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The paper deals with dynamic investigations of nonlinear discrete-continuous models in
which elastic elements are deformed torsionally, longitudinally or transversally, and the classical
wave equation can be used for the description of their motion. The investigations focus on
nonlinear vibrations of the discrete-continuous models with a local nonlinearity described by
the polynomial of a third degree. The detailed analysis for a simple nonlinear discrete-continuous
system is done. It is shown that amplitude jumps in the case of a hard characteristic and the
escape phenomenon in the case of a soft characteristic can occur.

1. INTRODUCTION

The paper concerns dynamic investigations of nonlinear discrete-continuous
models. As it follows from the technical literature, the discrete-continuous sys-
temus have received much attention. Such models consist of rigid bodies connected
by means of ponderable elastic elements. To these models also belong those where
the motion of elastic elements can be described by the classical wave equation.

The use of the classical wave equation gives some limitations for the group of
the systems under considerations; on the other hand, it enables to apply the so-
lution of the d’Alembert type leading to the equations with a retarded argument.
The foundations of the wave approach one can find in [1 - 5].

The wave approach allows us to consider the systems torsionally, longitudinal-
ly or transversally deformed. In systems torsionally deformed, one may consider
shafts on which various discs and gears are set. Such shafts can be found in bran-
ched systems, gear transmissions, internal combustion engines, transport drive
systems, current-generating sets; mainly — in systems operating in rotary mo-
tion, having densely distributed bearings, a considerable bending stiffness and a
small stiffness in torsion, [1, 3 — 14]. As longitudinally systems deformed, one may
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consider certain machine elements, truss members, railway cars and river bar-
ges, [1, 5, 15]. Among the systems undergoing transverse deformations, one may
consider e.g. the string systems and low structures subject to transversal excita-
tions, [1, 2, 5, 16, 17]. It should be pointed out that the utilized wave approach
is verified experimentally in [18].

The present paper concerns nonlinear discrete-continuous systems with local
nonlinearities. The variety of nonlinear problems is wide. It may include weak
and strong nonlinearities. In [8 — 12] it is shown how various local nonlinearities,
including strong ones and impacts, can be incorporated in the analysis of complex
mechanical discrete-continuous systems torsionally deformed. Interesting results
given there have an important practical meaning.

However, many problems concerning nonlinear vibrations of discrete-
continuous systems have not been discussed yet. In the dynamics of nonlinear
discrete systems such phenomena as amplitude jumps and escapes are observed,
[19 - 21]. It is interesting if in nonlinear discrete-continuous systems such types
of phenomena can occur. These phenomena are not noticed in dynamic investi-
gations of nonlinear problems discussed in papers [8 — 12].

The aim of the paper is the study of nonlinear vibrations of discrete-
continuous systems with local nonlinearities presented by nonlinear discrete ele-
ments. The considerations concern those nonlinear discrete-continuous systems
which have nonlinear discrete elements being either springs with a nonlinear
characteristic, or being modelled by means of nonlinear springs. The nonlinear
discrete elements can have the nonlinear characteristic of a soft as well as of
a hard type. The presence of local nonlinearities in discrete-continuous models
can have important consequences for their overall dynamic behaviour. The local
nonlinearity is described by the third-degree polynomial function.

Some effects of the local nonlinearity described by the third-degree polyno-
mial in complex discrete-continuous systems have been already shown in [13, 15,
17], however for the local nonlinearity having the characteristic of a hard type.
In the present paper, after short reminding of the wave approach, the detailed
considerations are done for a simple nonlinear discrete-continuous system with
the nonlinear spring characteristic being of a hard as well as of a soft type.

2. SHORT PRESENTATION OF THE WAVE APPROACH

Consider the physical systems described by discrete-continuous models con-
sisting of an arbitrary number of homogeneous elastic elements connected by
means of a suitable number of rigid bodies. The cross-sections of elastic elements
remain flat during the motion. Their lengths are finite and their cross-sections
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can be moderately variable, [5]. The considerations concerning nonlinear models
are limited here to the constant cross-sections of the elastic elements, and their
motion is described by the classical wave equation.

