)
m=1 m=1

o0
)= Xpmmm(t), p=L,R, i=12.,n+3,

§=2,3,..,n+3, k=3IL,20L 11,121, 2IR,3IR, [=1,2,

where for the [-th non-rotating wheelset, i.e. obtained for 2 = 0, Uun(y),
Wiim(y) denote the eigenfunctions of bending displacements in the vertical and
longitudinal direction of the i-th axle segment, and @ijm, Yijm are the eigenvector
components of the angular displacements in the vertical and horizontal plane of
the rigid rings, @y, denote the eigenfunctions of torsional displacements of the
i-th wheelset axle segment, Zj,, are the eigenvector components for the gen-
eralized coordinates describing vertical vibrations of the track model, and Zpm,
Am, Xpm denote the eigenvector components for the generalized coordinates de-
scribing, respectively, vertical and longitudinal vibrations of the bogie frame.
Equations (3.6)1, (3.6)2 are transformed into the modal coordinates. Then

14 7
(3.11) yi(t) = Z Yimam(t), yj(t) = Z ijﬁm(t)
m=1

m=1
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where Y, Yim, ¢ = 4lL,31L,21L,11,2IR,3IR,4lR, j = 5B,6lL,6lR,7IW, | =
1,2, denote the eigenvector components obtained for natural elastic vibrations in
the lateral direction for the track and the wheelset, respectively. The unknown
time functions in series (3.10) and (3.11) are sought by using the Lagrange equa-
tions of the second order. All the forcing, gyroscopic, viscous, parametric and
non-linear terms in the boundary conditions (3.2) and Egs. (3.3), which were
omitted in the natural elastic vibration analysis, are regarded here as concen-
trated external excitations imposed on appropriate cross-sections of the wheelset
axle or on appropriate generalized coordinates of the track and bogie model.
The generalized external load Hp,(t) for the given external excitation P(t) is
determined by means of the virtual work principle, which leads to

Em
(3.12) Hpy(t) = —P(t), m=12,.,

Tm
where E,, denotes the eigenfunction value equal to E,, = Vp,(yo), if the external
excitation P(t) is imposed on the wheelset axle cross-section yo, and Vi (yo)
is obtained for y = yo from (3.9) for bending or torsional motion. If P(t) is
imposed on the given generalized coordinate s(t), Ep,, = Sp,. The symbols 42,
are the coeflicients of orthogonality properties, particular forms of which can be
found in the APPENDIX. Then, this approach leads to the system of non-linear
and parametric ordinary differential equations for the Lagrange coordinates

(3.13)  M(£2t,vt)E(t) + C(2, 2t vot, 7(t), Q(1)E(E) + K(vot,m(t), Q(t))r(¢)
_ = F(t, 2%, 2t,Q(t)),

where
M(.Qt,’l)ot) =M+ Mu(Qt) + Mr(’Uot),

K(vot, m(t)Q(t)) = Ko + Kr(vot, r(¢), Q(t)),
C(£2, 2t, vot, £(t), Q1)) = Co + Cy(£2) + Co(£2t) + Cr{vot, £(t), Q(t)).

The symbols Mg, K¢ denote, respectively, the constant diagonal modal mass and
stiffness matrices, Cy is the constant symmetrical damping matrix and C,4(§2)
denotes the anti-symmetrical matrix of gyroscopic effects. The terms of unbal-
ance effects are contained in the symmetrical matrix M, (£2t) and in the non-
symmetrical matrix C,(2t). M,(vot), K, (vot,7(t), Q(t)) are symmetrical ma-
trices and C,(vot, 7(t), Q(t)) is the non-symmetrical matrix of the parametric and
contact effects from the track, and F(t, £2%, 2t,Q(t)) is the external excitation
vector due to the rail/wheel tread unevenness, unbalance, contact, gravitational
and centrifugal forces. The Lagrange coordinate vector r(t) consists of subvec-
tors of the unknown time functions &, (t), Nm(t), 9m(t), am(t), Bm(t) from (3.10)
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and (3.11). In order to obtain the system dynamic response, equations (3.13)
are solved by means of direct integration. During numerical simulation, current
values of the normal wheel-rail contact forces Qp(t) and Qin+3(t), 1 = 1,2, are
determined using the cubic extrapolation method. Because the forced bending,
torsional and axial vibrations of the wheelsets are mutually coupled with the
forced vertical and lateral vibrations of the track, according to the appropriate
solutions (3.10) and (3.11), the total number N of Egs. (3.13) to be solved is
a sum of all considered in the frequency range of interest the bending, torsional
and lateral eigenmodes of the bogie model and of all lateral eigenmodes of the
track model.

The presented discrete-continuous model of the railway bogie-track system
enables us to study qualitative properties of the investigated object by means
of a natural vibration analysis as well as it makes possible to obtain dynamic
responses by using a numerical simulation of forced vibrations. In particular,
solving Egs. (3.13) by means of proper direct integration technique, one obtains
the time histories and amplitudes of the wheel-rail dynamic contact forces and
slips, dynamic torques transmitted by the wheelset axles, as well as vibratory
displacements, velocities and accelerations of several bogie elements excited by
wheelset residual unbalances, rail corrugations, wheel tread polygonalization or
by periodic fluctuation of track properties during its run.

