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ON THE PROBLEM OF BENDING OF TRANSVERSALLY
ISOTROPIC PLATES

V.BOZHYDARNYK

LUTSK STATE TECHNICAL UNIVERSITY, LUTSK, UKRAINE

The possibility of analysis of transversally isotropic plates of medium thickness by means
of representing the displacements in the form of finite series along the lateral coordinate is
examined. Differential equations of the twelfth order are derived. Conditions on the plate
boundaries are determined. Examples of numerical calculations are presented. The article is a
sequel to papers [11 - 13].

1. INTRODUCTION

Many papers devoted to the construction of a generalized theory of thin
plates do not employ the main hypothesis of the Kirchhoff’s classical theory ‘of
thin plates bending — the hypothesis of undeformed normals. Such approaches are
based on the theories of TIMOSHENKO [14], REISSNER [10] and AMBARTSUMYAN
[1]. Almost all of them are based on the assumption of the parabolic law of distri-
bution of shearing stresses o,,, 0g, across the thickness of the plate. Such theories
seldom take into account the influence of normal stresses o,,; the possibility of
determining the lateral deformations ¢,, is also rarely taken into consideration.
Most of the specified theories of plates of medium and large thickness which
include shear and normal deformations [1 — 6, 9] do not differ much, and their
results give a small increase of the accuracy of the solution, in spite of substantial
increase of the complexity of the governing equations.

In devolopment of the author’s earlier inverstigations [11], in this paper the
differencial equations of bending are reduced to the equations similar to the
equations of Timoshenko’s type with simultaneous addition of terms which take
into account the effect of transversal contraction and tangential loads applied
upon the faces of the plate.
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2. PROBLEM FORMULATION AND SOLUTION

Let us examine the stress-deformed state of the circular plate made of
transversally isotropic material with radius a and thickness 2h, referred to the
cylindrical system of coordinates 7, 8, z. The axis Oz is directed vertically down-
wards. Let us accept that the median plane of the plate, which is the plane of
elastic isotropy, coincides with the coordinate plane z = 0, outer surfaces being
described by equations z = +h, < @ = const and r = a, —h < 2 < h (Fig. 1).
Lower and upper surfaces of the plates ST and S~ are under the influence of
external forces q* = 740 + ’r{jt 0° + ¢£z° (z = +h), where 1°, 0°, 20 are unit
vectors of the cylindrical system of coordinates 7, 6, z in the examined point.
Then, the boundary conditions on St and S~ may be written down as follows:

+
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Fig. 1.

Having denoted the components of elastic displacement vector as Uy, Ug, W,
we shall look for the solutions of the problem in the form of truncated series [12]

(2.2) {U(r,0,2),Up(r,0,2)} = {ur(r,0), ug(r, 6)}
+ Z {tm(r,0),up1 (r, 0)} 2",

n=1,3

4
W (r,0,2) = w(r,0) + Y fa(r,0)2",

n=1
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where

1 701 1 1 B
—m, U02=m, Tr1=-2*(Tr+—TT), 7'01:‘2‘<7'9+"7'9)a

UT(Ta 0)) Ug(’f‘, 9)7 u'r‘l(ra 9)7 Ug1 (T) 6)7 U'TB(T? 0)7 ’ugg(’f', 9)7 fn ('f‘, 0) — are as yet un-
known functions.

As in the papers [11 - 13], we shall use the following expressions for resultant
forces in the isotropy plane S,, Spg, Tyg, shearing forces N;, Ny and bending
and twisting moments M,, My, H,g in the plate,

h
{STT,8007T7‘07NT;N0} = /{Urra090a0r97arz,09z}dz’
—h

(2.3)
h

{MT,MH,HTH} = /{UTT7099)0T9}2dz7
“h

which satisfy the equilibrium equations

a T 1 Tr rr
Sy +_3 9+5 Soe

or ~r 06 r -

c');;to " %_aggﬁ +2% = —Tg2,

(2.4) Tt W=
Bgﬁe + %%\gﬁ +2$ = Ny — h7p,

where
1

(I1=§(q;—q;)a @ =g +q;,

Tro =T 4+ 717, Tg;):TgJ“-I—To_.

If we find the components of deformations Eq. (2.2) and, by using Hooke’s
law and boundary conditions (2.1), the expressions for resultant forces and mo-
ments (2.3) and equilibrium Eq. (2.4), we shall obtain the system of differential
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equations
(2.5) A%p = W"hAg, - -2-(—12"—)"”
(2.6) DA% = qo + my — £1Aqs + €] Amy,
(2.7) DAw, = e-(q2 +ma), AR —Kk302 =0.
Here 2(r,0) = A’lkg (861\7{ L %Bal\é}) is the function of shear angles; ¢(r,6)

is the function of the forces in the median surface of the plate which determines
the resultant forces in the isotropy plane,
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A - two-dimensional Laplacian operator in a cylindrical system of coordinates;
E ~ E, = Ey, E' ~ E, — elasticity moduli for the directions parallel and per-
pendicular to the isotropy plane z = 0; v ~ v = vy, V' ~ Vpr, V' ~ 1py —
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Poisson’s ratios; G' ~ Gr9 = Gy, — shear modulus; w, — component of vertical
displacement caused by lateral shear.

