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Restrained flexure analysis concerns transversal bending of flat structures with in-plane
displacements at supports prohibited or restricted. If the material characteristics are different
in tension and in compression, these restraints generate important membrane forces (the ar-
ching action effect). It strengthens considerably the structure, but renders its response strongly
nonlinear and unstable. In a recent introductory study the authors concluded that their old
approximate analytical approach to restrained flexure of elastic-plastic beams and slabs gives
qualitatively good results and may be useful to replace cumbersome numerical procedures. Here,
a parametric study using an incremental FEM analysis is performed enabling the determination
of input data needed for an elementary but reliable approximate approach. Different load and
support configurations for beam systems are considered and the structure sensitivity to support
compliance is studied. Numerical and approximate analytical results are compared with results
of a series of collapse tests on elastically restrained RC beams.

1. RESTRAINED FLEXURE

When supports of the structure enable transmission of stress resultant com-
ponents parallel to the reference plane of a flat structure, the simple bending
response to transversal loads (ensuring the absence of membrane stress resul-
tants) may occur only in a very particular situation. The latter needs that the
flexural behavior in the dynamical and in the kinematical sense coincide. In the
case of clamped beams or slabs, the above may appear only in structures built
of a material with the same strength and elasticity characteristics in tension and
in compression (“symmetric” material). In this situation, even if the membrane
forces appear (at large deflections or due to very particular support conditions),
they will be of a rather secondary importance for the overall structure response.

If the material characteristics differ in tension and compression, membrane
forces will appear, generated by the support restrictions, even if the applied load
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is exclusively transversal. This case will be called restrained flexure, per analo-
giam to restrained torsion. For “non-symmetric” materials, when the compressive
strength is superior to the tensile strength, the restrained flexure is accompanied
by important compressive membrane forces (the “arching action” effect). They
appear already from the very beginning of the loading process and may conside-
rably strengthen the structure, both in its initial rigidity and, especially, in its
ultimate load-carrying capacity.
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Fi1G. 1. Yield curves for a uniform cross-section of a one-way slab: a) symmetric material,
b) non-symmetric material, ¢) no-tension material.

The above may be illustrated using the simplest example: plastic yielding of a
uniform cross-section of a one-way slab. The corresponding yield curves are shown
in Fig. 1. If the yield stresses in compression and in tension are the same, we have,
following the associated plastic flow rule, simultaneous absence of the mid-plane
deformation rates (A = 0) and of membrane forces (N = 0), Fig. 1a. However, if
the yield stresses are different, this coincidence disappears (Fig. 1b). At N = 0
the flow vector v(x, A), normal to the curve, has two non-vanishing components
(curvature rate k£ and the mid-plane deformation rate A). The curves in Fig. 1
correspond to the mid-plane of the cross-section chosen as the reference axis. Of
course, the simultaneous absence of the two in-plane variables (A = 0, N = 0) may
be obtained if the reference axis coincides with the local neutral axis. However,
this coincidence appear either at positive or at negative bending, because the
axis position is in both cases different. Therefore, a pure flexural behavior should
mean either N = 0 (with the flexural strength of the cross-section M = Mjy)
or A = 0 (with its ultimate strength M = M,). These values may be strongly
different (M, > Mjy) and, in the case of a no-tension material (Fig. 1c), the
structure having no strength in simple bending (M; = 0) may be significantly
resistant under the conditions of restrained flexure, when in-plane displacements
at supports are prohibited (M = M,,). The arching effect was mentioned already
long ago [1] and was even taken into account (in an empirical manner) in certain
old structural codes, e.g. [2].
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Neglecting the insight into the conditions necessary for the simple bending
response may provoke some confusion, namely in the analysis of concrete structu-
res. For example, the effect of restrained flexure appearing in reinforced concrete
plates is responsible for the so-called yield-line paradox. The yield line method
used in the limit analysis of reinforced concrete plates should give upper bounds
to their load-carrying capacities. However, the results obtained by this method
are frequently inferior to experimental data. It appears [3] that yield-line defor-
mation patterns corresponding to simple flexural situations, but including both
the positive and negative bending, may appear kinematically inadmissible, when
they are associated with pure flexural yield moments My. On the other hand, if
My were replaced by the ultimate moment M, compatible with a purely flexural
deformation pattern, the approach would become kinematically admissible but
would give excessively high limit load estimates.

