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In this paper the uniform analytical method [3] has been used for solving a problem of free vi-
brations of continuous sandwich beam with damping. External layers are modelled as Timoshen-
ko beams, while the internal layer possesses the characteristics of a viscoelastic, one-directional
Winkler foundation. The phenomenon of free vibration has been described using a homogenous
system of coupled partial differential equations. After separation of variables in the system of
differential equations, the boundary problem has been solved and four complex sequences have
been obtained: the sequences of frequencies, and the sequences of free vibration modes. Then,
the property of orthogonality of complex free vibration modes has been demonstrated. The free
vibration problem has been solved for arbitrarily assumed initial conditions.

1. INTRODUCTION

Some mechanical and building structural elements are treated as beams. Dif-
ferent models of beams are applied, depending on the complexity of the structure
and the requirements [5). In the last years the Bernoulli-Euler [1, 2, 4, 10, 14, 23]
and the Timoshenko [7, 8, 11, 17, 18, 19, 20 — 22, 24 - 28] models for laminar
beams or different sandwich beams [23] have been considered. Replacement of
the Bernoulli-Euler model with the Timoshenko model, gives a result which is
closer to the scientific results in the field of theory of elasticity [22], especially for
very thick beams [5).

For the first time the influence of transverse forces and rotational inertia in
a beam has been demonstrated in the paper [25], where the shear coefficient
k' = 2/3 has been obtained. In the papers [7, 8] the criteria of choice of the
shear coefficient in plates of medium thickness have been considered. Natural
frequencies for continuous Timoshenko beams have been demonstrated in the
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paper [30], and for discrete-continuous Timoshenko models — in the papers [11,
17]. In the paper [20] the motion equations of the Timoshenko beam resting on
two-parametric elastic WINKLER [31] foundation have been derived.

The property of orthogonality of complex free vibration modes for discrete
systems with damping has been demonstrated in the paper [12], for discrete-
continuous systems with damping — in the paper [29], and for continuous systems
with damping — in the papers [1 - 4].

In the paper [10], the problem of free vibrations of a system of two Bernoulli-
Euler beams, transversally coupled with discrete springs, without damping, has
been considered. Influences of axial forces in beams have been taken into conside-
ration. In the paper [3], the general method of solving problems of free vibration
for complex, continuous, one-dimensional systems with damping, for various bo-
undary conditions and different initial conditions has been presented. The mathe-
matical analysis has been presented for a system of two strings with a viscoelastic
interlayer.

The sandwich beam consists of two external layers and one internal layer, i.e.
an interlayer connecting the external layers. The external layers are modelled as
Bernoulli-Euler [1, 2, 4, 10, 14, 23] or Timoshenko beams. An interlayer is a one- or
two-directional viscoelastic Winkler layer, but it can also be the multiparametric
viscoelastic layer [32, 33].

The aim of this paper is to perform a dynamic analysis of the sandwich be-
am, in which external layers have been modelled as Timoshenko beams, while
an internal layer corresponds to the characteristics of a continuous, viscoelastic,
one-directional Winkler foundation [31]. Then, a mathematical analysis of a solu-
tion of the problem concerning free vibration of sandwich beam for a continuous
systemn with damping has been developed.

2. FORMULATION OF THE PROBLEM

The physical model of a structural system consists of two homogenous, ela-
stic, parallel Timoshenko beams of equal length, coupled together by a viscoela-
stic interlayer (Fig. 1). The beams are supported at their ends. The viscoelastic
interlayer corresponds to the characteristics of a homogenous, continuous, one-
directional WINKLER foundation [31] and has been described by the Voigt-Kelvin
model [9, 13, 16].

The mathematical model of the problem constitutes a system of the following
coupled partial differential equations, describing small transverse vibration of the
physical system in the following form:
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8211)1 02101 Oy 0
H1 atg Nl 81‘2 _g +(101 —U)g)k‘ﬂ-Ca (’{Ul —’UJQ) = 0.
(2.1)
82% Swg _ GQQIQ
RQ__—B‘TQ + Ny <W - d’z) —S2gm = 0,
5w 2wy O 9
where

Il

Ri = Inly, Ry=Ish, Ny=KGF, Np=KGybF
1 = pily, po=pely, Ey=pil, By = ply,

and: w; = wi(x,t), wy = wy(x,t) — transverse deflections of beams I and II,
Y1 = Ui(z,t), Yo = Ya(x,l) - angle of rotation of cross-sections of beams I
and II, 51 , F» — Young’s modulus of the material for beams I and II, Iy, I, -
moments of inertia of cross-section of beams I and II, Fy, Fy — areas of cross-
section of beams I and II, Gy, Gy — Kirchhoff’s modulus of the material for
beams I and I, py, p» — mass density of the material of beams I and II, &’ - shear
coefficient, & — coefficient of elasticity of the interlayer, ¢ — coefficient of viscosity
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of the interlayer, hq, ho — heights of beams I and II, hg - height of the interlayer,
1 - lengths of beams I and II.

