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In the paper the problem of identification of the material parameters of the elasto-
viscoplastic constitutive equations is considered. A method based on the uniaxial tension tests
for the Bodner — Partom law and two methods (from the tension and cyclic tests) for the Cha-
boche laws are presented. The parameters for both models for mild steel are directly calculated
from the tension tests. Additionally, the numerical simulation of the cyclic loading tests is used
for identification of the Chaboche model parameters. Results of the identification are verified
in the viscoplastic analysis of vibrations of circular plates.

1. INTRODUCTION

Calculations of the viscoplastic behaviour of structures are one of the most
challenging subjects for scientists. Andrade, Norton and Odquist have developed
in 1910 — 1934 the mathematical model of this type of behaviour as the system of
the first order differential equations. In the seventies, rapid progress of computer
techniques and numerical methods gave new possibilities of verification of more
complex models of the constitutive equations. The type of the viscoplastic law
invented by Perzyna, has been extended by Chaboche, who used a more detailed
description of the hardening effects. In this approach the elastic and inelastic
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parts of the deformation are separated. The viscous effects are assumed to appear
after reaching the yield limit. Bodner and Partom have proposed a quite opposite
description of the deformation process. In their type of constitutive equations, the
viscous phenomena starts together with deformation of the structure. In order to
use both types of equations, it is necessary to know at least 7 material parameters
introduced in the system of the differential equations. The paper compares the
methods of identification of them showing their advantages and drawbacks.

2. THE CHABOCHE AND BODNER-PARTOM MODELS IN UNIAXIAL STRESS
STATE

The dynamic response of structures subjected to the impact loading is a
problem of great industrial importance. Application of one of many models of
the viscoplastic constitutive equations depends on the possibilities of calculation
of its parameters. Therefore, most often the simplest models, using small number
of parameters, are used. For identification of these parameters, usually different
kinds of uniaxial tests are applied. Preparing an identification procedure, the
basic differential equations of the constitutive models must be transformed into

Table 1.
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the uniaxial form. For the Chaboche and Bodner — Partom approaches, the ne-
cessary formulas are collected in Table 1.

The choice of the uniaxial tests, which can be carried out, often depends
on the shape of specimens, which can be cut out. Plate and shell structures are
usually made from thin sheets and the specimens taken from the same material
are also thin. Therefore, the tests including compression in the inelastic range
must be excluded. That is why identification of the viscous and the hardening
properties from the full reversed cyclic tests, which is the most suitable, is not
possible. In these conditions, it is important to find the procedure of calculation
of the material coefficients if only the tension tests are available.

3. DETERMINATION OF THE BODNER — PARTOM MODEL PARAMETERS

In the variant of the Bodner — Partom model, that is suitable in the dynamic
analysis (without recovery effects) it is sufficient to identify 7 material parameters
indicated in Table 1. The first of them Dy (the limit of inelastic strain rate)
is usually chosen arbitrarily. Dy = 10% 1/s is most often used, but for rapid
deformations Do = 10° 1/s or even Do = 10® 1/s can be applied [1, 2].

To identify parameters n and Ry, the inelastic strain rate function of the ap-
parent yield limit has to be studied. When the material enters the plastic domain,
the isotropic hardening is equal to its initial value R = Rp, and the kinematic
hardening is negligible [3]. The value of the yield stress oo for small values of the
inelastic strain can be determined from equations for the accumulated inelastic
strain rate given in Table 1 as follows [12]:

Ry
on 2D \1V@)°
(A
n+1 \/§-€1

If the value of the apparent yield limit is known for several values of inelastic
strain rates, the Marquardt-Levenberg regression [4] can be used and values of n
and Ry can be calculated.

