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The paper concerns the specification and comparison of numerical examples of optimization
of beams in the state of periodic parametric resonance with respect to different measures of
the phenomena considered, i.e., with respect to different optimization criteria - some objective
functions in monocriterion and multicriterial optimization. A formulation of monocriterion and
multicriterial optimization problems for mechanical elements, subjected to a parametrically
exciting force periodic in time, is given. In multicriterial optimization the scalar objective
functions characterizing the parametric resonance are introduced. The paper deals with the
problems of finding the control function - function of the shape (the area of cross-section
of the beam) which maximizes or minimizes the objective functions under the constraint of
constant volume. In some cases the optimization problems under conditions of parametric
resonance reduce to the optimization problems with respect to natural frequency. The examples
of parametric optimization against loss of stability are solved and analysed.

1. INTRODUCTION

Papers [1 - 6] present a brief history of parametric phenomena from Fara-
day and Lord Rayleigh to modern physics. In many problems, the motion of
systems is described by means of the Mathieu-Hill equations. In recent years,
many new applications of Mathieu equation have been found [6 - 8]. Usually
the parametric resonance is a very dangerous and undesirable phenomenon in
mechanical systems. Hence our aim is to avoid the resonance states or to mini-
mize their disadvantageous effects. One of the methods leading to this is optimal
structural design. In optimization procedure the resonance effect should be min-
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imized by optimization (maximization or minimization) of some measures of the
phenomenon — some objective functions.

There is a small number of papers devoted to the problems of variational opti-
mization under dynamic stability constraints. A significant point in the monocri-
terion and multicriterial variational optimization procedure is determining and
introducing appropriate measures of the phenomena considered, i.e.optimization
criteria - some objective functions.

The problems of optimization at the loss of dynamic stability were discussed
in paper [9] where, for the first time, the objective functions were introduced as
some measures of dynamic instability region. Next, in paper [10] the variational
optimization problems for a simply supported beam subjected to a longitudinal
force periodic in time were formulated. The results presented in this paper were
generalized for a beam with other boundary conditions and for multidimensional
elements (e.g. the optimization of parametrically excited plate problems) in a
monograph by FOrYS§ [11]. In the monograph we formulated and introduced
physically motivated quantities characterizing parametrically excited systems as
an objective function. Some suggestions with reference to multi-criterial opti-
mization of a system in the state of parametric resonance are presented. Next
the problems of optimization discussed in the monograph are continued in papers
[12, 13], devoted especially to multicriterial optimization in paper [13].

The present paper concerns the specification and comparison of numerical ex-
amples of optimization of a system in the state of periodic parametric resonance
with respect to different measures of the phenomena considered, i.e. with respect
to different optimization criteria — some objective functions in monocriterial and
multicriterial optimization. The mechanical elements under consideration are
most often made of the Kelvin-Voigt viscoelastic material. Problems of system
optimization in periodic parametric resonance are reduced to static considera-
tions.

2. PARAMETRICALLY EXCITED SYSTEMS — EQUATIONS OF MOTION

The equation of motion of a non-damped “non-prismatic” parametrically ex-
cited elastic elements has the following form, cf. FOry$ [11], Fory$ [12]:

~ 2w » a
1) i (h) [%;2—] +§(h)[w] + (1) Pplu] =0,

where h is the vector of control functions or the vector of cross-sectional param-
eters (e g. area of the cross-section of the rods or the thickness of the plate),
M, S, Pg ~ are the inertia, elasticity and stability linear operators. The form
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of these operators depends on the kinds of mechanical elements to be consid-
ered, w(z,t) is a transverse displacement of vibrating system, 3(¢) is a periodic
function of t. We look for an approximate solution of the above problem in the
form

N
(2.2) w = Z Fe@® e (,y, 2),

where fi(t) are the unknown functions of time and <p§€) are the unknown
eigenfunctions of the eigenvalue problem. Applying the Galerkin’s method to
Eq. (2.1), we obtain the system of ordinary differential equations of the second
order in the matrix form, cf. [1] and [11].