3.3. Determination of the frequency response function (FRF)

By means of the proposed discrete-continuous model of the bogie track sys-
tem, it is possible to perform the qualitative dynamic analysis in the form of
natural vibration study for the linearized system, and the quantitative analysis
by means of the numerical simulation of nonlinear and parametric vibrations. As
it was mentioned in Sec. 3.1, due to the linearization of the considered system,
the natural vibration analysis is carried out for the four mentioned above kinds of
vibrations separately with neglected damping. In order to investigate sensitivity
of the entire bogie-track system to several possible resonances, it seems to be rea-
sonable to perform the qualitative analysis using the frequency response function.
In order to obtain the frequency response function for the considered bogie-track
system it is necessary to neglect all the wheelset residual unbalances, to assume
the wheel-rail tangential contact forces as functions of constant static normal
forces, to neglect the periodic fluctuation of track properties, to assume the nor-
mal wheel-rail contact stiffness of the Hertz type as constant average values as
well as to substitute all external excitations by harmonic ones of the common
frequency w and of unitary amplitudes. Upon such linearization Egs. (3.13) are
reduced to the following form:
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(3.14) Mri(t) + Cr(t) + Kr(t) = F(wt),

where the N x N damping-contact-gyroscopic and stiffness matrices C and K,
respectively, are constant, and the mass matrix M becomes constant and diagonal.
Then, for the harmonic external excitation with frequency w one can assume:

(3.15) ri(t) = Cjcos(wt) + S;sin(wt) and Fi(wt) = Z Vij(Fei cos(wt)
J

+fSi Sin(wt))a

where \/f%l- + fgl =1,7=1,2,...,,N,C;, S; are the unknown coeflicients, and Vj;
denote the appropriate eigenfunction values in which, in the proposed method,
all the external excitation terms are developed. Introduction of (3.15) into Egs.
(3.14) leads to the system of 2N linear algebraic equations

(3.16) H(w)-A=F,
where H(w) is the 2N x 2N inverse frequency response function matrix and

A= COl[Cl, CQ, ceey CN, Sl, SQ, ceey SN],

F = col[fc1, foz, - foN, fs1, fs2, - fsN).
According to the applied in the proposed approach Fourier’s solutions in the form
of series in the eigenfunctions, the proper frequency response functions are sought
in the following form:

(3.17) hj(w) = Z Vij\/ CE(w) + SF(w),

where the coefficients C;(w) and S;(w) are obtained by solving Egs. (3.16) for
the required range of frequency w.

4. NUMERICAL RESULTS

The numerical calculations are performed for parameters characterizing the
modern car bogie 25ANa of the European “inter-city” or “euro-city” trains IC/EC
interacting with the three types of the track. The first two types have been al-
ready mentioned in Sec. 2, i.e. the “soft” track with the average static vertical
stiffness kp, = 0.82 - 10% N/m, and the “hard” one with ka, = 2.03 - 10® N/m,
the dynamic receptances of which are presented in Figs. 2 and 3, respectively.
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The third type of the track is the “very hard” one typical for the new German
railways called “Neubaustrecken” characterized by the relatively large vertical
average stiffness reaching ka, = 3.0 * 108 N/m. The vertical and lateral dy-
namic receptances for this type of the track are compared in Fig. 5 with the
corresponding receptances presented before in Figs. 2 and 3.
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F1G. 5. Comparison of the vertical and lateral dynamic receptances characterizing three railway
tracks: the “soft” (——), “hard” (- - -) and the “very hard” (wss) one.

The wheelsets of this bogie possess n = 2 brake disks. The static unbalances
are assumed, for which: g9 = g5 = 1.15-1072 m and Ay = A5 = 0 for the wheels
and €; = 1.33-1073 m and Aj; = 7 rad, i = 3,4, for the brake disks, [ = 1,2. It is
assumed that for two identical wheelsets e1; = €94, 1 = 2,3,4,5, and Ay; = — Ay,
which means that the unbalances of both the wheelsets are mutually oriented
in “anti-phase”. Because of typical difficulties in practical identification of the
dynamic unbalances of the wheels and brake disks, the corresponding products
of inertia Iy, Igyti, Izo1; are assumed to be equal to zero, ¢ = 2,3,4,5, [ = 1,2.

4.1. Results of the natural vibration analysis

From the viewpoint of dynamic interaction between the railway bogie and
the track, some important qualitative characteristics for the vertical and lateral
dynamics of the proposed track model have been presented in Sec. 2 and in the
introductory part of Sec. 4. To obtain a better insight into the dynamic properties
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of the considered bogie, in particular in order to investigate its sensitivity to
several kinds of vibrations, the natural bending and torsional vibration analysis
seems to be useful. As it was mentioned in Subsec. 3.1, for the proposed model,
natural bending and torsional elastic vibrations can be analyzed separately by
solving Eqs. (3.9). Then, the wheelsets can be regarded as simple torsional trains,
when the torsional eigenvalue problem is studied, or as two classical rotors coupled
by the bogie frame under bending vibrations, where the track model plays a role
of additional bearings acting in the vertical plane only.