This strengthening effect is well known to structural engineers as the “dome
effect” (or arching action) in built-in reinforced concrete slabs, e. g. [4]. If the
supports are able to withstand important membrane forces due to restrained
flexure conditions, the structure can support loads considerably exceeding their
flexural carrying capacities. However, the loading process ends in this case with an
abrupt dynamic breakdown. Because of this unstable behavior and its sensitivity
to secondary factors, such as initial imperfections or support tolerances, the effect
is rarely taken into account in assessments of the structural safety, this fact
resulting frequently in a very conservative design.

2. ULTIMATE-LOAD ANALYSIS BY A POST-YIELD APPROACH (PYA)

Flexural behavior being strongly nonlinear, when accompanied by important
compressive membrane forces, the problem needs a large-displacement approach
even at very small deflections. Therefore, in these situations the classical limit
analysis approach cannot be satisfactory for determination of the load-carrying
capacities of the structures. To take into consideration the configuration changes,
a post-yield approach (PYA) was applied already long ago [5, 4]. It consists of
applying the kinematical method of the limit analysis theory to structures with
their geometry modified following a plastic collapse mode. This mode may cor-
respond to the initial plastic flow or may be updated during the deformation
process. In this way, a load-deformation curve may be obtained corresponding to
a sequence of instantaneous collapse loads for a consecutively deformed structu-
re. In the Fig. 2 instantaneous collapse modes are shown for deformed one-way
(strips) and two-way slabs.
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F1aG. 2. Collapse modes for (a) one-way and (b) two-way slabs at large deflections.

The post-yield approach has been applied, first of all, to one-way or two-way
concrete slabs using relations inherent to the deformation theory of plasticity,
e.g. [6, 7, 8 or to the flow theory, e.g. [9, 10, 11]. When concerning applica-
tions to the kinematical approach using yield-line (plastic hinge) patterns, this
difference concerns only the assumption on the sign of the stress normal to the
yield-line. It depends either upon the sign of the corresponding plastic strain (in
the deformation theory) or on the sign of the strain rate (in the flow theory).
If the incipient collapse is concerned, the two theories give the same result. Ho-
wever, that is not the case, when a deformed configuration is considered. In the
case of ductile (“symmetric” or “non-symmetric”’) materials, the correct appro-
ach should be based, of course, on the flow theory. In the case of perfect no-
tension materials (unilateral contact), the deformation theory is pertinent [12] at
tension-to-compression strain reversals but it is not so at compression-to-tension
reversals. For brittle materials an intermediate approach may be justified. The-
refore, proper choice of the theory is not obvious. If the flow theory is used in an
elastic-plastic PYA analysis [13] it leads to a differential form of the kinematical
compatibility relations. This form enables a proper choice of initial conditions
for membrane forces. Hence, a qualitatively correct description of the structure
response (an ascending-descending load deflection curve) and determination of
the ultimate supportable peak-load become possible. On the other hand, when
the deformation theory is used, compatibility rules inherent to the limit analysis
theory cannot be strictly followed. Therefore, the flow approach seems to be more
convenient and is assumed here as a basis for an approximate approach, even if it
does not follow the real constitutive rules at certain strain reversals. This choice
seems to be right, as confirmed by a complete incremental FEM analysis [14].

