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A MODIFIED FLOW FIELD IN THE EXTRUSION OF BIMETALLIC
SYSTEMS
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The aim of the paper is to propose a new kinematically admissible velocity field correspon-
ding to experimental results of the co-extrusion of various materials. A modified mathematical
description of the plastic flow in the extrusion of the bi-metallic composite including bounda-
ries of the plastic zone described by appropriate functions has been proposed. Velocities, grid
distortion and strain rate distribution have been calculated by taking into account information
on the plastic zone boundaries and their forms. Excellent agreement between the analytical and

the experimental results of the plastic flow of longitudially oriented metal composite has been
established.

1. INTRODUCTION

In the paper [11] a kinematically admissible velocity field of the bimaterial
extrusion has been proposed and discussed to analyze such a type of the extrusion
process. In that case, the boundaries of the plastic zone are approximated by
ellipsoidal, hyperboloidal and sinusoidal surfaces.

In the paper [10] the previous model has been generalized for an arbitrary
form of plastic zone boundaries. For this aim a special parametrization of the
boundaries has been applied. Internal consistency of the proposed kinematically
admissible velocity field has been estimated and the analytical and new experi-
mental results concerning velocities, strain rate and stress fields obtained in [6,
7, 8] have been compared. In both the papers mentioned, the flow lines are de-
scribed by straight lines in a plastic domain. Unfortunately, such approach leads
to the existence of velocity discontinuity boundaries on the entry and exit of the
plastic zone.

However, the results of other papers [e.g. [4, 9]] show that plastic zone may
be limited by sufficient arbitrary shape of the surfaces in such a way that flow
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lines are not straight lines, in general. Moreover, velocity discontinuity boundary
is observed only between the plastic zone and the arising dead metal zone.

One way to eliminate this mentioned inconsistency is to use a special procedu-
re for smoothing flow lines. Such procedure cannot be an arbitrary one, because
the incompressible condition should be satisfied for the seeking of the corrected
flow field, too. There are different techniques to smooth flow fields. As an exam-
ple, note a sufficiently simple smoothing procedure proposed in the paper [5]. Let
us also note the other approaches to the problem of bimetal extrusion applied in
papers [1, 2, 3].

In this paper a modified flow field which is smooth immediately from model-
ling is presented. On the other hand, the process of construction of the flow field
is as simple as the solution with the straight lines assumption [10].

2. CONCEPTION OF THE FLOW FIELD

Different geometry of the deformation boundaries between various materials
deformed together (the core and the sleeve) and between the entry and exit
surfaces of the each material is considered basing on the results of the papers |6,
7, 9].

The following additional assumptions mentioned below are applied. Most of
them are similar to the assumptions presented in the paper [10], but point Sec. 5
below is completely different.

1. There is no friction between the materials as well as along the material-tool
interface at the entry of the plastic zone. Hence, relative initial velocity (V/Vp)
is the same for every component of the composite.

2. Both materials of the core and the sleeve demonstrate plastic zones
(ABDC and ABFE, respectively) depended on the geometry and mechanical
properties of the core and the sleeve (see Fig. 1). In fact, the plastic regions
depend essentially on friction along the metal-metal and metal-tool interfaces.

3. Co-extrusion of different materials lead to the existence of a dead metal
zone formation. Its form depends on the geometry of extrusion tools and the
properties of materials extruded.

4. The materials are assumed to be 1ncompressxble and the stress-strain state
is prescribed by the rigid-plastic model.

5. The flow lines are smooth. They are described by appropriate trigonometric
functions for both the sleeve and the core materials. In the previous paper [10] it
was assumed that flow lines are straight lines in the plastic zone.

6. The degree of deformation is different for the core and the sleeve:

(21) A =RI/rl, A= (B - RO/(r]—r2), AL # AL # Agloal:
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Fic. 1. General concept of the flow field construction in extrusion of bimaterial system: flow
lines are straight a) or smooth b).

As a result, the exit velocities of the components are constant, but not the same.

These assumptions simplify a model of the plastic flow in co-extrusion. Of
course, such a model is an approximation of the real plastic flow, and has its own
disadvantadges:

® Mechanical parameters are introduced to the model in an indirect way only.

e Velocity at the exit of the plastic zone is not constant in each of the com-
ponents of the composite.

However, these assumptions are better in comparison with those supposed in
the previous papers [10, 11]. Namely, in this new modelling the velocity field is
continuous along the entry and exit boundaries of the plastic zone.

3. A KINEMATICALLY ADMISSIBLE FIELD

In view of Assumption 5, the corresponding trajectory in the plastic zone is
given by the curve:

21—z 2r —ri — 1

(3.1) z=2z — 2arccos { J , T € [ro, ],

TL—T2
where (r, z) is the successive position of the point, and (ry, 21) € I'yg (Isc) and
(r2,22) € I'gp (I'pp) are the coordinates of the point at the entry and exit in
the core (sleeve).

It is assumed that the boundaries of the plastic zone are prescribed by the
following curves determined by their parametric forms:

z1 = fi(t), Ior - {22=f§(t),

, , tel0,1],
™ = Rcta

(3.2) s {

ro = Tct7
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in the core, and

Tac 21 = ff(t),
T = VRET RSP,
(3.3) t €0,1],
r z = f3(t),
P05\ = REEFRA=D),

in the sleeve.