The constructed system of differential equations is of the tenth order. It is
divided into two independent parts. One equation of the fourth order (2.5) refers
to the generalized plane problem which includes the load applied to the surface of
the plate. The system of Eqs. (2.6), (2.7) of the sixth order describes the problem
of lateral bending of transversally isotropic plates.

Besides Eqgs. (2.5), (2.6), the functions ¢, £, w, w, must also satisfy
five boundary conditions on the face (cylindrical surface) r = a = const of the
plate. In particular, the conditions of a simply supported plate at r = a, z=
20(—h < zp < h) are written down in the form:

Srr =M, = Hyg = 0, U Iz:zo = Uelz_—_o =ug =0,
(2.8)
Wiz 2 W|,_g = w = 0(r = a);

the conditions of rigid fixing of the surface in the form:
Ur Iz:zo = Urlzzg =u, =0, Up !z:zo = U0|z=0
=ug =0, WIZZZO = le:O =w =0,

(2.9)
oU,

9z 7%

oy
0z |,y

0 = (url + 3ur322)lz:zo = 07

= (ugy + 3ue322)|z:20 = 0(r = a).

The last two conditions meant that the rotation of elements at points z = +2p,
symmetrical with respect to the median plane, are equal to zero.

In view of possible approximation, the two last boundary conditions are writ-
ten as

Wl Lou _

9z z=z0 — 9z =0 Tl y
e | L 0Us|
W z=29 — az =0 =Ugy = 0(7‘ = G).

The condition of fixed support clamping can be simplified to the form:
(2.10) Uy =ug=w = uy = ug = 0(r = a).

In the particular case of loading the plate by normal forces (7 = T,
the average inner force factors look as follows:
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It is noticeable that functions +,, vy for the moments play the role as functions
ur, ug for the resultant forces in the plane of the plate.

3. EXAMPLE AND FINAL REMARKS

As an example, let us examine the plate deflections under the action of uni-
formly distributed load on the upper surface of the plate (¢; = ¢, ¢ =0, ¢ =
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—q/2, g2 = q). This load leads to the axi-symmetric character of the problem
(Ug = 0) and ensures the independence of the solution of the angle 6. Integrating
the system of Egs. (2.5), (2.6) and taking account of the condition of simply
supported edge of plate (2.8), we shall find, in particular, expressions for vertical
displacement W, displacement v = u, and normal stress o,

g@®*=r?) [5+v , 8nh? q
3.1 2) = e 8nh e
(3:1) Wina == T " Tsa—m| tam 2
_qyuzQ(a2 _ 7.2) qu(zg _ 22)

l—v ,  4nh? }

8(1-)D ' 16(1-0)D |1+5° T5a-9

aoq 2 2 As 4 4
—8hEl [6/12(20 -z ) - —h_Q(ZO -z )j! 3

!

vy 3qz 22 p2
u(r) = Yol or(r,2) = 23 {(3+ v)(a® —r?) +m (; —= 0

1
040=§—V’>\, n=4§—~l/"(7—z/), m = 4 [———y”(3+v)],

!

[1 V(1 + u)%] .
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We find it necessary to note that at zp = 0, the obtained expressions concide
with the formulas of the thick plates theory [6]. At the same time, the offered
modification of the plate theory enables the realization of a more natural way
of simple supporting, when the plate is supported at the edge of its lower face
z = h, that is, when 25 = h (Fig. 2 a).

Columns 4, 6 of Table 1 contain tabulated values of dimensionless displace-
ment W(z) = W(0,2)E/(ga) on the outer and median surfaces (z = +h; 0),
calculated by formula (2.12) for material E/E' = G/G' = 1; v = v" = 0.25 and
transversally isotropic material which, by its thickness, has properties of com-
posite E/E' = 25; G/G' = 2.5; v = 0.25; v = 0. These results are compared
with the data obtained for the same isotropic material by DS method [7, 8] in
spatial problem statement of elasticity theory [8] and by means of the Reissner
and Ambarcumyan theories. Calculations have been done for two different values
of the relative thickness of the plate. The absolute relative error of the obtained
value is given in brackets.
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Table 1. Tabulated displacement W (z) for simply supported plate.