Since the limit analysis theory furnishes instantaneous load-carrying capaci-
ties for a given fixed geometrical configuration, it cannot determine the prior-
to-collapse deformations. Unfortunately, these deformations are of primary im-
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portance in the restrained nonlinear bending. The limit analysis theory, when
applied to the rigid-plastic model of the deformed structure, gives a descending
load-deflection curve, Fig. 3. The maximum supportable load, obtained in this
way, appears at incipient collapse and its value strongly overestimates the struc-
ture carrying capacity. If elastic prior-to-collapse deformations were tried to be
accounted for, the main advantage of the limit analysis approach — its simplicity
- would be lost. Fortunately, it appears that elastic flexural deformations have
only a limited (quantitative) influence on the structure behavior, whereas they
are responsible for the computational complexity of the analysis. On the other
hand, elastic deformations due to membrane forces are responsible for qualitati-
ve changes in the structural response. Taking into account the elastic membrane
compliance and neglecting flexural deformations outside the yield lines allows for
an approach {13] that describes qualitatively correctly the structure behavior,
when conserving the simplicity of the post-yield analysis. However, the mem-
brane compliance of elastic links between the yield lines and the compliance of
the supports has to be replaced by a kind of spring action. A reduced average
compliance of these springs has to be properly chosen [14]. This problem will be
discussed later on the basis of numerical FEM analysis.
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F1G. 3. Load-deflection response in restrained flexure and its post-yield approximations.
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Let us recall the idea of this approach, when considering a classical case
of a strip deformed following a three-hinge mode, Fig. 2a. If a virtual rotation
increment df is acting on the rigid-plastic strip (Fig. 4), kinematical compatibility
needs the vectors of relative rotation increments in the plastic hinges (yield-lines)
to be co-planar. In the case of the same reinforcement at both supports, chosen
here for simplicity of the demonstration, it means that this plane (instantaneous
neutral plane) is parallel to the reference plane of the undeformed structure.
Hence, the positions of instantaneous neutral axes z (Fig. 4) in the yield lines
satisfy a relation: z, = 2, —w. However, if the strip is assumed to submit elastic
membrane deformations proportional to the membrane force increment dN, this
relation becomes:

dN [,
(2.1) = m W= o

F1G. 4. Kinematics of an instantaneous flow of the deformed strip, following an incipient collapse
mode.

In a non-dimensional form compatible with {13, 14] this relation may be rewritten
as follows:

(2.1 §=tn—20- o

Notation in the above formulas is as follows: &, &, describe positions of neutral
axes: & = 2 z; : h (subscripts ¢ = n,p concern negative-support and positive-
span yield lines, repectively); [;,{, describe the position of the positive yield line
(Fig. 4); L = (I;+1,) is the strip span and h — its thickness; E/, R - are, respectively,
Young’s modulus and plastic yield stress of the matrix material; « is the non-
dimensional reference deflection: &« = w : h; n is a non-dimensional membrane
force: n = 2N : (Rh), compression being taken positive.
The elastic stiffness parameter ¢ is

(2.2) £ = —
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The positions of instantaneous neutral axes in the yield-lines (z = A : k)
describe, through the normality rule (Fig. 1), the values of the stress resultants
there. The membrane forces may be determined using known expressions for the
yield curves, e.g. [13], and then, the compatibility relation (2.1) may be presented
in terms of these forces. Moreover, equilibrium needs the membrane forces in the
plastic cross-sections to be equal, if horizontal external loads are absent and
if displacements are small as compared to the structure span. This condition,
together with the relation (2.1), results in a linear differential equation for the
membrane force in function of the deflection w. This equation, with the initial
condition for the deformation process (N = 0 at w = 0), describes the evolution
of the non-dimensional membrane force:

(2.3) n=(1-e"% <k + é) —a,

where k depends on the plastic properties of the cross-sections. For unreinforced
or symmetrically face-reinforced cross-sections with a no-tension matrix we have
k =1 (see [13]). Then, the positions of instantaneous neutral axes in the cross-
sections &, §, may be also determined and, hence, the yield moments M,, M,
in positive and negative bending may be found.

Limit equilibrium of the structure shown in Fig. 1 is written as:

(2.4) Mgaq = M, — M,, — Nw,

where M)gaq is the maximum bending moment from the transversal load determi-
ned as for a simply supported strip. Introducing (2.3) to the Eq. (2.4), together
with the expressions for &,, &, easily found from the yield criterion (e.g. [13]) when
n is already known, we obtain finally the load-deflection relation [13], which may
be written in a non-dimensional form:

Mioaa _

@5)  a=g _qy+(k-a2)—[k—u—e—ae)(m%)r.

Here g, is the collapse load in unrestrained bending of the undeformed structure,
and My - the ultimate moment of the unreinforced cross-section My = (Rh? : 8)
corresponding to M, in Fig. lc.