After some rearrangements, our problem is now described by an ordinary
system of equations:

a) the eigenvalue equations with proper boundary conditions

(2.3) [$(h) - W’ M (h)] o™ =0

and
b) the equations of the second order in the matrix form

N
(2.4) d€k+2k(h)fk wi(h [fk+ﬂ Zbkjfj}zo, k=1,2,...,N,

dt dt
where (k)
0 o (e, S(0)[pe]) _J
(2.5) Wi = (KE)
(or, M(R)[gg]) — JS
and approximately
o 1 (g SMp)) I
(2.6) Por & —p— =~ : =TT RR
kk (¢k, Pslox]) J3

expressions (2.5), (2.6) are the nonadditive functionals connnected with functio-
nals

My, = /wz h)[peldr = (i, M(b)[px]) = J{*,
(27 Sik = / eiS(h)leildr = (pi, S(B)iow)) = 1,

biy = / i Palioi)dr = (s, P(0)[g]) = J{*).
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3. SOLUTIONS OF EQUATIONS OF MOTION AND STABILITY

The Equations (2.4) are a set of coupled linear equations with variable co-
efficients. One may distinguish two types of instability of the trivial solution
of (2.4), cf. [11]: the periodic (simple) parametric resonance, the combination
parametric resonance. In the present paper we confine our analysis to the first
type of instability. The most popular and very effective method of determining
the instability region and amplitudes is the Bolotin’s method. While applying it,
one assumes the solution of (2.4) at the stability limits to be a truncated Fourier
series, then the harmonic balance method is applied. So the solution with the
period 2T is assumed to be

(3.1) fit) = i (ak sin kot + by cos k_Gt) ,

k=1,3,5... 2 2

and the solution with the period T is

a k6t kot
3.2 t) = by + <a sin — + b cos—).
(3.2) f(t) =bo k:g;’em k 5 k 5

The non-zero solution of the set of Mathieu-Hill type of linear Eq. (2.4) exists if
the proper determinants equal zero ([1]).

4. PARAMETRIC SYSTEMS — ONE DEGREE OF FREEDOM
Now we confine ourselves to one degree of freedom — one Mathieu-Hill equa-

tion is taken into account. Taking B(t) = By-+/; cos 0, after some transformations
we have

2
(4.1) % + 25(11)% + WP (B)[L + Bob(h)] [(1 + % cos ()t)} f=o.
Next, we transform Eq. (4.1) into (cf. FORYS [11]),
(4.2) f+2e(h)f + 22(h)(1 - 2u(h) cos(6t)) f = 0,

where we define

p
(43) (b) = wlb)/1+ foblh) = wlb)y /1 = 25, b= ~1/far,
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and exciting parameters p

o Bbh) By
2(1 + Bob(h))  2(Ber(h) — Bo)’
connected with constant part fp and amplitude S, of the oscillating part of exter-

nal parametric excitation 5(t), cf. {11 - 13]. After rearrangement, our problem —
of one degree parametric system is described by the ordinary system of equations:

(4.4) pu(h) =

a) the eigenvalue Eq. (2.3) with proper boundary conditions
@5 [300) WM (w)] o =0,

b) Eq. (4.2) of the second order (cf. [1, 11])
(4.5) f+2e(h)f + 2%(h)(1 - 2u(h) cos(62)) f = 0.

For parametrically excited beams, the inertia, elasticity and stability operators
take the form

M(h) = m(z) = p(z)h(z),

R 92 ar 0
S(h) = ) [Kah (37)&‘2'} ,
n 82
Pﬂ = 52—

Now the function of state ¢ satisfies the equation of state (2.3) written below

(46) [Kah®(2)¢" (2))" ~ ph(e)w?p(z) = 0.