The natural bending vibration analysis has been performed for the bogie in-
teracting with the three kinds of the track mentioned above in the frequency range
0+ 250 Hz and in the range of wheelset rotational velocity 2 = 0+ 250 rad/s, in
order to investigate an influence of gyroscopic moments on natural frequency val-
ues. In Figs. 6a, b there are depicted the eigenmode functions together with the
respective natural frequencies obtained for the bogie interacting with the “hard”
track for the wheelset rotational velocity §2 = 120.8 rad/s corresponding, at the
wheel radius 9 = 0.46 m, to the train speed vg = 55.6 m/s = 200 km/h. In these
figures the vertical projections of the first wheelset eigenmode functions are plot-
ted by the red lines and their horizontal projections by the blue lines. The vertical
projections of the eigenmode functions for the second wheelset are plotted by the
green lines and their horizontal projections by the black lines. The left- and right-
hand ends of the eigenmode projections of both wheelsets are connected by the
bars of the corresponding colors with the points which symbolically visualize the
modal displacements of the respective “corners” of the rigid body representing the
bogie frame. Thus, one can easily observe the modal motions of the bogie frame
with regard of the modal displacements of the wheelsets. From the results of
computations it follows that in the investigated frequency range, the bogie-track
model possesses 25 eigenmodes of vertical-longitudinal and bending vibrations,
while in Figs. 6a, b only 24 of them are shown. The symmetrical structure of the
investigated bogie-track system with respect of the track longitudinal axis results
in the symmetrical and anti-symmetrical eigenmode functions presented in Figs.
6a, b. As it follows from Fig. 6a, the first nine eigenmodes belonging to the low
frequency range 0+ 30 Hz are characterized by undeformed or almost undeformed
wheelsets. For the 15¢ eigenmode (f; = 4.441 Hz), both the wheelsets rotate to-
gether around the vertical axis, i.e. they yaw in phase with the bogic frame
in the horizontal plane only. For the 2" eigenmode (fy = 6.624 Hz) both the
wheelsets remain in standstill and only the bogie frame vibrates symmetrically
in the vertical direction. For the 3™ eigenmode (f3 = 6.950 Hz) both wheelsets
vibrate together symmetrically in phase with the bogie frame in the longitudinal
direction only. For the 4th eigenmode (f; = 8.396 Hz) both wheelsets remain in
standstill and only the bogie frame rotates, i.e. it rolls around the track longi-
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tudinal axis. The 5" eigenmode (fs = 9.403 Hz) is the pitching one, for which
both wheelsets remain in standstill and only the bogie frame rotates around
the axis perpendicular to the track longitudinal axis. For the 6t eigenmode
(fo = 15.370 Hz) the bogie frame remains in standstill and both the wheelsets
vibrate symmetrically in anti-phase in the longitudinal direction. For the 7th
eigenmode (f7 = 21.116 Hz) the bogie frame also remains in standstill and both
wheelsets rotate in anti-phase around the vertical axis in the horizontal plane
only. The 8 eigenmode (fs = 24.339 Hz) is opposite to the 3™ one, where both
the wheelsets vibrate together symmetrically in anti-phase with the bogie frame
in the longitudinal direction only. Similarly, the 9th eigenmode (fy = 26.911 Hz)
is opposite to the 15 one, where both wheelsets together rotate in anti-phase
with the bogie frame around the vertical axis in the horizontal plane only. From
the numerical calculations performed for the bogie interacting with the “soft” and
“very hard” track it follows that in the low frequency range 0 + 30 Hz, almost
identical results of the natural vibration analysis as these for the “hard” track
have been obtained, i.e. almost the same natural frequency values corresponding
to the successive nine eigenmode functions presented in Fig. 6a. This means
that within 0 -+ 30 Hz, the static and dynamic properties of the railway track do
not influence interaction with the bogie, which justifies the assumption of a rigid
track model made by many authors investigating the dynamic vehicle-track in-
teraction in the low frequency range, [1, 2, 5, 9]. Moreover, in the low frequency
range the computations carried out for other values of the wheelset rotational
speed {2 in the interval 0 + 250 rad/s have indicated almost no influence of the
gyroscopic effects on the natural frequencies and eigenmode functions.

The next 15 eigenmodes belong to the medium frequency range, where the
first ones are characterized by the natural frequencies greater than 60 Hz. For
all of them, as it follows from Figs. 6a, b, flexural deformations of the wheelset
axles are predominant and the bogie frame remains in standstill. Here, both
the wheelsets behave as two classical rotors under bending vibrations, which
are mutually coupled not by the bogie frame, but by the interaction with the
track. Moreover, for the rotating wheelsets the gyroscopic moments couple their
motions in the vertical and horizontal plane, which demonstrate the shapes of
the all eigenmode functions in Figs. 6a, b, i.e. from the 10tR to the 24" From
the computation results it follows that each single wheelset of the bogie demon-
strates analogous eigenvibration behavior as the vibrating rotor suspended on the
anisotropic supports exhibiting the backward and forward whirl effects described
in details in [12, 13|. Also the shapes and natural frequencies of the successive
medium frequency eigenmodes are very close or similar to those obtained for a
single wheelset in [12, 13]. Nevertheless, it is worth noting that for each backward
and forward eigenmode, both the identical wheelsets in the bogie vibrate mutu-
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ally in phase and in anti-phase, which additionally doubles the entire number of
the “rotor” eigenmodes. In the medium frequency range the natural frequencies
and mode shape functions obtained for the bogie interacting with the “very hard”
track as well as with the “soft” track are close to the corresponding successive ones
presented in Figs. 6a, b, where the greatest mutual differences of the respective
frequency values do not exceed 15%, except the 10t® and the 112 eigenmode, for
which in the case of the “soft” track the natural frequencies are much smaller and
thus these differences reach 23%. In the case of the “soft” track, the sequence of
the 2224 and the 23™4 eigenmode is mutually interchanged with the 23™d and 24t
ones, respectively, in comparison with the cases of the “hard” and the “very hard”
track. Moreover, for the “soft” track, the 11th eigenmode is interchanged with the
13th eigenmodes for the “hard” and the “very hard” track and thus, consequently,
the 122 and the 130 eigemnode for the “soft” track are interchanged with the
11th and the 12t® ones presented in Figs. 6a, b.