The displacements and velocities of all cross-sections of the elastic elements
are assumed to be equal to zero at the time instant ¢ = 0, and the system is loaded
by the forces P;(t). External and internal damping in the considered systems is
taken into account by means of an equivalent damping applied in the selected
cross-sections of the elastic elements, [5].

Local nonlinearities represented by nonlinear discrete elements can be intro-
duced into discrete-continuous models. The inclusion of such types of nonlineari-
ties is suggested by many engineering solutions. The springs in these elements
can have nonlinear characteristic of a hard as well as of a soft type. In the present
paper, the force in the nonlinear spring is assumed to be expressed by

(2.1) F(U;) = kyUs + kU3,

The function U; is the displacement of the elastic element of the discrete-
continuous system where the local nonlinearity is taken into account, and the
constants k1 and k3 represent linear and nonlinear terms, respectively. The non-
linear function of the type (2.1) is widely exploited in the literature in dynamic
investigations of nonlinear discrete systems, [19 — 21]. In the present paper the
function (2.1) is adopted to the study of the behaviour of the nonlinear discrete-
continuous systems.
The equation of motion for the i-th elastic element is assumed in the form

(22) Ui’tt(l', t) - CfUi,a::c(I,t) = 0,

where ¢y is a wave speed, and the comma denotes partial differentiation.
Searching solutions for specific systems, we must add to Eq. (2.2) the initial
conditions

(2.3) Ui(2,0)=0,  Ui(e,0)=0

and appropriate boundary conditions. These are the conditions for the displace-
ments of the 4-th and the i + 1-th elastic elements of the system

(2.4) Ui(z,t) = Uiy (z,1)

in the cross-sections of the contact of these elements, or the conditions for for-
ces acting either in the cross-sections of the contact of the neighbouring elastic
elements or in the cross-sections in which rigid bodies are attached. The rigid
bodies can be loaded by the forces F;(t).
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These latter conditions mostly take the form
1) for a free end

(2.5) Uz =0,

2) for the cross-section where a rigid body is connected with successive elastic
elements

(2.6) P +aUi g + a2iUi o + a3iUsp1 0 + asiUsy
+ a5 U; ot + F(U;) =0,

3) for the contact cross-section of successive elastic elements where a rigid
body is not attached

(2.7) agiUi g + azilUir1 2 =0,

4) when in the left-hand end of the elastic element only a rigid body is
attached

(2.8) P — ayUsgt + agiUs g — agiUs s + asiUs o0 = 0,

5) when in the right-hand end of the elastic element a rigid body is attached
(2.9) P + a1Ui 4t + agiUs o + a4iUs ¢ + asUs o = 0,

where ay; are determined by the masses of rigid bodies or by their mass moments
of inertia, ag; and ag; are determined by the material constants of the elements,
ay4; represent the coefficients of the equivalent external damping while as; repre-
sent the coeflicients of the equivalent internal damping. It should be pointed out
that taking into account the equivalent damping applied in the selected cross-
sections made it possible to assume equations of motion (2.2) in which damping
is neglected. The local nonlinearities represented by the function (2.1) may be
introduced in any contact cross-section.

If the appropriate coefficients aj;, forces P; and F(U;) are equal to zero, then
the boundary conditions (2.5) ~ (2.9) contain numerous particular cases of the
physical systems torsionally, longitudinally or transversally deformed, e.g. the
nonlinear systems considered in [13, 15, 17] and the linear systems discussed
in {1 - 7]. The boundary conditions (2.4) — (2.9) are valid directly for uniaxial
discrete-continuous systems. When the elastic elements do not have the common
axis then the boundary conditions (2.4) - (2.9) have to be slighty modified, as it
is done for a single gear transmission in [4, 7, 14] and for the plane truss members
in [15]. Appropriate boundary conditions for various complex discrete-continuous
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mechanical systems concerning the problems of a practical meaning can be found
in (8 - 12, 16, 18].
The solution of Eq. (2.2) is sought in the form