The Mathieu-Hill Eq. (4.5); plays an important role in the optimization
procedure of structural, parametrically excited elements against a loss of dynamic
stability. On the basis of Eq. (4.5)2, we introduce in Sec. 4.1 the objective function
in the form of nonadditive functionals. In optimization, procedure, the equation
of state (2.3) or (4.6) and proper boundary conditions are some of the constraints.

The amplitude - frequency characteristics are important in the resonance
phenomena. Linear theory is capable of determining the region in which the
trivial solution becomes dynamically unstable and it predicts that the unstable
motion grows without limits. However, as the amplitude of motion grows, the
nonlinear effects limit the growth. The nonlinear equation gives finite amplitude
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of motion in the region of instability. This amplitude may be calculated on the
basis of nonlinear equation, (cf. [11]):

(4.7) F+2e(h) f + 22(h)(1 - 2u(h) cos(0t)) f + (£, f, f) =0,

where the functions ¥(f, f , f) include nonlinear effects, e.g. such geometrical
nonlinearities as nonlinear damping, nonlinear elasticity etc. In some types of
nonlinearities there are several solutions, stable and nonstable. The stability of
solutions is determined on the basis of linearized variational equation of motion.

4.1. Objective function

We analyse the periodic parametric resonance (the first type of instability)
and restrict ourselves to one degree of freedom and the first, most important
instability region. On the basis of general theory of differential equations with
variable coefficients and papers [1] and [11], the boundary of the first instability
region is determined by the relation

(4.8) o QQ(h)J 1+ \/;B(h) - (AS‘))Z,
where

_ 27e(C(h)) _ 27e(C(h))
(4.9) Alh) = — =06

~ Bu(h)

The first, main purpose of the paper is to determine and define the proper
measures of periodic parametric resonance. These measures are the objective
functions in optimization procedure. In papers [11 — 13] the author proposed
four physically motivated quantities characterizing the parametrically excited
systems. The periodic parametric resonance occurs if in a parametrically excited
system the proper relations between the frequency of external excitation 6 and
natural frequencies take place. The most dangerous, main parametric periodic
resonance occurs in the neighborhood of the doubled value of the first natural
frequency 6 = 2w.

The first natural frequency (2.5) is the proper objective function in optimiza-
tion procedure when we maximize the nonresonance region 0 < 6 < 2w. So the
parametrical system will be stable if the value of natural frequency is maximal
in optimization with the constraints: the equation of state and proper boundary
conditions (4.4) and constant volume constraint.
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The formula (4.8) gives the boundary of instability region in the (i, 0/2w)
plane, Fig. 1. If the expression under the inner square root is positive, the formula
(4.8) gives two real values of critical frequency. The critical value of the exciting
parameter denoted by p* is

(_Ab) _ 2(n)

T w(h)\/T+ Bob(h)’

where A(h) was defined in (4.9). If additionally Sy = 0, one has

(4.10)

. _ Ah) _ 2(h)

(4.11) W= o
9
20
' S
|
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Fic. 1. Instability regions in (u,6/2w) plane,-u* the critical value of exciting parameter, S-the
area of a part of the instability region between p* and 2u*.

So p* is the special value of i connected with the energy dissipation in parametric
systems. The form of critical value of the exciting parameter depends on the
model of damping. For the Kelvin—Voigt viscoelastic material and for parametric
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excitation we usualy assume that the matrix of damping D is proportional to
elasticity matrix S. On the basis of paper [12] one has
A(h J:
(412) L S . B——
m (J1(J2 + BoJ3))

N

J = F(Ji, Jo, J3) being the nonadditive function of functional, J; = qu), Jo =
J2(11), J3 = Jém (cf. (7)). If we consider the special case By = 0 then

(4.13) 12 (h) = 72w

Now we will analyze parametrically excited system in the (8, 6/2w) plane.
On the basis of (4.4) we have the amplitude of the oscillating part of parametric
excitation Bs(h) = 2u(Be — Bo). So we look for such a value of amplitude of the
oscillating part of excitation for which the unstable solution occurs. If p = p*,
B:(h) equals the critical value of amplitude of oscillating part of excitation

(4.14) B (h) = 2u* (h)(Ber(h) — Bo) = . — 2u" () (1 + Bob) /b.
If additionally 8y = 0, one has

(4.15) B (h) = 2" (h)Ber () = =247 (h) /b.