Similarly as in {12, 13}, it is to remark that within the frequency range
0 + 90 Hz for all eigenmodes, the planes of wheels and brake disks are always
perpendicular or almost perpendicular to the axis of the deformed wheelset axle,
Fig. 6b. Then, the wheels and brake disks behave as rigid bodies fixed in the
appropriate cross-sections of the wheelset axle. For the eigenmodes correspond-
ing to greater natural frequencies, one can notice bending deformations of the
wheels, e.g. for the 16t 17tk eigenmode and higher. According to the above,
one can conclude that modelling of the wheelset wheels in the form of rigid bod-
ies is sufficiently accurate only in a frequency range not exceeding ca. 90 Hz.
However, in the whole medium frequency range it appears to be particularly im-
portant to take into consideration the bending flexibility of the wheels in the
form of isotropic elastic membranes connecting the rigid rings with the wheelset
axle.

In Fig. 7 there are presented the results of natural torsional vibration analysis
for the single wheelset of the considered bogie. From the performed computations
it follows that in the frequency range 0 + 1300 Hz for the single wheelset two
anti-symmetrical eigenmodes and one symmetrical eigenmode occur. For both
the wheelsets these eigenmodes are respectively in phase and in anti-phase, which
results in the total number of six torsional eigenmodes for the entire bogie.

The eigenmodes depicted in Figs. 6 and 7 and the natural frequencies cor-
responding to them confirm that the proposed model of the bogie enables us
to obtain for both wheelsets, in the medium frequency range, all bending and
torsional eigenvibration modes as the ones, applied in [3, 4, 10, 11], analogous
multi-degree-of-freedom finite element models of the railway single wheelsets.



ON DISCRETE-CONTINUOUS MODELLING OF THE RAILWAY BOGIE... 183
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Fig. 7. Torsional eigenmode functions and natural frequencies for the single wheelset.

4-2. Results of analysis using the frequency response function

Further dynamic investigations for the considered bogie interacting with the
three types of the track mentioned above, i.e. with the “soft”, “hard” and the “very
hard” one, have been performed in two steps. Before the forced vibration analysis,
in the first step, in order to investigate better the sensitivity to resonances due
to the vertical bogie-track interaction, the frequency response functions (FRF)
were determined using Eqs. (3.16), where as the external excitation, a harmonic
function in the frequency range 0 + 1300 Hz of the unitary amplitude has been
imposed between the wheel and the rail in the vertical direction. Figure 8 presents
the frequency response functions for the model of the considered bogie interacting
with the “soft”, “hard” and the “very hard” track. From the obtained plots it
follows that for the all types of the track, the “peaks” of possible resonances occur
in the frequency range 0 + 250 Hz, which means that for greater frequencies the
bogie-track system is not sensitive to vertical excitations from the track, e.g.
caused by its unevenness, or due to periodic fluctuation of the track properties
during the run. Comparing the frequency response functions plotted in Fig. 8 one
can remark that the system bogie-“soft” track is more sensitive to vibrations in
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the frequency range 20+ 100 Hz, contrary to both the remaining systems, except
the local “peak” of the corresponding frequency 82 + 83 Hz for the bogie-“hard”
track system. In this frequency range the frequency response function for the
bogie-“soft” track system is characterized by two resonance “peaks” corresponding
to the frequencies 48 and 97 Hz. However, in the frequency ranges 0 + 20 Hz
and 100 + 155 Hz, more sensitive to vibrations excited by the vertical wheel-
rail interaction are the systems bogie-“hard” and -“very hard” track. Here, the
most severe resonance “peaks”’ correspond to the frequency of 112 Hz for the
bogie “very hard” track system, and to 126 Hz for the bogie “hard” track system,
where the latter is significantly greater than the former one because of stronger
damping identified in the “very hard” track. Above 155 Hz, all the frequency
response functions corresponding respectively to the “soft”, “hard” and the “very
hard” track are quite similar to each other, Fig. 8.