(2.10) Ui(z,t) = Fi(Cf(t —t0;) —x + xo;) + Gi(Cf(t —toi) +x — Zoi ),

where the functions F; and G; represent disturbances caused by the external for-
ces in the i-th elastic elements of the considered systems, in a direction consistent
and opposite to the direction of the z-axis, respectively. The constants ty; and
zo; in the arguments of these functions denote the time instant and the loca-
tion of one of the ends of the i-th element in which the first disturbance reaches
this element. Moreover, the functions F; and G; are equal to zero for negative
arguments.

The functions F; and G; are the functions of a single variable. Their forms are
determined by the boundary conditions of a specific problem. Substituting the
solution (2.10) into suitable boundary conditions, a set of ordinary differential
equations with a retarded argument is obtained for the functions F}, G;. For
linear systems these equations can be solved analytically or numerically, however
in nonlinear cases only numerical solutions are possible. The class of the unknown
functions F; and G; is also determined by the boundary conditions of a specific
problem.

Numerical calculations for nonlinear discrete-continuous systems with the
local nonlinearity (2.1) are much more laborious than the linear cases. The non-
linear models describing appropriate real complex systems are characterized by
different parameters, so they have different resonant regions and different nume-
rical results, [13, 15, 17]. However, the suitable solutions for nonlinear vibrations
have some similar properties. These properties one can notice also in the case
of a simple nonlinear discrete-continuous system discussed below. Such a system
can be treated as a particular case for all nonlinear discrete-continuous systems
studied in [13, 15, 17]. For this reason, detailed analytical and numerical analysis
may be done e.g. for this simple nonlinear system. Moreover, in [13, 15, 17] the
local nonlinearity of a hard type is considered while in the present paper the hard
as well as the soft characteristic cases are taken into account.

3. NONLINEAR VIBRATIONS OF A SIMPLE DISCRETE-CONTINUOUS SYSTEM

As an example, a simple physical system shown in Fig. 1 is considered. The
system consists of an elastic element, a rigid body and a nonlinear discrete ele-
ment. The elastic element can be subject to longitudinal, torsional or transverse
deformations with the motion described by the classical wave equation. Here it is
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assumed that the system is longitudinally deformed and is characterized by the
length lg, the constant cross-section A, the density p and the Young’s modulus
E. The left-hand end of the elastic element is connected to a rigid body having
the mass mg, and to a discrete element consisting of a nonlinear spring and a
damper of the viscous type with the coefficient dyp. The right-hand end of the
elastic element is fixed. The force in the nonlinear spring according to (2.1) is
expressed by the nonlinear function

(3.1) F(t) = kyu(z,t) + kaud(z, ) for =0,

where u(z,t) is the displacement of the cross-sections of the elastic element. The
z-axis is parallel to the axis of the elastic element and its origin coincides with
the location of the left-hand end of the elastic element at t = 0. Displacements
and velocities of all cross-sections are assumed to be equal to zero at ¢ = 0. The
formula (3.1) contains the linear case with k3 = 0, the hard characteristic case
for ks > 0 and the soft characteristic case with k3 < 0.

P(®)
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Fic. 1. A simple nonlinear discrete-continuous system.

An external loading applied to the rigid body can be described by various
time functions. In the analogy to the nonlinear discrete models, it is assumed in
the form
(3.2) P(t) = apsin(pt),
where ag and p are constant.