To obtain the remaining four parameters, the hardening work rate function
7 is build [5]:

(31) agg —
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A typical graph of this function is shown in Fig. 1.
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The slope of the linear parts of the v — function on both its ends gives values
of the m; and mgy parameters. The values of stresses o, and o, indicated in
Fig. 1, make it possible to build the system of two linear equations. The solution
of this system defines D; and R; yielding [6]:
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4. DETERMINATION OF THE CHABOCHE MODEL PARAMETERS

4.1. Direct identification from the tension tests

For determination of the parameters K,k,n, a similar method as for the
Bodner — Partom model can be used. The apparent yield limit for the Chaboche
model is defined [12]:

(4.1) oo = K (¢ -sgn(o))/" + k.

The approximation of experimental values of the yield limit for different strain
rates by the function (4.1) leads to identification of K, k, and n. The hardening
parameters are evaluated from the equation for stresses in the inelastic range of
deformation:

(42) o= X(er,Xo,e10) +sgn(o)R(|e|) + sgn(o)k + sgn(o) K |¢7 /™.

Also here the Marquardt-Levenberg regression [4] is applied. To guarantee correct
results of the identification, it is necessary to choose proper starting values of the
parameters. In the identification at least three different tests with different strain
rates must be used. First single tests are used in each regression. The results of
the previous calculation give the initial values for the next one. Finally, one more
regression for all tests together is used. The details of this variant of identification
are also discussed in [9].

4.2. Identification from the fully reversed cyclic tests

Identification of the Chaboche law parameters from the fully reversed cyc-
lic tests is the most suitable method. Experiment series of such tests with the
constant strain rate and different strain amplitudes A¢ should be carried out
(Fig. 2). In each test, stabilisation of the cycles should be reached.

Using the graph of Fig. 2b, separation of the stress into components related to
the viscous effect (0,), the kinematic hardening (X) and the isotropic hardening
(R) is possible. The initial yield limit (o¢) can be also indicated. According to
the equations given in Table 1, the increment of stresses associated with viscous
properties can be calculated from the expression:

(4.3) oui = K|ép||V™.

From (4.3) the parameters K and n can be identified, and the function of the yield
limit (4.1) gives the value of k parameter. For the stabilised cycles the maximum
value of the total stress can be calculated from the relation given in [10]:

(4.4) o= % tgh (ceratab) -+ B1 + k + K (e)/™,

where: EIstab = AS]/Q.
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Fra. 2. Fully reversed cyclic tests. a) Force — displacement function; b) Inelastic strain - stress
function.

Regression of the function (4.4) leads to the values of a,c, Ry parameters. The
current value of the isotropic hardening can be calculated from the following
formula obtained from the first equation in Table 1:

(4.5) R=0-X—-k— K/

Using this equation, the parameter b can be calculated.

Identification of the Chaboche model parameters is more comfortable from
the cyclic loading tests than from the tension tests only, but it can not be always
used. Very often the examined structures are thin (e.g. plates and shells) and
specimens cut out for uniaxial tests can not be compressed above the yield limit
because of buckling. On the other hand, the direct identification is not always
satisfying because of the difficulties with indication of the yield limit for current
strain rate and because of large number of parameters, which have to be identified
during a single regression. If the Bodner - Partom model parameters are determi-
ned (from the tension tests only), they can be used in the numerical simulation
of the cyclic loading tests. For calculations only a simple computer program, in
which only uniaxial relations are used, is necessary. The main advantage of this
method is high accuracy of the results of such computer testing, as compared with
real experiments. Unfortunately, inaccuracies of both identifications aggregate.
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5. VERIFICATION OF RESULTS OF REGRESSIONS

All three methods of identification were used for certain kind of mild steel
Imm thick. The cyclic tests for identification of the Chaboche law parameters
were numerically simulated. The following values of coefficients were obtained.
For the Bodner — Partom model:

E = 215661 MPa, Dy = 10000 s, n =9.61, D; = 21.35 MPa,
(5.1)
my = 0.068 MPa™', mgy = 1.82 MPa™!, Ry = 259.38 MPa,

Ry = 422.90 MPa.
From direct identification of the Chaboche law parameters (variant I):

E = 215661 MPa, n = 1.0, k = 210 MPa, K = 267 MPa,
(5.2)
¢ = 64, a =535.5 MPa, R; = 138.48 MPa, b= 9.18.