FRF [mN]

- bogie - 'soft' track (0.82*10"*8 N/m})
— - bogie - ‘hard track (2.03*10**8 N/m)
— bogie - 'very hard' track (3.0*10*8 N'm)

— —

0 50 100 150 200 250 300 350 400

frequency [Hz]

FiG. 8. Frequency response functions of the bogie-track system: for the “soft” ( ),
“hard” (- - —) and the “very hard” ( ) track.

4.3. Results of the forced vibration analysts

The vertical and lateral track unevenness are usually regarded as fundamental
sources of kinematic external excitations of the railway vehicles interacting with
the track. For the realistic train travelling speeds, the track unevenness can gen-
erate excitations in the low frequency range not exceeding 30 <+ 40 Hz. However,
the unevenness of the rail heads and wheel treads in the form of corrugations and
wheel polygonalizations are sources of very severe kinematic external excitations
in the medium and even high frequency range. The origin of such rail/wheel
tread damages are not sufficiently known yet and thus, the primary causes of
relatively fast development of rail corrugations and wheel tread polygonalization
are still being investigated. According to the above, similarly as for the single
wheelset in {12, 13], in this paper the periodic fluctuation of static and dynamic
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track properties during run as well as the wheelset residual unbalances are as-
sumed as primary sources of parametric and external excitations for the entire
bogie interacting with the track of ideal geometry.

In the second investigation step, the numerical simulations are carried out
for the non-linear model of the bogie, i.e. including all the non-linear and para-
metric terms temporarily neglected in order to determine the frequency response
functions. The calculations have been performed for the assumed type of the
bogie interacting with the three considered kinds of the track. The fluctuation
of track properties during run has been described by the periodic function (2.2).
For an appropriate finite number of eigenmodes taken into consideration, a rel-
atively fast convergence of series (3.10) assures a sufficiently accurate solution
of Egs. (3.13). For the investigated mechanical system in the frequency range
0-+1300 Hz 55 bending, 6 torsional and 6 lateral eigenmodes of the bogie as well
as 7 lateral eigenmodes of the track have been considered to solve Egs. (3.13).
The studied quantities of interests are the vertical dynamic wheel-rail contact
forces, dynamic torques transmitted by the wheelset axles between the wheels
and brake disks, tangential wheel-rail relative slips with regard of the full slip
in the sense defined in [5, 15] as well as the vertical and longitudinal vibratory
displacements of the wheelset wheel geometrical centres in the form of respective
orbits. The simulations of bogie-track interaction are performed for various val-
ues of the train speed v on the straight and curved track. All these quantities
are studied in time and frequency domain.

In Figs. 9 and 10 are presented the results of numerical simulation of the
bogie motion on the following straight tracks: on the “soft” track with the
travelling speed vy = 58.2 m/s = 210 km/h and on the “hard” track with
v = 75.6 m/s =2 272 km/h. These speed values for the sleeper spacing [, = 0.6 m
yield the so-called “track excitation frequencies” equal to vg/ls = 97 and 126 Hz,
corresponding to the most severe peaks of the respective frequency response func-
tions demonstrated in Fig. 8. In Figs. 9 and 10 by black lines there are plotted
the responses for the right wheel of the first wheelset of the bogie, by grey lines
the dynamic responses for the right wheel of the second wheelset are depicted,
and by dashed lines there are denoted the respective static average values. For
the straight tracks the assumed symmetrical structure of the considered mechan-
ical system as well as the symmetrical character of the excitations with respect
of the track longitudinal axis result in almost identical responses for the left and
right bogie wheels, whereas some negligible discrepancies are caused by numerical
inaccuracies, which occurred during integration of Eqs. (3.13). Thus, analogous
responses of the left wheels of the bogie are not presented in the graphical form.

On the “soft” track for vy = 58.2 m/s, the periodic variation of the track pa-
rameters during run with the track excitation frequency equal to vg/l; = 97 Hz
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results in relatively weak fluctuation of the wheel-rail vertical dynamic contact
forces with the fundamental frequency ~ 97 Hz around the gravitational static
force, Fig. 9. The amplitudes of these fluctuations do not exceed 14% of the aver-
age value, where the contact force amplitudes for the wheels of the first wheelset
are slightly greater than those of the second one. The dynamic torques transmit-
ted by the wheelset axles between the wheels and the adjacent brake disks are
very similar for both the wheelsets. Their fluctuation amplitudes around zero
value are relatively small, i.e. they only slightly exceed 200 Nm with the funda-
mental frequency ~ 20 Hz corresponding to the unbalance excitation frequency
2/(2r) = 20.14 Hz. From Fig. 9 it follows that the wheel center displacement
orbits vary essentially in the vertical direction, where the vibration amplitudes
corresponding to the second wheelset are greater than those corresponding to the
first wheelset.