The problem of determining the displacements, strains and velocities in the
cross-sections of the elastic element for the analyzed discrete-continuous system,
under the above assumptions, is reduced to solving the classical wave equation

(33) Ustt —GQU,MC =0
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with the zero initial conditions

(3.4 u(2,0) = s (z,0) = 0
and the following boundary conditions:
(3.5) MoUygs +dote,y +kiu + kgu® — AE(Dot,gt +u,q ) = ag sin(pt)
for =0,
u(z,t) =0  for z=I,

where a = E/p, and the coefficient Dy represents the internal damping, [5].
Upon the introduction of the nondimensional quantities

= x/lo, t=at/l0, ﬂ=u/uo, a():dolo/amo, E=G,D0/l(),
(36) El = kllo/moa kg = kglouo/moa KO Aplo/mo,

&l

@ = aolg/moa’uo, B = plo/a
the relations (3.3) — (3.5) are as follows:
(37) Uptt —Uygg = 0
(3.8) u(z,0) = uy (2,0) =

Uyt +dou,; +kyu + kau® — Ko(Dotyzt +u,5 ) = agsin(pt) for z =0,
(3.9)

u(z,t) =0 for z=1,

where ug is a constant displacement, and the bars are omitted for convenience.

According to (2.10), the solution of the equation of motion (3.7) is sought in
the form

(3.10) u(z,t) = f(z —t) + gt + z).
Substituting (3.10) into the boundary conditions (3.9), the following ordinary
differential equations for the functions f(2) and g(z) are obtained:

9(z) = =f(2-2)
(3.11)
rif (@) 4 raf (2) + k(£ (2) + 9(2)] + ksl () + 9(2)) + 739” (2)
+7r49'(2) = agsin(pt)
where
(3.12) ri=14+KoDo, ma=do+ Ko, r3=1—KyDy, r4=dy— Kp.

The Equations (3.11) are solved numerically by means of the Runge-Kutta me-
thod.
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4. NUMERICAL RESULTS

In numerical calculations for the nonlinear system shown in Fig. 1, the hard
as well as the soft characteristics of the spring are taken into account. These cal-
culations focus on the determination of appropriate amplitude-frequency curves.

4.1. A hard characteristic case

Exemplary numerical calculations concerning the solutions in steady states
are carried out for the system shown in Fig. 1 with the spring having the hard
characteristic for the following constant parameters:

Ky = 0.3, do=Dy=0,0.050.1,015 ag=1,
(4.1)
ki = 0.05, k3 =0,0.001,0.005,0.01,0.1,1.0.

The first two frequencies of free vibrations of the considered system are wy =
0.564, wo = 3.235.

The system under consideration can be also studied using Galerkin’s method
leading to Duffing’s equation, [5, 20]. So, it seems to be desirable to perform
certain comparative calculations for the particular case of the considered system
using the wave and Galerkin’s approach. Such comparisons are carried out for
amplitude-frequency curves obtained from the appropriate Duffing’s equation and
from (3.11), for the cross-section z = 0 with do = Dy = 0 in the first resonant
region.

Seeking a single modal solution for the Eq. (3.7) in the form

(4.2) u(z, t) = X1(z)T(t)
where
(4.3) Xi(z) = (k1 — w})sin(wiz)/ (w1 Ko) + cos(w1z),

is the first eigenfunction of the linear case with X1(0) = 1, according to the
Galerkin’s method the following nonlinear equation for an unknown function
T(t) from (3.7) multiplied by Ko and from (3.9) is obtained, [5, 20],

(4.4) T + W3T + kT2 = agsin(pt),

where

1
K, = ks X4(0)/So,  dh = aoX1(0)/So, So =Ko / X2dz + X2(0).
0
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The first approximation of the solution for (4.4) according to Duffing’s me-
thod is sought in the form T} = Asin(pt — ), [5, 20], where v is a phase angle. It
leads to the following relation between the amplitude ag of the external moment
and the amplitude A of the solution for nonlinear vibrations:

(4.5) 3ks A3 /4 + (Wi - p?)A = ay.