Bending moment and transversal force are described by the following equ-
ations [24 - 28|:

ov 0 )
@2 Mi=-RTL Q=KGFm, My=-R52 Q=KGlm,

where 5 9
w1 (1))
— =1+ _— = Lp

and v = v (z,t), vo(z,t) — angle of shear in beams I and II.

3. SOLUTION OF THE BOUNDARY VALUE PROBLEM

By substituting (3.1) and (3.2) [12, 13, 15, 17, 29, 1 — 5] in the system of
differential equations (2.1):

(3.1) wy) = Wi(x) exp(ivt), we = Wy(x) exp(ivt),

(3.2) 1y = U1 (x) exp(ivt), g = Ws(x) exp(ivt),

the homogenous system of coupled ordinary differential equations describing the
complex modes of vibration of Timoshenko beams shall be obtained:

d2y ((,lWl

Ri—— + N — 0 )+ E0® =0
1d12+ 1\ 7 1)# v )

d*W; Ay , , ) \
Ny ( drz ‘EE‘) — k(W) — Wa) —icv(Wq — W) + uy Wiv* = Q,

(3.‘3)

Ry

2. W !
£72 Ny <C 2 Q’Q) + EQWQVQ =0,
dx? dx

LWy A
No [ 552 22 ) 4 k(W = W) 1 den(Wy — Wa) + ugWar® = 0,
dx? dx

where: W) = Wi (z), Wy = Wh(x) ~ the complex transverse vibrational modes of
TIMOSHENKO beams I and II, ¥ = ¥(x), ¥ = ¥,(x) - the complex rotational
modes of TIMOSHENKO beams I and II, v — the complex frequency of vibration
of the beams I and II, ¢ - time.
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Searching for a particular solution of the system of differential equations (3.3)
in the form of [6]:

(3.4) W1 = Aexp(rz), Wy = Bexp(rz),
(3.5) Uy = Oexp(ra), Yy = INexp(rz),
the homogeneous system of linear algebraic equations is obtained:
e [R]’I‘Q — Ny + 511/2] + ANir = 0,
r [Rg?"z — Ny + Ezzﬂ] + BNyr = 0,
(3.6)
A [N1r2 — ke + Wﬂ] + Blk +icv] — ON;r = 0,
Alk +icv] + B [Nor? — k ~ icw + uguﬂ — I'Nyr = 0.

Constructing the determinant of the characteristic matrix of the system of
equations (3.6) and equating it to zero

Nl’f' 0 Rl’f‘Q—Nl 4 511/2 0

Nir? —ny  k +icv —Nyr 0 _
(3.7) 0 Nor 0 Ror? — Ny + Sov? | T 0,

k+icy Nor? — ny 0 —Nor

we obtain the characteristic equation in the form of the following algebraical
equation:
(38) r8 + (1117"6 + a221"4 + a337“2 + a4 =0,
with the following roots r; = (=1)71i)g, j = (26 — 1), 2x, x = 1,2, 3,4,
where ny =k +icv — puv®, ng = k +icv — pgr?, ary, age, ass, agy are constant
coeflicients.

After applying the Euler formulas, the solution of the system of differential
equations (3.3) consists of the fundamental system of solutions:

4
Wi(z) = Z Al sin A\ + A} cos Az

>
—

4
y(x) = Z Oy cos A\ x + Oy sin A\,
x=1
(3.9)
4
Wy(z) = Z By sinA¢ + B cos Az,
x=1
4
Uy(x) = Z I cos Ay + I3 sin Ay,

fi
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where A}, AYY, By, BY', O}, )", I}, I}" are constants, A¢ = ag + i3 is a
parameter describing roots of the characteristic equation (3.8).
In agreement with (3.6), the following relations exist between constants of

(3.9):

(3.10)

where

(3.11)

and:

(3.12)

*
a*_BX
X—A*’
X

*
b*:FX
X @*’
X

*
(‘*7@X
'X“A*’
X

*
d*_FX
XiA*’
X

*%

a** = BX
X Axx?