For the Kelvin—Voigt viscoelastic material p* is determined by (4.12). If addi-
tionally By = 0, one has

(4.16) Bi (h) = 27wfer(h) = —27w/b.

For the p > p* or for B¢ > B the region of instability appears.

Our optimization problem against the loss of dynamic stability of the para-
metrically excited beam consists in determining the values of parameter h, which
extremizes the critical value of exciting parameter p* or the critical value of am-
plitude of oscillating part of excitation #*. The vibrating parametrically excited
system will be most stable if the y* attains maximum in the (y, 6/2w) plane or ¢
attains maximum in the (8;,0/2w) plane. One can see that critical parameters:
critical value of exciting parameter or critical value of amplitude of the oscillating
part of excitation, separate stable and unstable solutions (cf. Fig. 1). Maximiza-
tion of the values of the critical parameters p*, 8* also allows us to move away
from unstable solution regions. For such objective function we not only control
the geometrical and physical parameters of the system or its sourranding but also
influence the instability region through the change of the coefficient of damping
and through the change of the parameter fy.
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In the resonance state other objective functions may be introduced. They
are some measures of instability region. One of them is associated with the area
S(h) of a part of the instability region, e.g. that enclosed between p* and 2u*. If
we make the assumptions that u changes in the interval (1, 2u*), the expression

€= /pu?—pu*? < 1is a small quantity in the region of u changes and the area
of the part of instability region is (cf. (17))

2t 2
(4.17) S(u*,2p") = / V1462 - p2dy / V1= u? - p2dy
wr W
2u*
~ / /12 — p*2dp = 1.074,%2,
b

For the Kelvin-Voigt viscoelastic material p* is determined by (4.12). If addi-
tionally By = 0, one has

(4.18) S(u*,2u*) = 1.0747202.

Another measure of the instability region is determined as the width of dynamic
instability region for p = 2u*

A0(2u*
(4.19) Z = —% =\/1+\/,u2——,u*2~\/ — 2 - =3y

For the Kelvin-Voigt viscoelastic material p* is determined by (4.12). It enables
us to define the interval of frequency AB(p*,2p*) of external excitation where
the solution is unstable and determined by

(4.20) AO(2u”) = 2027 (2u*) = 201+ p? = 2 = 204/ 1 = /p2 — p*2

~ V3u* = 20V3u*.

For the Kelvin-Voigt viscoelastic material p* is determined by (4.12).
If additionally By = 0, so

(4.21) pi(h) =rw (cf. (4.13)

and

(4.22) A0(2u*) = 2v37w2.
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If it is not possible to move away from the unstable solution region by means of
optimization, the phenomenon of parametric resonance occurs (there exists a non-
stable solution of equation of motion), the resonance amplitude grows to infinity.
The nonlinearities limit the growth, so amplitudes of parametric resonance are
finite in the region of instability. In such examples the proper objective function is
the amplitude of steady state of parametric resonance. The resonance amplitude
can be obtained on the basis of nonlinear equation of motion. For one mode the
amplitude equals

(4.23) A (u(h),8/290(h), p* (h)) = Va? + 2,

where a and b are coefficient of sine and of cosine in the solution of Eq. (4.1).
For example, for non-linear elasticity ¥(f, f , f) = vf3, where + is the coefficient
of nonlinear elasticity, the amplitude in main parametric periodic resonance has
the form

(4.24) A= 200 gy g i\‘ (Mh) _ <nA(h)>2>’

V3 T

where n = 0/202, A = 2ne/ (2.
Now in the optimization procedure we look for the minimum value of the

resonance amplitude determined for one degree of freedom by (4.23) or e.g. by
(4.24).