In the second case of numerical simulation for the train speed v = 75.6 m/s
= 272 km/h on the straight “hard” track, the track excitation frequency vp/ls =
126 Hz corresponds to the greatest “peak” of the proper frequency response func-
tion in Fig. 8. Then, the simulated non-linear response of the bogie-track system
is much more severe. The amplitudes of the wheel-rail vertical dynamic con-
tact force fluctuation for the first wheelset reach 38% of the static average value.
However, this fluctuation for the second wheelset of the bogie is much smaller,
where the corresponding amplitudes do not exceed 18%. Here, at relatively great
travelling speed v, the dynamic pressing down of the first bogie wheelset and
the dynamic relbase of the second one are observed. The fluctuations of dynamic
torques transmitted by the wheelset axles are in this case also greater, where
the amplitudes reach 400 Nm with the fundamental frequency ~ 26 Hz excited
by the wheelset unbalances, Fig. 10. The wheel center displacement orbits are
charaterized by much greater extreme values both in the vertical and longitudinal
direction. Greater vertical displacement amplitudes are caused by much stronger,
than in the previous case, vertical interaction of the bogie with the track. The
much greater amplitudes in the longitudinal direction are a result of more signif-
icant influence of excitation due to the wheelset unbalances for the greater speed
vy and the corresponding to it rotational speed of the wheelset axles §2.

The numerical simulation has been also carried out for the bogie motion on
the “very hard” track with the travelling speed vy = 67.2 m/s = 242 km/h yielding
the track excitation frequency vg/ls = 112 Hz corresponding to the most severe
“peak” of the respective frequency response function demonstrated in Fig. 8. The
obtained results of calculations indicate that in this case, the system dynamic
response is qualitatively very similar to that for vp = 75.6 m/s = 272 kmm/h de-
picted in Fig. 10. The “peak” of the frequency response function for the bogie
interacting with the “very hard” track is higher than that for the “soft” track, but
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smaller than the greatest “peak” for the “hard” track, Fig. 8. As it follows from the
simulated results, the severity of the non-linear response for the bogie interacting
with the “very hard” track corresponds to the mutual relations between the com-
pared “peaks” of the frequency response functions. From the appropriate results
it follows that the amplitudes of the wheel-rail vertica) dynamic contact force
fluctuation for the first wheelset reach 25% of the static average value, and for
the second one they slightly exceed 20%. In this case the amplitudes of dynamic
torques transmitted by the wheelset axles also remain as “middle” values reaching
300 Nm with the fundamental frequency ~ 23 Hz corresponding to the excitation
due to the wheelset unbalances with frequency equal to 2/(27) = 23.25 Hz. In
comparison with the wheel center displacement orbits presented in F igs. 9 and
10, the extreme displacements of the orbits obtained for the bogie interacting
with the “very hard” track also remain “in the middle” both in the vertical and
longitudinal direction because of the mentioned “medium” severity of the vertical
bogie-track interaction, as well as since the considered travelling speed value v
yields the “medium” wheelset axle rotational speed 2 producing greater unbal-
ance excitations than these in the case of the “soft” track and smaller unbalance
excitations than these in the case of the “hard” track.

In the next two computational examples, bogie motion on the curved “hard”
track has been simulated. In the first one the motion is assumed on the curved
track of curvature radius Ry = 4000 m with the superelevation 0.06 m, with
the same travelling speed vp = 75.6 m/s 2 272 km/h as for the straight track.
In the second example the motion is assumed on the curved “hard” track of
curvature radius Ry = 1800 m with the superelevation 0.08 m, with the travelling
speed value vg = 49.2 m/s 2 177 km/h yielding the track excitation frequency
vg/ls = 82 Hz, which corresponds to the smaller “peak” of the proper frequency
response function shown in Fig. 8. The respective numerical results obtained
for these examples are presented in Figs. 11 and 12. Since on the curved track
the system dynamic responses for the left and right wheels do not overlay, the
investigated quantities for the left wheels are also plotted, where the results
for the left wheel of the first wheelset are depicted by the black dashed line and
these for the left wheel of the second wheelset are depicted by the grey dashed line.

The centrifugal force action during run on the left curve presses down the
outer right wheels to the rail and releases the inner left wheels of the bogie,
which results in greater average vertical wheel-rail contact force values for the
right wheels and in smaller average vertical contact force values for the left wheels
in comparison with the nominal static gravitational force on the straight track
without any superelevation, Figs. 11 and 12. Moreover, due to stronger para-
metric excitation from the track, the contact force fluctuation amplitudes for the
right wheels pressed down are slightly greater than those for the released left



190 T. SZOLC

wheels with the common track excitation frequencies vy/l; = 126 and 82 Hz, re-
spectively, for vg = 272 and 177 km/h. Similarly as for the bogie motion on the
straight track, on the curved one with the travelling speed vy = 272 km/h, the
fluctuations of the vertical wheel-rail dynamic contact forces for the first wheelset
are greater than those for the second one. Hence, in this case, the first wheelset
is also dynamically pressed down and the second one is dynamically released.
However, for vg = 177 km/h one can observe that the second wheelset is dynam-
ically pressed down and the first one is dynamically released, which results in
respectively very significant differences of the corresponding wheel-rail vertical
contact force amplitudes shown in Figs. 11 and 12.

