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The deformations and the drying-induced stresses in a saturated porous elastic and vis-
coelastic sphere dried convectively are analysed. The considerations are confined to the constant
drying rate period. The solution of the problem is obtained using both the Laplace transfor-
mations and the numerical finite difference method. The drying experiment was performed on
spheres made of three different clay sorts in order to validate the results obtained by numerical
analysis. The results obtained are presented in graphical form.

NOTATIONS

0;;  stresses N/m?
€i;  strains 1
u;;  displacement m
M shear modulus of elastic deformations N/m?
A bulk modulus of elastic deformations ~ N/m’
K 3K =2M+3A N/m?
ae moisture expansion coefficient 1

moisture content kg/kg
u moisture potential J/kg

An  moisture transport coefficient kg s/m?
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co moisture content of the moisture potential ~ J/ m?

po  dry body mass density kg/m?3
13 bulk modulus of viscoelastic deformations ~ N/m’
i shear modulus of elastic deformations N/m?

3x =2n+ 3¢ N/m?

1. INTRODUCTION

The main subject of this paper is to study how the assumed constitutive
model of saturated porous body influences the numerically estimated deforma-
tions and stresses induced during drying. We will study this subject solving the
problem of convective drying of a sphere in which the evolution of deformations
and shrinkage stresses is analysed. It is known that heating of the material dur-
ing the drying processes involves its expansion, and removal of moisture — its
contraction. The expansion and contraction will induce non-uniform strains (de-
pending on the geometry, material properties, etc.) what, in turn, results in a
complex stress state.

The material of the sphere is assumed to be both elastic and viscoelastic.
There exists a significant difference between the results obtained for the elastic
sphere and viscoelastic one, particularly for stresses. The classic problem of an
elastic sphere subjected to the radial temperature distribution has been solved
by several authors, as shown by TIMOSHENKO and GOODIER [21). MORLAND
and LEE [16] have analysed the stress in material with temperature — depen-
dent characteristics. MUKI and STERNBERG [16] studied the thermal stress dis-
tribution within infinite and finite linear viscoelastic spheres. RAO, HAMMAN
and HAMMERLE [19] have investigated experimentally the stresses in viscoelastic
sphere.

The thermodynamical background of the model used in this paper is pre-
sented in KOWALSKI [9] and KOWALSKI and STRUMILLO [10]. The solution of
the problem was obtained making use of both the Laplace transformations and
the finite difference method.

The considerations are confined to the constant drying rate period in which
the temperature of the saturated body is constant in the whole cross-section and
equal to the wet-bulb temperature. Therefore, the thermal stresses are absent
in this stage of drying and the internal stresses are caused only by the mois-
ture changes. Phase transitions inside the dried material are ignored and the
whole evaporation of the moisture is assumed to proceed on the boundary of the
drying material. The evolution of the distribution of shrinkage stresses and the
displacements of the sphere are presented in the form of graphs.
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2. MODEL PRESENTATION

The considered sphere is shown in Fig. 1.
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F1G. 1. A sphere dried convectively.

The following assumptions are to be satisfied:

1) The sphere consists of a porous elastic or viscoelastic material (Maxwellian
model), whose pores are filled with water.

2) The drying of the sphere proceeds symmetrically with respect to the middle
point, so that only the displacement in radial direction is different from zero, that
is ur #0, up, =0, ug = 0.

3) The external surface r = R is free of external loading.

4) The body force is neglected.

5) The analysis is confined to the constant drying rate period, which is char-
acterised by uniform temperature in the whole body, equal to the wet-bulb tem-
perature.

6) The sphere is assumed to be isotropic and continuous.

The equation of equilibrium for the moist porous sphere subjected to convec-
tive drying process is:

o —
(2.1) ;’j y o0 =900 _
In spherical co-ordinates the strains are:
ou, Up
(2'2) Erp = E“—, €09 = Epp = T

The mechanical properties of a linear viscoelastic material are simulated by
Maxwell’s model that consists of a spring and dashpot connected in series. In
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this model, all the energy goes initially into stretching of the spring, and the
dashpot gradually dissipates energy by its constant rate movement, resulting
in an exponential decay of stress in the system. This model reflects well the
behaviour of moist materials during drying.