X

*%

*% FX
X T O%x

@X

*k

C** QX
X 4** )

X

ok

d¥* = FX
X Axx !

X

w NN +RRnng k+icy
Oy = ax = k +icy NNy + RRynny'
RRy
_ b;,* — bx = aXR—Rl,
= ¢, = RRy1, c; = —C;,*,

dy = RRoi, df = —d}},

NNy

i

—Nl)\i, — k —icv + pyv?,

NNy = —NQ)\f< —k —icv + ;1.21/2,

nny = iNlAX,

RRy =1

nng = ’iNg)\X,

N1y

'—Rl/\i, - N1 + 511127

NaAy

RRy

=1 e
—RQ)\EC — Ny -+ :21/2

After substituting (3.10) in (3.9), the general solution of the system of differential
equations (3.3) takes the following form:
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4
Wi(x) = Z Al sin Ay + A} cos Ay,
x=1

4
Ui(z) = Z Cy <A;‘< cos Ay x — A} sin )\Xr) )

X
x=1
(3.13)
4
Wa(z) = Z ay (A; sin Ayx 4+ A}* cos /\Xa:) ,
x=1
4
Wo(x) = > dy (A; cos \yx — A}’ sin )\xm) :
x=1

In order to solve the boundary-value problem, the following boundary condi-
tions have been applied:

Wi(0) =0,  Wi(l) =0,

Wa(0) =0,  Wa(l) =0,

(3.14)
d![’l d%
— =0 —(l) =
7 (0) =0, o) =0,
d¥y A,
—(0) =0, —= (1) =0.
dx ) ' dx @)

By substituting (3.13) in (3.14), the homogenous system of linear algebraic equ-
ations shall be obtained, which in the matrix notation has the following form:

(3.15) YX =0,

where X = [A], A3, A%, Ay, A7, A5, A%+, A%*]7 is a vector of unknowns of the
system of equations, and
(316) Y = [Y;*J]S*B

is the characteristic matrix of the system of equations (3.15).

11 AP
Cl1 Cy C3 4 443* _
(3.17) @ ar as ay || At | =0

dl (lg d3 d4 AZ*
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From the system of equations (3.17) we obtain AT* = A%* = AY* = A}* = 0.
The remaining four equations (3.15) give the following system of equations:

sin A1l sin Aol sin Azl sin Ayl
(3.18) —Aiersin A1l —AgegsinAgl  —Azegsin Azl — Ay sin Ayl
’ aj sin A\l as sin Agl az sin Azl a4 8in Ayl

—Aidisin A\l —XadosinAgl  —Azdzsin Azl  —Agdy sin A4l
Al

Ay |

X AL = 0.

Al

The condition of solving the system of equations (3.18) is vanishing of the
characteristic determinant, i.e.

sin A\l sin Asl sin Asl sin A4l
—/\161 sin )\1[ -—)\262 sin )\2[ ——/\363 sin )\3{, ——/\404 sin /\4l

(3.19) = 0.
a1 sin A\l ao sin Aql agsin Azl a4 sin Ayl

—)qdl Sil’l)\ll ——)\ngsin)\gl —/\3d3 Sil’l/\gl —)\4d4 sin/\4l

Expanding the determinant (3.19), the following characteristic equation has
been obtained:

(3.20) sin A1lsin Mgl sin Aglsin Aql = 0,

where )\1 = )\2 = )\3 = /\4 =\
The characteristic equation (3.20) may be rewritten in the form:

(3.21) sin Al =0,
where
(3.22) A=a+1i3

in the general case are complex numbers.
Substituting (3.22) in (3.21), the following equation has been obtained:

(3.23) sin alChpl + icos al ShBl = 0,

which has the following roots:

(3.24) as:-slf, B, =0, s=1,23....
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Taking into consideration (3.24) in (3.22), the following identity has been
obtained:

(3.25) A = g = X

By substituting r = i), in the equation (3.8) and carrying out all the transfor-
mations, the following equation of frequency is obtained:

(3.26) Ve 4 bygv” 4 bogu® 4 b33t® + bygv* + bssi® + best® + brrv + bgg — 0,

from which a sequence of complex natural frequencies will be determined

(3.27) Vp =7, £ Wy

where n = (48 — 3), (48 — 2), (48 — 1), 48, and bn, bgg, b33, b44, b55, bgg, b77, (788
are constant coefficients.