Al

20

15

10

l >
0 3 p

Fic. 2. Amplitude frequency curves according to Duffing’s equation (continuous lines and da-
shed lines) and according to the wave approach in z = 0 (dotted lines) neglecting damping.
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In Fig. 2 amplitudes A as functions of the excitation frequency p determined
from (4.5) for selected values of k3 are marked by continuous and dashed lines for
stable and unstable branches of solutions, respectively. Displacement amplitudes
uy4 of the cross-section z = 0 (dotted lines in Fig. 2) are determined by solving
Eq. (3.11) with the zero initial conditions, from z = 0 until the steady state is
reached for the displacements expressed by (3.10). During numerical calculations
it appears that for every considered parameter k3 there exists a value pg for which
displacement amplitudes jump from the upper to the down curves. However, so-
lving Eq. (3.11) for p > pp with nonzero initial conditions we obtain displacement
amplitudes lying on the extension of the upper amplitude-frequency curves up
to the next jump, similarly to the case of the nonlinear discrete model, [19].
The nonzero initial conditions are expressed by the known values of functions
f(2), g(2) and their derivatives, taking into account the shift of the argument
in (3.11);. As an example, for k3 = 0.001, 0.005, 0.01 we have py = 0.71, 0.81,
0.87, respectively. The comparable results shown in Fig. 2 concern only the first
resonant region.

Further numerical results are presented for the discrete-continuous system.
They concern the effect of damping coefficients and of the parameter ks on
amplitude-frequency curves in selected cross-sections of the system.

A

101

0 0.5 1.0 1.5

oY

F1G. 3. Amplitude-frequency curves for do = Dy = 0.05.
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In Figs. 3 - 5 are plotted the diagrams of amplitude-frequency curves in the
cross-sections = = 0, 0.25, 0.5 and 0.75 for k3 = 0.005 and for the coefficients of
damping dy = Dy = 0.05, 0.1 and 0.15, respectively. From Figs. 3 and 4 it follows
that for dy = Dy = 0.05 and 0.1, there exist two values of frequency p of the
external loading P(¢) for which the displacement amplitude jumps occur in the
first resonant region. The distance between these Jump frequencies is constant for
all considered cross-sections of the elastic element, when the coefficients dgp and
Dy are fixed. From Figs. 3 and 4 it also follows that in the first resonant region the
largest displacement amplitudes occur in the cross-section = 0, and the lowest
one in x = 0.75. The effect of damping is significant. If we increase damping, the
displacement amplitudes and the distance between the jump frequencies of the
external loading decrease. In the the second resonant region, the displacement
amplitude jumps do not occur and each curve in this region is rather symmetric
with the respect to the vertical axis at p = wy = 3.235, i.e., for the second
frequency of free vibration. Displacement amplitudes also do not jump for the
damping coefficients dy = Dy = 0.15, Fig. 5.

Al

I l
0 05 1.0 1.5 p

Fia. 4. Amplitude-frequency curves for do = Dy =0.1.

The effect of the local nonlinearity is directly expressed by the parameter k3
in (3.1). In Figs. 6 and 7 are plotted the diagrams of amplitude-frequency curves
in the cross-sections z = 0 and z = 0.5 for do = Do = 0.1, and for k3 = 0, 0.001,
0.005, 0.01 in the first and the second resonant regions. The effect of the coefficient
k3 is observed only in the first resonant region. It can be noted that displacement
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Fia. 5. Amplitude-frequency curves for do = Do = 0.15.
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F1G. 6. Amplitude-frequency curves for z = 0 and k3 = 0, 0.001, 0.005, 0.01.
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amplitudes and the distance between the frequencies of the external loading P(t)
for which the jumps occur are dependent on k3. The amplitudes increase and the
distance between jump frequencies decreases with the decrease of k3 in the whole
considered cross-sections. For k3 = 0 the amplitude-frequency curves concern
the linear system. From Figs. 6 and 7 it follows that the highest displacement
amplitudes occur in the first resonant region. In the second resonant region the
displacement amplitudes in the cross-section 2 = 0 are very small and for this
reason they are not shown in Fig. 6.

Al o0 x=0.5
5L
35 e
! | 1 .
0 0.5 1.0 15 D

Fic. 7. Amplitude-frequency curves for = = 0.5 and ks = 0, 0.001, 0.005, 0.01.