The mathematical expression for this model is

M
éij + —n—sij = 2Méi]',
(2.3)

c'r-i-:g-a = 3K(é - ¢),

where s;; is the stress deviator and 0d;; — the spherical part of the total stress

tensor o;;, e;; is the strain deviator and €6;; = —ggxd;; — the spherical part of
the total strain ¢;;, 3K = 2M + 3A and 3x = 2n + 3¢ are the material constants
with M and A being the shear and bulk elastic moduli, and 1 and ¢ being the
shear and bulk viscous moduli.

The physical relations (2.3) are decomposed into a pure shear term and a pure
bulk compression term. It is known that the stress deviator (s;;) is responsible
for the shape change of the material, while the isotropic stress (o) is responsible
for the change of volume. The function

(2.4) ¢ = ayd + ap®

expresses the volumetric deformation caused by the temperature and moisture
contents, with 4 = T — T, and © = X — X, being the relative temperature
and the relative moisture content, respectively, «, is the coefficient of thermal
expansion, and ag — the coefficient of shrinkage (or swelling).

The following relation can express the general form of the Maxwellian model:

M A EM .
) Fii 4+ 05 = 2Mé;; o+ 25 6 — OM S
(2.5) 0]+770” EJ+(KU+X770) i oLy

This relation is simplified in further considerations through an assumption
that the ratio of volumetric moduli for elastic and viscoelastic materials is equal

. K M .
to the ratio of shear moduli of the respective materials, that is — = —. Using

X
this simplification, one obtains volumetric changes of the drying body. Thus, the
physical relation (2.5) is reduced to

M .
(2.6) O;5 + —T;—Uij = 2Mé;; + 3AEd;; — 3K pdyj.



STRESSES IN VISCOELASTIC SPHERE DRIED CONVECTIVELY 29

Let us now consider the porous sphere subjected to a radially symmetric
temperature and moisture content fields. The conditions of spherical symmetry
are fulfilled only if the shear stresses (o;; (¢ # 7)) and tangential displacements
(ug, uy) equal zero,

(2.7) 019 =0gp = 0pr =0 and wug=u, =0.
The radial displacement u, is a function of radius r and time ¢
(2.8) Up = Up(7, ).

The variation of the moisture content in the dried body is described by the
mass balance equation (KOWALSKI [6]):

(2.9) 0O =~

and by the moisture mass transport equation, which relates the moisture flux 7
to the gradient of moisture potential:

(210) Nk = _Am,ulcy

where A, > 0 is the moisture transport coefficient. The moisture potential y is a
function of the temperature 9, the body volume deformation € and the moisture
contents © (KOWALSKI [6]):

(2.11) p = p(d,€,0) = [cy? — yoe + co(O — O,)] /po,

where ¢y = po(9p/9V)c 0 is termed the thermal coefficient of the moisture po-
tential, vo = —pg(0p/09)y.0 = ce(2M + 3A) can be termed as the volumetric
stiffness and co = po(Ou/00)y. — an averaged “Leverett function” connected
with capillary rise of a wetting fluid in porous medium (SCHEIDEGGER [20]) or
(KIRKHAM and POWERS [6]).

As the temperature 9 of the dried body does not alter during the constant
drying rate period, the gradient of moisture potential is:

(2.12) POk = —VOE k + coO k.

The mass transport equation is of the form

(2.13) 6= f)—’;v? [—yee + co(@ - 6,)],
0

22 9
where V? = —g— + —82 = %82 <r28—> is the Laplace operator in spherical
r  ror r? Or r

coordinates, and € = 3 (€rr + €4 + €09) — spherical part of the strain tensor.
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The boundary conditions for the moisture mass transfer stipulate the sym-
metry of the moisture potential at the centre point of the sphere and convective
exchange of moisture on the external surface of the moist body during drying,
that is:

Op
A Bl
(2.14)
o
_Am A = O0m r=R — 3
ar r=R (&4 (/l'l R p'a)

where a,, is the convective mass transfer coefficient and u, — the potential of the
vapour in the air (drying medium).

3. SOLUTION FOR WET ELASTIC SPHERE

First, the solution for wet sphere with elastic skeleton will be presented. The
physical relations for elastic sphere are

Opp = 2Mepr + 3(A€ - K¢)51]
(3.1)

The shear stresses (the difference between radial and circumferential stresses)
are as follows:

ou u 0 (u
(32)  rp = Oy = 2M(ery — £4) = 2M ( b 7) = oMo <7> .