4.2. One degree of freedom-variational optimization

The optimization problem against the loss of dynamic stability of the beam
consists in determining the control function h(z) (e.g. the area of the cross-
section of the beam) which extremizes the functional J (e.g. functionals ((4.10)
- (4.24)) in the form

(4.25) T = F(Jy, Ja, J3), Ji:/fi(a:,h,@,@”)dx, i=1,2.3.
D

The functions f; are the known functions of space variables, of control function
h and of function of state ¢(h).
The constraints (e.g. constant volume constraint) are in the form

(4.26) Fi(Jl,JQ,Jg) = const.

The function of state ¢(h) satisfies the natural transverse vibrations of the
nonprismatic rods without damping

Lin(@)lp(h) = [S(h) — * M (R)]p(h)  in D
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and boundary conditions
(4.27) INIW@)e(h)}r =0 on T

The length of the beam and its material parameters are fixed. In calculations
the geometrical constraints are adopted

(4.28) hi < h(z) < hy.

Variational calculus is used to find the solution. The necessary conditions
for extreme values can be derived by setting to zero the first variation of non-
additive functionals with constraints. BANICHUK et al. [14] derived the necessary
conditions of the optimality for non-additive functionals.

4.8. One degree of freedom-ezamples

The papers (11, 12, 13] were devoted to the problems of monocriterion varia-
tional optimization of the parametrically excited Kelvin-Voigt viscoelastic simply
supported beam with respect to the critical values of exciting parameter p*, but
make the assumption that the constant part of parametrical excitation equals
zero: Py = 0, so B(t) = B, cosft and the objective function was in the form
(4.13). In this case, the optimization with respect to the maximum of u* re-
solves itself into optimization problems with respect to the maximum of natural
frequency, cf. paper [12].

We considered in [12] also the examples with additional geometrical con-
straints. The optimization of the beams with respect to the square of natural
frequency for the first mode is a well-known problem ( cf. [15, 16]) and enables us
to obtain numerical results of our optimization problem with respect to the max-
imum of objective function p*. For example in Figs. 2, 3, the results for simply
supported-fixed and cantilever beams with circular cross-section are presented
(cf. [16]).

Examples in the present paper concern the problems of monocriterion opti-
mization of the parametrically excited Kelvin-Voigt viscoelastic beam with re-
spect to the maximum of critical values of exciting parameter p*, and also with
respect to the maximum of critical value of amplitude of excitation B¢ , but now
Bo # 0, (B(t) = By + f; cos 6t). The objective function p* takes the form (4.12)
(4.29) () = A% _ Th_

T (J1(J2 + BoJ3))2
The system is most stable if p* attains the maximum. In numerical calculations
we minimize the objective function f = 1 /1*. The calculations of optimal shape
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of the rod were made by the method described in paper [13]. The function h
which describes the area of cross-section is approximated on the basis of the
values of the area in eleven equidistant points of the beam. The ten quantities
Ag, .., A1g are the parameters of optimization. In calculations, the geometrical
constraints are adopted h; < h(z) < hg. These values hi, ho may be connected
with strength constraints. The length and volume of the beam and its material
parameters are fixed. The beams are assumed to be of circular cross-section.
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FIG. 2. Results of optimization of simply supported-fixed beam with respect to the maximum
and minimum of the first natural frequency.

Numerical calculations were performed for a cantilever beam (Figs. 4, 5, 6)
for different values of constant part of excitation Bo =0; By = 0.2; By = 0.6,
respectively. We start the calculations from the prismatic beam. In the examples,
the nondimentional geometrical constraints are: Amin = 0.5; hmax = 1.5. On the
graphs in Figs. 4 - 5, the following quantities are shown:

i) The nondimensional areas A of cross-section of the beam versus the nondi-
mensional coordinate z.

ii) The shape of the beam.
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On the basis of simple calculation we have

(4.30)

A
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Fic. 3. Results of optimization of the cantilever beam with respect to the maximum and

minimum of the first natural frequency.