It appears that for symmetrically loaded structures, the ultimate load g,
occurs at the central deflection ¢, being one half of the value corresponding to
the maximum of the axial force, i.e.:

_ In(1 + ke)
(26) aU - 28 i

and can be expressed by a formula:

(2.7) g, =q, +&72 [(ke —InvVI+ ke)2 - (\/1 T ke — 1)2] .
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3. INCREMENTAL VS. THE POST-YIELD APPROACH

Geometrical non-linearity of the structure behavior under restrained bending
conditions is enhanced by the fact that the membrane forces are self-generated
by the deformation process. Therefore, the simulation of the response, even in
the simplest quasi-static case, may pose serious numerical problems. Of course,
it may be performed using a FEM approach (even by commercial FEM codes).
However, the corresponding incremental procedures are rather cumbersome and,
first of all, very sensitive to modifications of boundary and initial conditions.
Therefore, a reliable simulation of the unstable response furnishing the value of
the supportable peak-load capacity of the structure needs very precise input data.
Uncertainties concerning some features of these conditions and data make engine-
ers reluctant in accounting for the arching action and, hence, important strength
reserve of the structure may be neglected. The above conclusion has motivated
studies concerning a possible implementation of the approximate approach into
practical structural analysis and diagnostics.

In the former paper [14] the authors used an incremental FEM analysis by
ABAQUS code [15] to verify the reliability of the post-yield approach. Elastic-
perfectly plastic material model is assumed: no-tension for the matrix and “sym-
metric” ductile for the reinforcement layers. The study concluded in a qualitati-
vely good correlation of its results with the post-yield approach in the case of a
centrally loaded strip. However, a larger set of load configurations, support con-
ditions and material characteristics should be considered to make sure that the
coincidence does not concern only some particular cases.

The first problem that could make the approximate approach to be of li-
mited utility for practical purposes concerns similarity requirements. The real
load-deflection relation, obtained from the incremental FEM analysis, depends
upon numerous geometric and strength parameters. In the corresponding ap-
proximate relation (2.5) all these parameters enter to one resulting parameter —
the stiffness ratio €. It is obvious (e. g., from simple considerations of reinforced
elastic structures) that incremental analysis would give non-identical results for
the same value of the parameter ¢, if its components are modified. On the other
hand, in all these cases the approximate solution (2.5) will be the same. The cor-
responding parametric study has shown that the differences concern first of all
the ascending parts of the load-deflection curve: the initial elastic phase and the
near-to-membrane behavior at very large displacements. Both these phases are
of minor interest for the evaluation of the structure strength. As may be shown
on the example of simultaneously varying slenderness ratio A = L : h and the
compressive Young modulus of the matrix material F. , when the parameter ¢
remains constant (Fig. 5), the curves from the incremental (“exact”) analysis are
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very similar in the vicinity of the supportable ultimate-peak load of the struc-
ture. For unreinforced no-tension matrix the curves in the up-to-collapse phase
are practically identical. Reinforcement makes this coincidence impossible in the
initial phase. However, even for very high reinforcement ratios

osAs

(31) s

(0s and Ay mean, respectively, the yield stress and the thickness of the ductile
reinforcement layer) the coincidence is satisfactory, when concerning the ultimate-
peak load zone. Similar conclusions concern modification of other parameters with
€ remaining constant. '
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F1G. 5. Similarity of the load-deflection relations (FEM incremental analysis) for a constant

elastic stiffness ratio € = const. = 60, with its components: slenderness ratio A = L : h and

Young modulus E varying simultaneously. Symmetrically face-reinforced strips with different

reinforcement intensity: n = 0, n = 0.031, n = 0.062, n = 0.10 (curves 0, 1, 2, 3, respectively),

with the slenderness ratio A = L : h = 7 and F = 15 Gpa. The curves 0’,1',2',3’ correspond
to A = 14 and F = 60 Gpa. a) up-to-ultimate load phase.
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Fi1G. 5. Similarity of the load-deflection relations (FEM incremental analysis) for a constant

elastic stiffness ratio € = const. = 60, with its components: slenderness ratio A = L : h and

Young modulus E varying simultaneously. Symmetrically face-reinforced strips with different

reinforcement intensity: n = 0, n = 0.031, 5 = 0.062, n = 0.10 (curves 0, 1, 2, 3, respectively),

with the slenderness ratio A=L:h=7and E = 15 Gpa. The curves 0',1’,2,3' correspond
to A =14 and E = 60 Gpa. b) entire load-deflection curves.