N

G}

Fi1G. 2. Cross-section of the analysed sphere.
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Substituting Eq. (3.2) into equilibrium Eq. (2.1), one obtains

00 pr d (u, _
(3.3) A AM o (T) =0.

Integrating the above equation, one obtains the relation between the radial stress
and displacement

(3.4) Opr = €1 — 4M%.
To find the radial displacement one should use Eqgs. (3.1) and (3.4) and (2.2),

Our —2—“—) =3K¢+cy.
or r

After integrating, the radial displacements are

(3.5) (@M + 4) (

r
C9 3K 2
(36) urzclr'i"r_?‘l‘mi{/(]ﬁ'f’ dr.
0

To find the constants of integration ¢; and cq, the following boundary conditions
are used

Urrlr:R = 0,
(3.7)

Up|r=R, = 0.

After some transformations one finds

R
AM3K )
- d
T M + A)BKR® + AMRD) R/ grdr,
Q

(3.8)

R

o = _ 4M3KR} / or2dr

T T M + A)BKR® +4MRY) ) '
0

The final form of the radial displacement is

R
3K 4Mr 2
. - d
B9 w = | kR +AMR} R/ gridr
0

R T
4M R} 5 1 5
" BKR® + 4MER3)? /d’r drt / ordr
Ro Ro
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Knowing the displacements, one can find the radial and circumferential stresses

R
AM3K AMR} )
Opp = 3 /d)r dr
oM + A | BKR3 + AMR3)r®
3K 7 1/
2 2
L — dr — — d
+3KR3+4MR8/¢T g r3/¢r ")
Ry Ro
(3.10)
r R
oM3K (1 [ ., 6K ,
= [ ——— —_ - d
700 =% T oMt A r3/¢T dr+3KR3+4MRSR/¢T r
0
4M R} 7
0 2
dr —
" BER 1 AMR S R/ grdr =91,
0

The above solution is valid for a hollow sphere with internal radius Rg. Going
with this radius to zero, one can obtain the solution for a full sphere, that is:

4Mr
(3.11) Up = 2M+A (3KR3 /¢r2dr+ ——/¢r2dr> ,
a3k (1 f 1
it S 2 = 2
(3.12) O = oA (R3 0/¢r dr 3 0/¢r dr) ,

T R
2M3K 1 2
(313) 00 = Opp = m (-73/¢r2dr+ Eg/(ﬁ?“?d‘r — ¢> .
0 0

For the centre of the sphere (r = 0), the radial displacement is zero, u(0,t) = 0.
With the help of the De Hospital rule, one determines the stresses at the centre
of the sphere

R
AM3SK [ 1 P
(314) Opp = 0O = U‘P‘P = m (']%—30/¢7'2d’l" - g) .
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4. STRESSES AND DISPLACEMENTS IN VISCOELASTIC SPHERE

Let us consider a viscoelastic sphere that satisfies Maxwell’s physical relation
(2.6). This relation in terms of Laplace transforms takes the form

- 5 - — T
(4.1) ol = —r [2Meij +3(Az — qu)aij] .
$+ —
n
The initial values for the stresses and strains were assumed to be zero. Note
that the physical relation for viscoelastic body expressed in Laplace transforms,
is proportional to that of the elastic one, that is:

S —
(4.2) 5y = —701; = 2M" 5 +3(A e - KV$)6:5,
s+ —
n
where
(4.3) 75 = 2MEij + 3(As — K§)di;
and
v o_ s v _ S V_g S
(4.4) M" =M o A=A i K =K R
s+ — s+ — s+ —
n n n

are the viscoelastic material constants represented in Laplace transforms by their
elastic counterparts, (see ALFREY (1944), LEE (1955)). The equation of internal
equilibrium of forces expressed in Laplace transforms is

(4.5) 55 =0.

Substituting physical relation (4.1) into the above equilibrium equation, one ob-
tains

(4.6) 2MVE;; +3(AVE,; - KVg,)=0.

Similarly, the boundary condition for viscoelastic body expressed in Laplace
transforms

4.7) Ez‘;nﬂr:R =0,
or
(4.8) [2MVa-j +3(AVE - Kva)aij] njlr—r = 0.