4.2. A soft characteristic case

Numerical results for the nonlinear discrete-continuous system with the spring
characteristic of a soft type are presented for

Ko = 0.3, do = DO = 0.1,0.15, apg = 0.2,0.3,
(4.6)
ki = 0.05, k3= —0.001,—0.005, —0.01.

Diagrams in Figs. 3 - 7 inform that numerical solutions can be obtained in an
arbitrary cross-section of the elastic elements. Here the results are shown only
for the cross-section z = 0.

In Fig. 8 the amplitude-frequency curves are plotted for k3 = —0.001,
—0.005,-0.01, dg = Dy = 0.1, ap = 0.2, 0.3 and p < 0.9. They contain only
the first resonant region because in further resonant regions, similarly as in the
case of the hard characteristic, no effects of the local nonlinearity were observed.
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One would expect that with the increase of the amplitude of the external loading,
the amplitudes of the diplacements should increase for each p. It is true up to
the frequency p for which the function (3.1) approaches the maximum value po-
stulated by the constant k3. Then the solutions begin to diverge to infinity, and
that is connected with the properties of the potential of the function (3.1). The
escape phenomenon is known in nonlinear discrete systems with the nonlinearity
of the type (3.1), [21]. Thus, this phenomenon is noticed also in the study of non-
linear discrete-continuous systems. Two extreme values of p for which harmonic
solutions can be obtained are marked by points in Fig. 8. The points determine
the interval of p where the polynomial function (3.1) is rather not useful for the
description of the nonlinear characteristic of a soft type.

500 — A

4.00 —

3.00 —

2.00 —

0.00 T I 1 | T | T ] T | P
0.00 0.20 0.40 0.60 0.80 1.00

Fi1G. 8. Amplitude-frequency curves for k3 = —0.001, —0.005, —0.01 and ao = 0.2,0.3.
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Diagrams in Fig. 9 show the maximum values of the amplitude ag of the
external loading giving harmonic numerical solutions as functions of the frequency
p of the external loading. They are done for k3 = —0.001, —0.005,—0.01 and dg =
Dy = 0.1, 0.15. Tracing the diagrams in Fig. 9 one can see that the application
ranges of the nonlinear function (3.1) become narrower with the decrease of the
parameter k3 representing the local nonlinearity in the system, and with the
decrease of damping. From Fig. 9 it follows that the strongest restrictions concern
the neighbourhood of the resonance.

2.00—410
do=0.1
k ;=-0.001
1.60 —
1.20 —
-0.005
0.80 ~— -0.01
0.40 —
e L AN S m s ms e
0.00 0.20 0.40 0.60 0.80 1.00

Fic. 9. Application ranges of the function (3.1) in the case of a soft characteristic.

5. FINAL REMARKS

From the above considerations it follows that the introduction of local
nonlinearities, described by the third-degree polynomial function, in discrete-
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continuous systems has a significant influence on the dynamic behaviour of these
systems. From the investigations for the simple nonlinear system it follows that
in the first resonant regions, two jumps of the displacement amplitudes can occur
for the local nonlinearity with the characteristic of a hard type. The distance
between jump amplitudes decreases with the increase of damping and with the
decrease of the parameter k3. When the local nonlinearity with the characteristic
of a soft type has to be taken into account, one may expect that the assumed
polynomial function has some restrictions for its application for the description
of the local nonlinearity. This case needs more investigations, however they are
beyond the aim of the present paper.

The nonlinear discrete-continuous system shown in Fig. 1 is more complex
than nonlinear discrete systems considered e.g., in [19 — 21]. More complicated
nonlinear discrete-continuous systems with local nonlinearities represented by
the third-degree polynomial are given in [13, 15, 17]. The results presented there
for the local nonlinearity with the characteristic of a hard type lead to similar
conclusions as those given in the present paper and concern more resonant regions.

Nonlinear discrete-continuous systems with nonlinearities described by other
nonlinear functions one can find in [9 - 12, 18]. In these papers the wave approach
is also applied.
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