In Table 1 we present the results of numerical calculation for diffrent values of
constant parts of parametric excitation. We introduce the notations:

Table 1.
Bo for f Boe | Au™[phl00% | ABE/Bin100%
0.0-Fig. 4 | 0.284 | 0.15710 1.021 80.8% 84.8%
0.2-Fig. 5 | 0.282 | 0.157155 | 1.114 79.4% 101.7%
04 0.280 | 0.155713 | 1.108 79.8% 103.0%
0.6-Fig. 6 | 0.278 | 0.152552 | 1.048 | 82.2% (optimum) 94.2%
0.8 0.276 | 0.155017 | 1.158 78.0% 120.1%
1.0 0.274 | 0.153558 | 1.156 78.4% 125.7%
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- 4 —
f= 1/71*’ Bo = ﬁo%‘f(ﬁcr)pra Ber = (Bcr)(ﬁcr)ph

w2 EJy
412

(4.31) (ﬁcr)pr =

EJ . .
()2 = pAo(l)4 (T*)?, Ao, Jo,l are the parameters of prismatic beam.

The proper shaping of the beam stabilizes the object moving it away from
unstable solution region, cf. Fig. 1. One can see that for situation illustrated
in Fig. 6, the value of p* attains maximum and the system is most stable. We
can compare the results for By = 0, (B(t) = B¢ cosBt) Fig. 4 with the results of
GRINIEV and FILIPOV calculations [16], Fig. 3. One can see the good compati-
bility of results.

area A

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

coordinate x

r=0.05 m

L=1m

Fia. 4. Results of monocriterion optimization of the beam with respect to the maximum of p".
The nondimensional area A of cross-section of the beam versus the nondimensional coordinate
z and the shape of the cantilever beam for 8o = 0.
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Now we will analyze the parametrically excited system in the (3;,8/2w) plane.
If o = p*, Bi(h) equals the critical value of amplitude of oscillating part of
excitation, cf. (4.4), g5 (h)

(4.32) B (h) = 2™ (R)(Ber (h) = Bo) = ~2u* (h)(1 + Bob) /b.

We optimize the system with respect to 8 (h) — the system is most stable if
B¢ (h) attains maximum. On the basis of simple calculations we have

2t _ g P~ Toa)
Be)ye f (1 _ Bo;?‘g)

In Table 1 we present also the results of numerical calculation of AS} /Bipe for
diffrent values of constant parts of parametric excitation. The proper shaping
of the beam stabilizes the object moving it away from unstable solution region.
One can see that for the situation illustrated in Fig. 5, the value of B¢ attains
maximum and the system is most stable. The optimal (maximal) value of 8} is
for B, = 1.0.

(4.33)

area A
2 ! ! ! 5 ! ! T ' !

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

coordinate x

L=1m

F1c. 5. Results of monocriterion optimization of the beam with respect to the maximum of ur.
The nondimensional area A of cross-section of the beam versus the nondimensional coordinate
z and the shape of the cantilever beam for Gy = 0.2.
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The problem of optimization of parametrically excited systems may be for-
mulated in a different way by introducing, instead of the critical parameters
p*(h), Bf(h), another objective functions connected with a part of instability
region.

One of them is associated with the area S(h) of a part of the instability re-
gion, e.g. that enclosed between p* and 2u*, (4.17) and (4.18). Another measure
of the instability region is determined as the width of dynamic instability region
for p = 2u*, (4.19) (cf. Fig. 1). It enables us to define the interval of frequency
AB(p*,2p*) of external excitation where the solution is unstable and determined
by (4.21) and (4.22). The parametric systems are optimal if objective functions
(4.17) - (4.22) attain minimum. In some special cases these objective functions
are proportional to the first natural frequency. Under these assumptions, the
optimization with respect to the minimum of (4.18), (4.22) is resolved into opti-
mization problems with respect to the minimum of the first natural frequency.