The above statements justify the construction of solution for the viscoelastic
sphere with the use of the solution for the elastic sphere. The solutions are similar
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to those given by (3.11), (3.12) and (3.13),

3KV aMVr | 17
4. ——V: /_—_2 _/—2
(4.9) Uy SV T AV (3KVR3O ¢r al7"+r2 ¢redr |,
0

R r
4MV3IKY 1 — 1 /-
=V _ 2 2
(410) 7 = oy av (ﬁo/ drdr - —30/ r d?”) ’

T R
oMV3KY [ 1 [- 2 [- _
=V _ =V __ 2 2
(41D oy = %00 = G371 47 (‘3/"5 it g [Friar+ ”¢> |
V] 0

It is easy to notice that radial displacement of the viscoelastic model is the same
as that of the elastic one, that is

(4.12) 2/ =u? and w)/ =uf.

The inverse transformation for stresses gives

t
(4.13) oV (r,t) = ol (r,t) —a/e"a(t_T)aﬁ(r,T)dr,
0
t
(4.14) o¥¢(r, t) = ofw(r, t) — a/e—a(t_T)afw(r,T)dT,
0
(4.15) ops(r,t) = ogy(r,t),

M . o .
where a = — is termed as the viscosity coefficient. Note that for n — oo or

n
a — 0, one obtains the solution for the elastic sphere.

5. CALCULATION OF THE MOISTURE POTENTIAL

One can obtain the moisture distribution across the sphere using the mass
balance Eq. (2.9) and the moisture mass transport Eq. (2.10). The physical
relation for moisture potential (2.13) contains the body volume deformation e,
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which now can be expressed as:

R
1 1 /0u,  2u, 3K 4M 9 )
(5.1) 6_36““_3(87'+7>_2M+A<3KR30/¢rdr+§'

Thus, the moisture potential is a function of the moisture contents and the tem-
perature (here being constant):

3K 4M
(5.2) koo = ¢y — yo (

R
2 ¢

dr + = e - 6,).
oM+ A 3KR3O/¢T ’”‘3)“9( ")
The above relation allows to express the boundary conditions (2.14) by the mois-
ture contents function only.
Finally, using Egs. (2.9) and (2.10), the equation of diffusion type for the moisture
contents distribution is derived,

(5.3) O = LV?e,

with the coefficient A
(5.4) L="3(co - t600),
0

containing material constants. The temperature did not appear in Eq. (5.3) since
the constant drying period is considered here.

The drying process begins with constant moisture potential distribution in
the whole sphere
(5.5) p(r,0) = po,

where y is calculated from relation (5.2) for the initial values of moisture contents
and temperature.

The moisture contents is determined from Eq. (5.3), using the boundary
conditions (2.14) and the initial condition (5.5). To solve Eq. (5.3) numerically,
the partial derivatives are replaced by the central finite-difference approximations
(the Crank-Nicolson method), that is:

(5.6) >0 _ 0., —20] + o, 00 _ 0/, - 0L,
' or?2 | r=mr Ar? T Or 2Ar ’
t =t r=r;
t= t]‘
and for the time derivative:
9?0 eIt _ o’
(5.7) —_— =t
ot | r=mr At

t =t
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where subscripts are used to denote the position and superscripts — the time. For
a one-dimensional problem in spherical coordinates, the Crank-Nicolson formula
has the form:

Ar Ar
(58) -D (1 ~ —) et + (2 +2D)0!"" - (1 ) ot

:D(l———)@ +(2 —2D)@{+D<1+A—>@l+l,

At

LAY

The stability and convergence for the Crank-Nicolson method is true for any
positive D, although small values are more accurate. The moisture contents
distribution is calculated from Eq. (5.8). Note that the new moisture contents
@71 is not given directly in terms of the known moisture contents one time step
earlier, but is a function of the unknown moisture contents at adjacent positions
as well. It is therefore termed an implicit method. This method requires a
simultaneous solution of Eq. (5.8) at each time step. The first and the last of
these equations are connected with the boundary conditions (2.14).