The above permits to exclude doubts concerning the similarity problems that
would disqualify the approximate approach. Therefore, since the final expression
for the ultimate load (2.7) may be accepted if the ratio ¢ is properly reduced to
give reliable results, this may be obtained by a reduction of the Young modulus of
the matrix. The introductory study [14] indicated that the best fit of the ultimate-
peak loads from both approaches is ensured if the Young modulus introduced into
the ratio € is reduced by 2. A slightly better fit is obtained if this reduction is
smaller, depending upon the reinforcement ratio. Such improvement is taken into
account and discussed later in Fig. 8. However, that produces, in fact, the ratio
€ dependent upon the reinforcement characteristics and reduces simplicity of the
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approach. Taking into account all the simplifying assumptions (perfect plasticity,
linear elasticity, etc.) inherent to both approaches, it seems that reduction of the
Young modulus by half may be considered satisfactory for practical purposes. The
above is illustrated in Fig. 6, using FEM curves, with the analytical ultimate-peak
loads (2.7) shown by dots.

2.0

0-0 ] T ' T [ T I
0.00 0.05 W/h 0.10 0.15

FI1G. 6. Ultimate-peak loads following the incremental analysis (A = L : h = 10, € = 60), with
different reinforcement intensities (n = 0, n = 0.031, n = 0.062, n = 0.10) and their analytical
approximations (black dots).

4, COMPLIANT SUPPORTS

Reduction of the ultimate supportable load, due to the compressibility of
the structure under membrane forces may be strongly amplified, if the supports
are also compliant. For perfectly compliant supports we arrive, of course, to
the simple bending conditions. The support compliance enters the approximate



128 M. JANAS and J. SOKOL-SUPEL

solution in the same manner as the elastic deformability of the structure. The
resulting stiffness ratio &, is determined by addition of the two compliances and,

therefore, we have:
11 1

(4.1) g =7 + g;

with € standing for the stiffness ratio representing both supports. To make more
comprehensive the estimation of the importance of the support compliance, the
load-deflection curves are given in Fig. 7 and Fig. 8 for selected ratios of the nomi-
nal membrane compliance of the strip C' = L/Eh and a cumulated compliance of
both supports C, . The FEM incremental and approximate PYA curves are com-
pared there for unreinforced and bottom-face reinforced moderate-slenderness

strips. The PYA curves correspond to reduction factors for the Young modulus:
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Fic. 7. Load-deflection curves for unreinforced strip with different support compliances;
incremental and PYA analyses (dashed and solid lines, respectively).
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E' = E : 2 (dashed curves) and E' = (1 + 8ny)E : 2, with 1, standing for
the mean tensile reinforcement intensity in positive and negative hinges (dotted
curves). It appears that the conclusions obtained for undeformable supports are
valid also for compliant supports.
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Fi1G. 8. Load-deflection curves for strips with a one-layer reinforcement (n = 0,09) and dif-
ferent support compliances. Solid curves — incremental analysis; dashed and dotted curves —
approximation by the PYA approach (two reduction factors for the Young modulus).

If the supports compliance is less than one-third of the strip compliance,
the supports may be considered as practically rigid. This conclusion may be of a
practical importance, because in majority of practical cases, the strip supports are
massive walls that may be considered as elastic half-spaces. If such a half-space
is loaded by a pressure exerted by the plastic compression zone at the support
yield line (Fig. 9), the classical elastic solution gives the support compliance equal
from 7% to 20% of the strip compliance (Cs = [0,07 =0, 20]C), depending upon
the width of the strip. It means that, if a perfect initial fit is insured between
a strip and a wall made of the same material, the supports may be considered
undeformable. Such situations may appear e.g. in rock roofs of mining galleries.
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F1G. 9. Arching action in a wall-strip interaction.
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Fic. 10. Reinforced concrete strips used in the experimental program.

The results of both approximate and FEM analyses have been compared with
results of a series of tests on reinforced concrete strips with elastically compliant
supports in conditions of unilateral contact. The tests were a by-product of an
old experimental program concerning implementation of the limit analysis theory
into the design of RC plates [16]. Singly (bottom- or top-) reinforced strips were
simply supported (Fig. 10) and subjected to the three-point loading tests. Dif-
ferent reinforcement intensities, from 7 = 0.09 to n = 0.18, were obtained using
the same reinforcement but varying the strip width. Variable support compliance
was obtained using different diameters of restraining ties (Fig. 11).