Lack of the differential mechanism in railway wheelsets results on the curved
track in essential constant components of the tangential wheel-rail contact forces
in the longitudinal direction. These forces yield large static components of the
dynamic torques transmitted by the wheelset axles and of the wheel longitudinal
displacements, i.e. positive for the accelerated left wheels and negative for the
braked right wheels. The absolute values of static torque components reach
~ 750 Nm for vgp = 272 km/h at Ry = 4000 m, Fig. 11, and ~ 1500 Nm for vy =
177 km/h at Ry = 1800 m, Fig. 12. They are much greater than their amplitudes
of fluctuation. Nevertheless, fluctuations of the longitudinal displacements of
the left and right wheels as well as of the dynamic torques transmitted by the
wheelset axles between the wheels and the adjacent brake disks are remarkably
greater than those obtained for the straight track. Particularly for vg = 177 km/h
it should be remarked that for all the considered dynamic torque histories, the
components of track excitation of frequency vy /ls = 82 Hz are comparable to the
excitation components due to the unbalances, contrary to the case of the straight
track, for which excitation due to the unbalances is of primary importance, as
it follows from the proper results of the fast Fourier transformation. However,
for vp = 272 km/h on the straight and curved track the influence of the track
parametric excitation, in comparison with the excitation due to the unbalances,
is not so essential as for vy = 177 km/h, Figs. 10 and 12. For the left- and
right-hand wheels different values of the vertical and longitudinal average forces
acting during the run on the curved track result in respectively different constant
vertical and longitudinal components of the dynamic displacements of the wheel
centers, which demonstrate the completely different orbits for the left and right
wheels presented in Figs. 11 and 12. From the wheel center displacement orbits in
Figs. 11 and 12 it also follows that on the curved track, similarly as on the straight
one, the vertical vibration amplitudes are slightly greater for the wheels of the
first wheelset for vy = 272 km/h, while for vy = 177 km/h the respective vertical
displacement fluctuation amplitudes of the wheel centers of the first wheelset are
much smaller than those of the second one.
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In all the above considered computational examples, both on the straight
and the curved track, the quantity of particular interest are the resultant tan-
gential wheel-rail slips related to the full slip value corresponding here to unity
in accordance to [5, 15]. For the bogie runs on the straight track, the wheel-rail
tangential slips for all the wheels are relatively small not exceeding 13% of the
full slip value for vy = 272 km/h and 8% for vo = 177 km/h. Both tangential
slips are characterized by “smooth” time histories, which fluently oscillate around
the ca. 7.5 and 5% constant component values respectively for vy = 272 km/h
and vg = 177 km/h, Figs. 9 and 10. This means that on the straight tracks,
the bogie interacts with the track within the range of the so-called “micro-slips”.
From the fast Fourier transformation (FFT) of the relative slip time histories
obtained for the straight track it follows that, beyond the excitations due to the
residual wheelset unbalances and the track property fluctuation, the component
of double unbalance frequency, i.e. 262/(2x), is predominant, Figs. 9 and 10. This
fact can be explained by a character of coupling between the wheelset torsional
and bending vibrations in the longitudinal direction, which significantly influence
the wheel-rail slips. According to the assumptions for the considered bogie-track
system, this coupling is caused by the wheel-rail tangential contact effects and
by the wheelset residual unbalances described by the boundary conditions (3.2).
In Figs. 9 and 10 the former is expressed by the component of the track exci-
tation frequency vo/ls, and the latter by the so-called synchronous §2/(27), and
double synchronous frequency 22/(27), which follows from the respective terms
in Eq. (3.2)5. In Figs. 11 and 12 demonstrating simulation results for the bogie
running on the curved track, the time histories of the slips for the, inner in the
left curve, left wheels are similar to those for the straight track. However, for
the outer right wheels, the resultant tangential slips are characterized by quite
regular successive large “peaks”, the maximum values of which for vy = 272 km/h
and Rg = 4000 m slightly exceed 0.25, and for vy = 177 km/h and Ry = 1800 m
they reach 0.45 of the full slip value equal to 1. This fact gives reason for the
application of the non-linear Kalker’s theory in the assumed bogie-track model.
For both the considered train speed values vo, the respective amplitude spectra
are very “dense” and contain several high frequency components irregularly dis-
tributed along the whole frequency range 0 <+ 33000 Hz analyzed, which follows
from the proper results of the fast Fourier transformation. The “peaky” time
histories for the right wheel slips are caused by the lateral bogie-track interaction
due to the centrifugal forces in the form analogous to the well known “stick-slip”
effects for rigid bodies in a tangential contact. Due to the irregular character of
this interaction mentioned above, a further qualitative analysis of these responses
from the viewpoint of chaotic motions seems to be worth performing.
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5. FINAL REMARKS

In the paper, a discrete-continuous mechanical model of the modern rail-
way passenger car bogie interacting with a track was considered. By using this
model it was possible to investigate the bending-torsional-lateral vibrations of
the wheelsets coupled with vertical and lateral vibrations of the track. The pro-
posed model is characterized by simple equations of motion for the wheelset axle
cross-sections, where all the nonlinear and parametric terms describing excita-
tion due to contact forces, unbalance effects and interactions with the supports
are contained in the boundary conditions. The boundary conditions are coupled
with ordinary differential equations which describe the motion of the track model
and the bogie lateral vibrations. Solving the differential eigenvalue problem of
the linearized system and application of the Fourier solutions in the form of se-
ries, lead to independent modal equations in the Lagrange coordinates. These
equations are then mutually coupled by the parametric, nonlinear and gyroscopic
terms regarded as external excitations expanded in series in the analytical eigen-
functions. Fast convergence of the Fourier solutions applied for the proposed
approach enabled us to reduce the appropriate number of the modal equations
to solve, in order to obtain a sufficient accuracy of results in the given range
of frequency. Such a mathematical description of the investigated bogie-track
model is formally strict, demonstrates clearly the qualitative system properties
and is very convenient for a stable and efficient numerical simulation.