Figure 7 illustrates the results of minimization of the first value of natural
frequancy of the Kelvin-Voigt cantilever beam, for y = 0. For constant value
of the damping coefficient we have good compatibility of the results with the
GRINIEV and FILLIPOV paper [16], Fig. 3. So after a simple calculation we have

area A
2 T ! r ! 5 s ! 1 ‘

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0

coordinate x

r=0.05 m

L=1m

F1G. 6. Results of monocriterion optimization of the beam with respect to the maximum of p".
The nondimensional area A of cross-section of the beam versus the nondimensional coordinate
z and the shape of the cantilever beam for 8o = 0.6.
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A =
(4.34) == ip—f' 100% = 52.6%,
w f
AS  A(A9)  |fE - f?
4.35 T = 2P 100% = 77.5%.
(4.35) S (B0 | P : °
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2 T T T T T T T T Y
1 o T e L S T T
0 1 ! ] i i | 1 { 1
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F1G6. 7. Results of minimization of u* for the cantilever beam for Sy = 0.6.

5. MULTIDEGREE OF FREEDOM PARAMETRIC SYSTEMS

In some problems the parametrically excited “non-prismatic” objects may be
described by coupled differential equations with variable coefficients (cf. [11]) in

the form

2 N
(5.1) M + 26k(h)% + w,%(h) l:fk + B(t) Z bkjfj:I =0, k=1,2,...

a2 dt =
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In the system (5.1) the periodic parametric and combination parametric reso-
nances may occur. If elements b; dominate in the matrix {b;;}, the periodic
parametric resonance is the important resonance [17]. We restrict ourselves to
this type of instability. On the boundaries of instability regions the solutions
have the form (3.1) and (3.2). Inserting (3.1) and (3.2) into (5.1) and equating
to zero the proper determinant we have the equations enabling us to determine
the boundary of instability regions in the form

(5.2) WD = |F(0,6,)] =0, WL =|F(6,8),] =0.

On the basis of nonlinear equations of motion we have the amplitude A deter-
mined by a proper determinant. Near the first more important instability region
we have

(5.3) W = |F(6,A,B)] .

In many problems, the parametrically excited “non-prismatic” objects may
be described by N non-coupled Mathieu-Hill differential equations [13], in the
form

d? d
64 SlrsamPE L gmiswnil =0, k=128
We restrict ourselves to the first type of instability and the first most important
instability region. On the boundaries of instability regions the solutions of (5.4)
for k-th mode have the form
(k) ot

(5.5) qgk) =aj cos o+ bgk) sin

ot
5 where k =1,2,...,N.
Substituting (5.5) into (5.4) and repeating the procedure of Sec. 4.1 we have N
critical values of exciting parameters

_ AK) TJZ(k)

(5.6) w®)(h) = it
[T + Bo{)]”

i
™

where Ji, Ja, J3 are introduced in (2.7).

5.1. Objective function and optimization

For the systems described by coupled differential equations with variable
coeflicients, the proper objective functions in optimization procedure are the
amplitude of oscillating part of external parametric excitation £; and amplitude
of vibration A, determined by (5.2) and (5.3), respectively. Because the objective
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functions have no explicit form, we restrict ourselves, in these cases, only to
parametric optimization. Papers [18, 19] are devoted to examples of parametric
optimization of parametrically excited systems.

The parametric optimization can by formulated as follows: we look for
such parameters of optimization k; for which minimal (critical) value of
Bi(ki), minf;(k;) = Bf (k;) has the maximum

(5.7) max(min S (k;)) = max B (k;)

with constraints: V = const, [ = const, |F(6,8;)| = 0, 6§ & 2w, where w is the
first natural frequency.

Similarly, we may formulate the optimization with respect to the minimum
of amplitude in parametric periodic resonance:

(5.8) min A(k;)

with |F(6,4,8)] =0, 6= 2w.

When the parametrically excited "non-prismatic" object is described by N
non-coupled Mathieu-Hill differential equations, the following vector objective
functions

(5.9) T(b) = (0) = (O (), 5@ ), ..., "™ ()

can characterize the parametrically excited N degrees of freedom systems.