4ties: ¢ = 12/20/30 mm restraining block

- oo, v “-

F1G. 11. Testing device for restrained bending with compliant supports.
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The principal goal of the tests was visualisation of the importance of the ar-
ching action effect. Some results are shown in the Fig. 12. The restraints induced a
very important rise in the collapse load in comparison with unrestrained bending:
from 53% (for strong reinforcement of n = 0, 18) to 171% (for n = 0.09). Of cour-
se the impact of the restraints is the most important in the case of unreinforced
structures. For inverse bending (reinforcement layer close to the upper face), the
collapse load attained 80% of the value obtained in normal bending (reinfor-
cement near the lower face), whereas in the unrestrained upward bending this
value was only about 20% of the structure strength in downward bending. The
last observation may contribute to the discussion on the validity of the opinion
on negligible importance of compressed reinforcement in brittle matrix composite
structures.

Py =20.5kN =2.56 P
20 -
1
7 2
PU =16.5 kN
15
Z
=
° 1 Py =125kN
o
10
Py =Py =8.0kN
5 —
PU = 2.75 kN

T { ' I T |
0 4 deflection [mm) 8 12

F1G. 12. Selected results from three-point restrained bending tests of RC strips 1 — reinforcement
ratio 7 = 0.09, strongly restrained (Cs = 2C); 2 - unreinforced n = 0, (Cs = 2C); 3 -n =10,
weakly restrained (Cs = 6C); 4 — np = 0.09, unrestrained (Cs — «); 5 — n = 0, unrestrained.
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The test results for different support compliances (two specimens for each ca-
se) are compared in (Fig. 13) with the curves from the incremental FEM analysis.
The comparison shows a satisfactory fit of the curves. This conclusion, together
with the comparison of the approximate and incremental results (Fig. 8) confirms
that the approximate approach is applicable also in the structural situations con-
sidered in this section. The results (analytical) in the Fig. 13 were obtained using
the concrete modulus £, measured in the tests as a secant value at a relatively
important elastic deformation. It was only 57% of the initial modulus value re-
commended by structural codes. Another idealisation introduced into the analysis
by the model - perfect plasticity neglecting the concrete crushing/softening — do-
es not seem to rise serious doubts. However, for practical conclusions a further
study of this problem is necessary.

25 -

_, load [kN],

Cs & © —A—
S

(unrestrained)

T i
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Fi1G. 13. Comparison of experimental load-deflection curves (lines with symbols: two tests for

each compliance value: Cs = C — dots, Cs = 2C — crosses, Cs = 6C — diamonds, Cs —

—triangles) with the results of the incremental FEM analysis (continuous lines) for bottom
reinforced (n = 0.09) RC strips.
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5. FINAL REMARKS

The parametric study of the proposed approximate analytical approach [14]
to restrained bending, based on the post-yield methodology comparing it to the
FEM incremental analysis, has confirmed utility of this approach to the analysis
of one-way one-span slabs. Some further verification for multi-span systems and,
first of all, for two-way slabs is still necessary.

To permit simple application of this approximate approach to any case of load
and support configuration, a reduced value of the stiffness parameter € should be
provided from the comparative incremental analysis for some benchmark cases.
This may be considered as practically achieved now. Moreover, to determine
the supportable ultimate-peak load of the structure, only data from the simple
rigid-plastic limit analysis are needed, concerning unrestrained bending and, of
course, also yield characteristics of the reinforced cross-sections. The above needs
no more than elementary knowledge of structural mechanics of the strength-of-
materials level. However, the limit analysis approach, in spite of its simplicity,
is not largely implemented into structural analysis and design. Therefore, for
practical implementation the needed data should be given in a ready-to-use form.
This task is not too challenging but useful and should be done.

For materials (like concrete) without a clear linear elastic behavior, a reduced
“secant” modulus should be used. As concerns a direct application of the method
to unreinforced or weakly reinforced concrete structures, incremental analysis
accounting for the softening of the material is needed. It can provide, eventually,
supplementary reduction factors due to crushing of the material that may occur,
in some situations, earlier than the ultimate-peak load is attained.
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