From numerical identification with the cyclic tests (variant II):

E = 215661 MPa, n = 9.51, k = 210.15 MPa, K = 14.085 MPa,
(5.3)
¢ = 38840, a = 611700 MPa, Ry = 138.26 MPa, b = 17.64.

The value of the Young modulus E was found from separate typical elastic tests.
To verify results of the identification, calculations of the circular plates subjected
to the impulsive loading were compared with the experimental results. The details
of description of the experimental equipment and the numerical aspects of calcu-
lations can be found in [11]. The time functions of the middle point displacements
are compared for two levels of pressure in Fig. 3.

For lower pressure level, the Bodner —~ Partom model and the Chaboche mo-
del (variant II) give almost the same dynamic response during the whole time
range examined. The results are also in a good agreement with the experimental
result. Both the discussed calculations slightly overestimate the real values of
displacements. The first variant of the Chaboche model has produced displace-
ments smaller than those in tests. Vibrations have here the same characteristics,
but the final deflection is about 17% smaller. During the first 5 ms, the ampli-
tude of the vibrations is too large, later a similar decrease of the amplitude is
observed in the calculations and in the experiment. The deflection level of plate
vibrations calculated with the Bodner - Partom model and the second variant
of the Chaboche model is higher than the experimental one. Finally, an error is
smaller than 3%. The amplitude of vibrations is a little bit too small.
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Increase of the pressure (Fig. 3b) has more influence on the calculations with
the variant I of the Chaboche model than on the Bodner — Partom model solution.
Still a proper decline of the amplitude in all variants of calculations is visible.
Calculations with the first variant of the Chaboche law give 12% error of the
deflection level. Still a very good accuracy for the Bodner — Partom calculations
(4% error) and an error less than 10% for the second variant of the Chaboche
calculations is noticed. The shift of the graph for the Chaboche model (variant
IT) is rather not the result of improper identification of the material parameters,
but shows the sensitivity of some material parameters to the change of the strain
rate. This effect was also observed by CHAN et al. [5]. The Chaboche model is
more sensitive to the change of the strain rate than the Bodner — Partom model.

6. CONCLUSIONS

1) The proposed methods of the material parameters identification can be
effectively used for calculations of the material laws coefficients.

2) Only the constant strain rate tension tests are necessary for identification
of the Bodner — Partom and the Chaboche models parameters..

3) The results of identification for such complex types of differential equations
are not unique. Nevertheless, as it is shown on the example of the Chaboche law,
they can produce similar answers in the structure dynamic analysis.

4) The different types of the viscoplastic models can also produce a similar
dynamic answer of structures, which is in a good agreement with the experimental
results. Very often in the literature can be found values of the parameters, which
for the same material and in the same conditions, leads to completely different
dynamic responses. Example of such disagreements and analysis of their reasons
are discussed in [12].

5) If a set of values for one constitutive model is known, then the tests necessa-
ry for calculation of parameters for other law can be easily simulated numerically.
Of course, is it better to identify parameters directly from the results of proper
experiments. But very often the values of parameters for one constitutive law are
taken from the literature and the results of experiments are not available. There
is no way of direct recalculation of material parameters from the Bodner - Par-
tom law into the parameters of the Chaboche law, because of different physical
bases of both models. In this situation the method of numerical simulation of te-
sts proposed in the paper can solve the problem. The results of plate calculations
confirm the fact, that this procedure can be successful.

The main aim of this paper is not to show all details of the identification
process, which can be different in particular cases. The authors wanted only
to compare the methods of determination of parameters for the Chaboche and
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Bodner — Partom models. The values of parameters for these laws taken from
the literature for the same material in the same conditions usually lead to dif-
ferent results in calculation of the structures. Here even the numerical way of
determination of parameters gives similar answers in the dynamic approach for
both models.
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