We initially consider the monocriterial optimization problem (cf. Sec. 4.2).
Let 1*®)(h) be the objective function in monocriterial optimization. We look for
such a cross-sectional function that maximizes the k-th functional x**)(h). So we
have in N monocriterial optimization problems the N cross-sectional functions:

[h(()l) ....... hE)N)] that maximize N critical values of exciting parameters ,ug(k) =

maxy p*®(h®) E=1...N.
Next we introduce the scalar objective function:

1
2\ 2
— min.

So the multicriterial optimization problem with respect to vector objective func-
tion is resolved into an association optimization problem with respect to the
scalar objective function (5.10). We look for a control function that minimizes
the scalar functional (5.6).

For the Kelvin—Voigt viscoelastic material and for 8y = 0, the associated
multicritrial optimization problems with respect to minimization of scalar objec-
tive function (5.10) are resolved into an association optimization problem with

N

(5.10) P(J(h)) = (Z

i=1

L
wOm) 0
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respect to minimization of the scalar objective function in the form

1
2\ 2

1 1 .
— min.

(5.11) P(J() = | Wm0
wo

The optimization of the beams with respect to the square of natural frequency
for k-mode are well-known problems (cf. OLHOFF [15]) and enable us to obtain
numerical results of our multicriterial optimization problem with respect to the
minimum of scalar objective function.

5.2. Multidegree of freedom-ezamples

area A
2 f : ~ 5 ; T - ‘, ;

0 1 ] 1 1 [] ' .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
coordinate x
=0.05m . - .
0 _......_._...._......._.._._._._._._._._._._._._._._.._...._._.._......._......._._._.._.-._:
_r—//___\.§\ R J

FiG. 8. Results of multicriterial optimization of the beam with respect to the maximum of u*.
The nondimensional area A of cross-section of the beam versus the nondimensional coordinate
z and the shape of simply supported-fixed beam for B = 0.

In paper [13] the authors considered the multicriterial optimization of the
parametrically excited Kelvin—Voigt viscoelastic beam with respect to the max-
imum of vector objective function (5.11), the vector of the critical values of
exciting parameter x*(). This problem is reduced to monocriterial optimization
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with respect to the minimum of scalar objective function (5.10). Making the as-
sumptions: fy = 0, (B(t) = B¢ cos bt), the scalar objective function has the form
(5.11). The numerical calculations of optimal shape of the rod were made by the
method described in [13]. The function h which describes the area of cross-section
is approximated on the basis of the values of the area in eleven equidistant points
of the beam. The quantities Ag,..., Ao are the parameters of optimization. In
calculations, the geometrical constraints are adopted h; < h(z) < hy. The length
and volume of the beam and its material parameters are fixed. The beams are
assumed to be of circular cross-section. Numerical calculations were performed
for fixed and simple supported beam (Fig. 8). On the graphs in Fig. 8 (cf. [13])
the following quantities are shown:

i) the nondimensional area of cross-section A (4 — Ap is the area of

A
Ay’
cross-section for prismatic beam) versus nondimensional coordinate z (z — z/l)
of the beam;

ii) the shape of the beam.

6. CONCLUSIONS

The paper is a contribution to the study of the optimization of a beam in
a steady state of periodic parametric resonance. A significant point in the opti-
mization procedure consists in determining and introducing appropriate measures
of the considered phenomena, i.e. optimization criteria — some objective func-
tions. Example of mono- and multicriterial optimization of parametrically loaded
beams with respect to the loss of stability is solved and presented. The multi-
criterial optimization problem of the system according to Pareto, is reduced to
the problem of system minimization with respect to scalar objective functionals
of the associated problem. So the optimization can be carried out taking into
account a few aspects of the problem and various cost functions in mono- and
multicriterial optimization.

The presented results indicate the importance of optimization in paramet-
ric resonance. Practical applications of these results may be anticipated due to
the fact that beams are elements of many structures and machines. The re-
sults can be used for systems in which one aims at elimination of the parametric
effects.
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