Substituting equation (3.27) in equations (3.11) and (3.12), the following
formulas for coefficients of amplitudes are obtained:

N NNy + RRynn,g _ k +icy,
n = k4 icy, n NNy + RRonny’
b RRy
n = An 755,
RRy
(3.28)
Cn = RRlla
dn = RRQi,
NN; = —Ny\f —k —icy, + ;Llyfl,
NNy = —=NoXZ — k —icvy, + pav?,
(3.29) nny = Ny, nng = iNgAg,
. Nl/\s
RRy =1 ,
! Y—va/\g—Nl—l-E]V%/
No)
RRy — i 2

7 G p .
—Rz/\f — Ny - :21/3
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Substituting the sequences \s and @y, ¢y, dy, in (3.13), the four following sequences
of modes of free vibration for two Timoshenko beams are obtained:

Win(x) = sin gz,

Ui (x) = cpCOS AsT,
(3.30)
Won(z) = ansin Asz,

Won(x) = dy cos AsT.

Free vibration for two Bernoulli-Euler beams are described (3.30), under the
assumption that integration constants 0%, 0%, Iy, I3, are zero 1, 4].

4. SOLUTION OF THE INITIAL VALUE PROBLEM

The complex equation of motion
(4.1) T = ®explivt),
in the case of v = 1, can be written in the following form:
(4.2) T, = @y exp(ivyt),

where &,, — the Fourier coefficient.
Free vibration of Timoshenko beams has been presented in the form of the
Fourier series based on the complex eigenfunctions [15], i.e.:

Win = Z VVln )Pn eXP(Wn W2n = Z Won(z)Pp Cxp('”/n[)

(4.3)
L[/]n = Z Wln (Pn eXP(an Yoy = Z lI/Zn (P GXP(Wnt)

n=1
From the system of equations (3.3), performing some algebraical transformations,
adding the equations together, and then integrating them on both sides in limits
from 0 to 1, the property of orthogonality of eigenfunctions for two Timoshenko
beams coupled together by a viscoelastic interlayer has been obtained

l
(4.4) / 2 (Wi Vim -+ WinVim) -+ €2(Wan Vo + Wan V)

+ _C] (Wllen -+ gj]anm) + CZ (WQmQQn + Sp2nQZm)
_*'277 (M/ln - M/Qn) (VVIm - H/Qm)ldr =N, n(57nn;

where: 0,,, — Kronecker delta,
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[
(45) N, =2 / (61 Win Vin + EWanVan + C1¥1nQin + Co¥anQan
;

+ 7’](1)[/171 - VVQm)Q] dl‘,
Vln - 7:1/”[’1/1-,1 T) V2n = iVnI/VQn(I);

(
Vim = i Win(x) Vom = vy, Won(2),

(

(

(4.6)
an = Z.l/nq/]n I); Q2n = iVnWQn(IL
le - Z.I/mwlm I)) QQm - iVmWQm(I):
L 9 = =
éliua é?z’u_a Cl:_l—a CQI'—E
7 7 7 p

In case of a system of two strings [3], two Bernoulli-Euler beams [1, 4], and
a system of a string and a Bernoulli-Euler beam [2]:

dWin _ dWay, dW1im dWor,

W]n = s 2n = y 1m — s 2m —
dx

7

dr dx

(4.7
G = (=0

The following initial conditions are the basis for solving the problem of free
vibrations:

?UI(I;O) = Wo, /wQ(I)O) = Wo2, W](.I‘,O) - Q;Oh WQ(IaO) - WOQa
(4.8)

w(x,0) = 1o, wo(x,0) = oy, ¥1(x,0) = Yoy, oz, 0) = Wps.
Applying conditions (4.8) in the series (4.3) and taking into account the property
of orthogonality (4.4), the formula for the Fourier coefficient is obtained,