Comparison of the results of simulation obtained for the bogie motion on the
straight track with those obtained on the curved track indicates the same qualita-
tive character of the system response, but essential quantitative differences of the
extreme as well as of the average values of the dynamic forces, torques, relative
slips and displacements. In the paper an idealized system has been considered,
i.e. the wheelsets with perfectly round wheels and the track with even uncorru-
gated rails. The purpose of such investigations was to search primary sources of
dynamic interaction between the bogie and the track in the medium frequency
range. From the obtained numerical results it follows that the periodic fluctua-
tion of track properties during a run is a source of severe parametric excitation,
leading to the essential increase of fluctuation amplitudes of the vertical wheel-
rail dynamic contact forces, which can cause local plastic deformations on the
wheel treads and start the polygonalization process. Nevertheless, introduction
of kinematic excitations due to rail and wheel tread unevenness to the proposed
model of the bogie-track system makes no difficulties.

In the numerical examples presented, the essential influence of the track dy-

namic and static properties on the extreme values of dynamic wheel-rail vertical
contact forces and tangential slips has been demonstrated. From the results ob-
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tained for the considered passenger car bogie running on the “soft” track with
wooden sleepers as well as on the “hard” and “very hard” track with concrete
sleepers, one can conclude that the character of dynamic bogie-track interaction
is very complex and depends on numerous parameters of the given bogie and
the track. From the analysis of the linearized bogie-track system in the form of
frequency response functions it follows that in some frequency ranges, the given
bogie can be more sensitive to vibrations and in the other ranges less sensitive,
regardless of the dynamic and static track properties. Moreover, the strongly
non-linear character of the wheel-rail contact creating the unilateral constrains
qualitatively influences the system dynamic behaviour. Thus, it is impossible to
foresee in advance the extreme values of the wheel-rail dynamic contact forces
and tangential slips, dynamic torques transmitted by the wheelset axles and other
quantities of interest, without thorough and detailed linear and non-linear dy-
namic analysis of the given bogie running on the given type of the track for various
kinds and magnitudes of excitations. The presented mechanical and mathemati-
cal model of the bogie track-system enables us to perform such analyses in a wide
range of parameters of the bogie and of the straight and curved tracks.
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APPENDIX

The coeflicients of the orthogonality properties

— for system motion in the vertical plane:

2 n+3
o = 3 {08 0) + 3 [0 + 1850

=1 =2
n+3 At
A 14Ul g m(Anga) + 0 Y A / Ul (0)dy + mv11 23y,

5 A . 2 2
1122 oy + T2 (_Z%sz + Z221Rm> +mys3 (Zasz + ZBlRm)}

tmz1 [ZEm + Zn] + 2mz23 [ Z1m Zrm) + Iy A,
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where

, 1 N I, 1 I,
mzi = —m - mzo = =MA5 — —5,
Mz = gmas + 72 = ymas ~ -5

— for system motion in the longitudinal direction:

2 n+3
i = 3 a2 (0)+ 5 W)+

=1 =2

n+43 Aig1
+mn+4Wl?n+3,m(/\n+4) + P Z Ai / Vng(y)dy
1:1 >\i

+mx1 [X%m + X,%m] + 2mx2 [Xm X rm]

where
I, 1 I,
mx1 = 7MA5 + —, mxe = —Mas — —

4 a 4

— for torsional motion of the wheelsets:

2 n+3
7%771 = Z {IOlellm + Z IOl@lzm ) + IO,”+4912,n+3,m(An+4)
=1 1=2
n+3 Ait
o Z Toi / 0% (dyb, m=1,2 ..

Ai

— for lateral motion of the track:

2
Vim = {mmYﬁm + g [(Yzle + 8oYa1Lm)*

=1
+ (Yoirm + SoquRm)z] + M3 [(Yssz + 80YuLm)?
21 | - 2 9 _
+ (YairRm + $0Y4iRm) } +mprq (Y:;le + Y4lRm)} , m=12,..7,

— for lateral motion of the bogie:

2
2 2 2 2 2
Vam = MasYsgm + ) {mA (Yssz + YGlR.m) + mA7Y7le} ;
=1

m=1,23,4,



ON DISCRETE-CONTINUOUS MODELLING OF THE RAILWAY BOGIE... 197

i—1

where \j = Y I;, and riu, k= 11,12,2,3 for t =V, k=1,2,3,4 for t = L, are

=1

the mean values of mass parameters of the track model determined by the first
components of the sums in (2.2), mq = mg = mp43 are masses of the rigid rings
representing wheels, m 45 denotes the mass of the bogie frame, and m 47 is the
total mass of the wheelset axle and n brake disks, I, I, I, denote respectively
the mass moments of inertia of the bogie frame with regard to the main axes ,
Y, z, and Xpm, Xrm, Zim, Zrm, Apm are the eigenvector components of the
generalized coordinates describing vertical and longitudinal motion of the rigid
body (5B).

10.

11.
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