(5.9) D=

6. EXPERIMENTAL TECHNIQUE

A drying experiment was carried out to validate the results obtained in the
theoretical analysis. Figure 3 shows the configuration of the experimental equip-
ment. The length of drying tunnel was 1000 mm. The inside size of the cross-
section was 150 x 150 mm. The test section was located 500 mm far the air
inlet. To make the air flow in the whole cross-section uniform, the system of
wire meshes was installed. The drying medium (hot air) was supplied into the
duct through an electric heater from a blower. The hot air velocity was constant
and equal to 1 m/s. The sample was made of clay in the form of a sphere of 30
mm in diameter. Three kinds of clay (used in producing flowerpots) were tested.
Five samples for each kind of clay were prepared and dried convectively. The
sample was placed on a small mesh table, connected with the electronic reading
balance (Radwag WPS-720). To secure antisymmetrical drying, the mesh table
was rotated after each weight measure through 120° around its axis, and after
each diameter measure, the sphere was rotated through 120° in the plane perpen-
dicular to this table. Dry and wet thermometers were installed to control the air
and sample temperatures. To measure the changes of the sphere size, the sample
was taken out of the test section every three minutes.
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FiG. 3. Experimental equipment. ! — electric heater, 2 — blower, § — heater and wire mesh,
4 — electronic balance, 5 — thermometer, 6 —- clay sample.

7. NUMERICAL EXAMPLES

The computer calculations were carried out for the clay (a ceramic-like ma-
terial) characterised by the following data:

A = 10° [MPa] M = 625 [MPa]
ap = 24 x 1074 1] ay = 3x 1078 [deg™!]
cy = 2.41[J/m® deg] co = 6.6 x 103 [kJ/m3]

Apm = 3x107% [kgs/m3] po = 1.2 x 10 [kg/m?]
a = M/n[1/s] a = 1073 +107% [1/5]

Figure 4 presents the distribution of the moisture contents versus the sphere
radius at several instants of the drying time.
It is seen that the region close to the surface (r = 0.03 m) is being dried relatively
quickly but at the centre of the sphere it reaches the reference moisture contents
Oy after 2.5 hours of the drying time. There is no difference between the curves
O(r,t) for the elastic sphere and the viscoelastic one for the data given above.

Figure 5 presents the radial stresses in the drying sphere as a function of
time for various radii. The stresses are the highest at the centre and zero on the
surface. The shape of the curve is typical for Maxwell’s model. The stresses reach
their maxima after three minutes of heating and then relax slowly, approaching
stress-free conditions after a long period of time.
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Figure 6 illustrates the changes of the relative volume of the sphere. The
experimental curves represent three kinds of clay. It is seen that the behaviour
of individual clays is different. One of them (clay number I) is almost incom-
pressible. The third one changes its dimensions slowly but in a continuos way.
The failure of the clay number I occurred after a short period of drying. On the
contrary, the clay number III has not cracked on the surface during tests.

VIV,
I

095}

090f

035 i

a80f

Time [hours]

F1c. 6. Changes of the sphere volume: I, II, III ~ experimental data, T - theoretical curve.

The theoretical curve represents approximately the second kind of the tested
clay. It should be noticed that the theoretical model was developed for the first
period of drying.

In Figure 7 it is visible that the duration of the constant drying rate period
(first period of drying) is about 46 minutes for the sample made of clay II. This
experimental curve in Figure 7 allows to divide the drying process into three
periods. First period consist of two phases: preheating (about 12 minutes for
clay II) and constant drying rate period (about 46 minutes). The second period
(overheating) begins after about 46 minutes of the experiment. There are no
exact limits between these two periods of drying.

Figure 8 shows the difference between viscoelastic stresses and the elastic
ones.

This is seen that viscosity influences significantly the magnitude of stress
in dried materials. For great viscosity, represented by parameter a, the stress
distribution is more uniform and reaches smaller values.
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F1G. 7. Experimentally measured mass rate curve for clay number II.
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FiG. 8. Comparison of stress distributions in the elastic and viscoelastic sphere.

[40]
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8. CONCLUSIONS

1. The rheological properties of dried material influence considerably the
drying-induced stresses and insignificantly — the moisture distribution and the
moisture potential.

2. The stresses reach smaller magnitude (depending on viscosity) in viscoelas-
tic material than in the elastic one.

3. The stresses are the highest at the centre and zero on the surface.

4. The stresses reach their maxima in the first period of drying process and
then relax slowly, approaching stress-free state after a long period of time.

5. The solution of the viscoelastic problem agrees well with the elastic one if
the dependence on time is cancelled.
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