Isotropic material Transversally isotropic
h z DS method By Eq. Reissner’s By Eq. Ambartsumyan’s
a h 18] (3.1) theory (3.1) theory
Y I o N e 2612
05| 0 1.549 éé?;:) (113383%) 4.956 2.612
1 1.317 (15?7; (11?1?"75) 2.612 2.612
-1 12.92 (})25?;3) (%]33(()7::) 21.22 16.22
0241 0 13.33 (%)39?71) (1134(;:’) 17.15 16.22
1 12.72 (%)2537:?) (1139((]73) 16.22 16.22

It is seen that the values of the isotropic plate deflection, found by formula
(3.1), agree with the exact solution (see [8]) even for the plate of large thickness
(h = 0.5a). The maximal absolute relative error on the lower and upper face of
the thick plate amounts to 5.5%; on the median surface it is the smallest — 3.9%.
For 2.5 times thinner plates the difference does not exceed 1% and amounts,
respectively, to 0.5% and 0.9%. As compared with formula (3.1), the Reissner’s
theory gives larger error which amounts even to 27% for thick plates; however,
the error reduces fast for smaller thickness and at h = 0.2a it does not exceed 2%.

At the same time, it is seen from Table 1 that displacements of the plates made
of anisotropic material differ greatly from the corresponding displacements for



ON THE PROBLEM OF BENDING OF TRANSVERSALLY ISOTROPIC PLATES 69

isotropic plates. Furthermore, great differences between the displacements of the
points located at different depths of the same thickness plates are also observed.
Maximal displacement of the loaded thick plate surface center (h = 0.5a), for
example, is 5.8 times greater than the displacement of the loaded surface. The
difference for the thin plate h = 0.2a equals 30.8%. The main reason for the
above mentioned differences is the influence of transversal contraction.

It should be noted that if " = 0, the obtained displacement of the lower sur-
face center (r = 0,2z = h) will correspond to maximal deflection of transversally
isotropic plates, found by the theories of Reissner and Ambartsumyan. However,
the plate deflections are considered to be similar all over the thickness.

When the clamping conditions (2.10) are satisfied on the plate boundary
(Fig. 2b), the expressions for vertical displacement and normal stresses at the
center of the plate equal

qa 8(8G/G’ + V”) h2 g,
(3.2) W(0,z2) = 51D |:1 501 + — i (20 — 2)
B ql/”a2 9 2 2 2 8G/GI + I/”h_2
T A AR T T

_ &9 22 A 4 4],

4h? 22
1+ (1 -—I/)a2 m +m2ﬁ

ql/”
2(1 - v)’

3qa®z(1 + v)
32h3

(3.3) orr(0,2) = 0gp(0,2) =

2G V" 11+v 2G nw 3+v

50T 10 ™30 V30t

The results obtained by formulas (3.2), (3.3) at v = " = 0.25 for isotropic
G

E G’
umn 7) as well as by DS method [7] and by formulas of the Kirchoff’s theory of
thin plates for isotropic material and the Reissner’s theory are compared in Table
2. Tabulated dimensionless normal stresses &,(z) = g,.(0, ) /q are calculated at
the upper face center (r = 0,z = —h), where they are maximal; it was accepted
that parameter zy = h.

Data analysis shows that for the examined thickness h/a = 0.2,0.1, the errors
of the formula (3.2) for median surface of isotropic plate (column 4) do not exceed
1% in comparison with the exact values of DS method.

miy = —

material (column 4) and transversally isotropic = 5) material (col-
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The errors of the Reissner’s theory, which takes into account lateral shear
only (column 5), are also negligible in the case. However, it is accepted in shear
theories that vertical displacements of median surface are similar to displacements
of other parallel surfaces, though, as the analysis of the results of Table 2 shows,
they may greatly differ.

Table 2. Tabulated displacement W (0) and stresses — o,(—h) for a clamped plate.

Transversally
Isotropic material isotropic
material
h DS By Eas. Reissner’s | Kirchoff’s By Egs. Reissner’s
a method (3.2), theory theory (3.2 theory
(8] (3.3) (3.3)
= 4.553 4.622 2.747
W (0) 0.2 4.543 (0.22%) (1.74%) (39.5%) 11.94 12.12
25.56 25.72 21.97
0.1 | 25.61 (0.20%) (0.43%) (14.2%) 40.47 40.72
3.410 3.130 2.930
—orr(—h) | 0.2 3.631 (6.1%) (13.8%) (19.3%) 4.076 3.130
12.20 11.92 11.72
0.1 | 13.15 (7.2%) (9.3%) (10.9%) 12.87 11.92

The errors of formula (3.3) for stress o, in isotropic plates equal 6.1% and
7.2%, correspondingly. The above mentioned formula gives underestimated val-
ues in comparison with the exact ones. Still more underestimated are the results
of the Reissner’s theory which do not take account of lateral normal deformation.
As it is seen from Table 2 (columns 5, 8), both the Reissner’s and Kirchhoft’s
theories do not pay sufficient attention to the effects of lateral anisotropy of the
plate.

Thus, the generalized theory of plates indicates that transversally isotropic
plates analysis should take into account not only the corrections for lateral shear
deformation but also the corrections for lateral normal stresses and deformations.
The latter ones may in some cases considerably exceed the shear corrections.
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