(49 Gu=

/
1 ) .
‘ /{51 (Vinwor + Wintior) + &2 (Vanwoe + Woptings)
n O
+ G <Q1n¢‘01 + Whﬂf@l) + ¢ (szﬂ/‘oz + %Mm)
+ 20 [(Win — Way,) (woy — w0g)]} da.
After substituting (3.30), (4.2) and (4.9) in (4.3) and performing the tri-

gonometrical and algebraic transformations, the final form of free vibration of
Timoshenko beams is obtained:
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O
w] = Z e—’f]nt IW17”L| ]®n| cos(wnt -+ Pn + éln)a

n=1

[e 0]

7/)1 = Z C“nnt ‘Wln| l¢n| cos(wnt + @n + 0]11);

n=]
(4.10)

oo

wy = Z e (Wap| |®n] cos(wnt + @n + Xon),

n=1

[e 0]
q/)2 = Z ein"t IW2TL! l@n‘ COS((JJnt + Pn + 921’1,)7

n=2

Win| =/ XE, + Y5, [Wan| = /X3, + Y5,
iwlnl = \/ A%n + Q%ﬂ ‘W2nl - v A%n + ‘(Zg'rﬂ

(411) Xin = arg Win, Xon = arg Won,

where

0111. = arg Jllna 92n = arg W2Tl3
‘©n| =y Crzz + D?L’ Pn, = arg P,

Xip = reWh,, Yin =imWiy,, Xop = reWon, Yo, = imWo,,,

and

(4.12) /11n = re@ln, 2 = iIIleln, /lzn = rekpgn, an = il’n@zn,

¢, = reb,, D, =im®,.

Free vibrations of Bernoulli-Euler beams are described in the form of (4.10),
dwy dwsy

, e = —= [1, 4].

h -
where 11 k. T

5. NUMERICAL RESULTS

Computer calculations have been carried out for the following data:
Ey = [y = E = 2.1 % 10" [Nm~2], Ey = 10% [Nm~2], k = (Fobo)/ho, k' = 0.84,
vo = 0.2, c=0.75 [Ns m~2|, p; = pp = 7.8*10% [N s?m ™%}, by = by = by = b,



Wi [m] ” b ] » s - , 8 0.04

0.02 time[s]

length(m]

W2 [(m] a : : 0.04

time[s]

4 0.01

length(m]

Pl
F1. 2. Transverse deflections w1 (z,t), wa(z,t) of beams I and II.

(33]
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0.01
0.005} 4
Y2 [rad] f 0.04
-0.005 : 0.03
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0 : e Jo.o2
4
length[m]

FiG. 3. Angle of rotation of cross-section of beams I and II.

[34]
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h~h—l~}1—O6[m]1~10[m]G~G’~G- -

o - 2. f— 2 H = . —_ - fmy T e

1 2 0 5 3 P 1 2 2(1 I/g),

B =15 = bh, I} = I = (bhg)/IQ, H/l =03, H=~h + hy + hg, hg = o*H,
a* = 0.2. :

In order to find the Fourier coefficient &, (4.9), the following initial conditions
have been assumed:

w = A,sin <Zlf> , tbor =0, woy = 0%, aigy =0, A, = 0.03l,
(5.1)
/ T / + ; -
Yo1 = Agcos 7 ) Yor =0, thp=0", g =0, A =003
Timoshenko beams coupled by a viscoelastic one-directional interlayer may
be applied for the case of thick beams, where angle of rotation U1(z,t), o(x, t)
of cross-sections of beams and angle of shear Y1(2,t), v2(z,t) occur in beams.
In Fig. 2 space diagrams of the transversal deflections wi(z,t), wa(z,t) of be-
ams have been presented. Figure 3 shows space diagrams of the angle of rotation

Y1(x,t), 12z, t) of cross-section of the beams. Figure 4 shows the dynamic trans-
verse deflections of beams for z = 0.5 1.

wm]

0.03N ~w—
0.02¢

0.01}

L . t[s]
.0 0.02 .03 0.04

-0.01

T

-0.02¢

-0.03*
F1G. 4. Transverse deflections w (), 1w (t) of beams I and II in the middle of their length.
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6. CONCLUSIONS

In this paper complex frequencies and modes of free vibrations as well as
complex motion function, with any initial conditions, have been the basis of an
analytical solution of a problem concerning free vibrations of a sandwich beam
with damping. The derived property of orthogonality of complex modes of free
vibrations plays a crucial role in the applied method. The method presented in
this paper may be also applied for solving a problem of free and forced vibrations
of various engineering systems consisting of sandwich beams with damping.
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