In such a way arbitrary forms of these curves can be chosen by determining
the functions ff, f; (j = 1,2). However, these fuctions have to satisfy additional
conditions dealing with the geometry of the plastic zone (see Fig. la, 1b)

f10) = ¢, fi(1) =s, f5(00) =d, f5(1) = a,
(3.4)
fi(0) = s, fi(1) =0, f3(0) =a, f3(1)=0.

Besides, note that for each value of parameter ¢ € (0,1) the points
(r1(t), z1(t)) and (ra(t), 22(t)) correspond to entry and exit positions of the ma-
terial point.

Now, auxilarly curves I'c, I's are denoted in the core and the sleeve along
which the corresponding extrusion ratio is constant (defferent in core and sleeve,
in general):

(35) RO/ = A, A€ LA, [FFQ) —r2O1/I2(1) - r2(0)] = A,
As € [1, A7),

hence

(3.6) re(t) = mt, () =y 21— 2), te[o,1),

where 7, is the first coordinate of the intersection point of the curves I'¢, I's and
the interfacial line AB, but rp = rp(r.) is the first coordinate of the intersection
point of the curve I's and the boundary EF of “the dead metal zone”. As it has
been shown in the previous paper [10], the function rp = rp(r.) can be described
by the form:

[R2 _ 2
(3.7) rp(ry) = \/Eg_—rgvz—rzmz.

Finally, note that the second components of the points belong to the curves
I'c, I's, and are defined by the relation (3.2) with r = . or r = rg, respectively:
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(3.8) Ie @ z=2z(r), r €[0,r]
_ A (t) — 22(t) . 27‘(t) —r(t) — ro(t)
- z=2() - ——"a ccos[ 1) — o) ])
T = 1,1,
t e [0,1],
in the core, and
(3.9) Iy : z=2(r), r € [re,rp]
N 21 (t) — 29 (t) QT(t) A | (t) - T’Q(t)
" z=2z(t) — ———-arceos 0 = 1200 J
r(t) = \/rit2 +r2(1 - 12),
t€[0,1],

in the sleeve. Let us note that value r, € [r¢, R.] in the relations (3.9) and (3.10)
is a parameter determining position of the curves. Namely, if 7, = R, then the
entry boundaries of the plastic zone (curves I'yg and I'4c) are obtained, but in
the case r, = r, the exit boundaries of the plastic zone (curves I'gp and I BD)
are found. The flow lines are defined by relation (3.1) where functions 212)(t)
and rye)(t) are written in (3.2) and (3.3). Here the value of ¢ is a parameter
determining which flow line is under consideration. It means that the plastic zone
(core and sleeve separately) is parametrized by two parameters: ¢t € [0,1],7, €
[re, Re). In order for this fact to be true, the functions f5: f; (3=1,2) from (3.2)
and (3.3) have to satisfy some additional conditions. When the hypothesis of the
straight line is applied [10, 11] it is sufficient to assume that all these functions
are monotonic. In the present case we have to check if the Jakobian corresponding
to this transformation is not equal to zero in the core as well as in the sleeve:

17} . s} p
a7 c(s) 7 <c(s)
(3.10) ?; %t £0, te(0,1), ru € (e, Re).

8_7‘*7'c(s) a—r*zc(s)

Angle ¢ between the OZ axis and the trajectory of each particle of the me-
tal is calculated by taking into account Eq. (3.1), but ¢x is the acute angle
between the normal to the curve I'c in the core (I's — in the sleeve) and the
OZ-axis. Functions ¢ = ¢(t,r.) and ¢y = ¢n(t,7.) are determined from the
relations:



208 R.E.SLIWA and G.S. MISHURIS

dzc(s) 8zc(s) Ory
L N
(3.11) t€[0,1], 7« € [re, Re).
dz, dz dt
_ c(s) _ c(s)
tg(:bN - = dr IFC(S) - - dt : E:’

Here we use the fact that parameter ¢ is constant along the curve I', but the
next parameter r is constant along the curves I(5). After simple calculations we
obtain:

my/(r1 —r)(r — o)

(3.12) tgd = p—— , t€[0,1], r« € [re, Re).
= — A2 ry—r
(3.13) tBoN = m(ry = ro)y/(r1 — r)(r — 7o) [2( 1= r2)
dt [dr dr
= - Gre-n)

dt [dzl 1<d21 dz2> . [27‘-7’1—?“2”
dr L dt  w\dt  at ) T = )

t€ (0,1}, 7« € [re, Re).

Let us note, that in the core the first term in (3.13) is equal to zero due to
the following identities:

(3.14) dri 1 dra r2

i
Moreover, from these relations it follows that in the core argument of arccos is
independent of the parameter ¢ (it only depends on r,).

Basing on the results of the paper [11], due to incompressibility of the mate-
rials we can obtain:

cos o (t, )

cos[p(t, ) — dn(t, 7))’
te [0, 1], Ty € [TC,RC],

(3.15) V(t,m) = Aoy () Vo

where the values A, and A, are defined in (3.5) (see also (1)). The above equation
is applicable to both proportional and non-proportional flows. The axial and
radial components are

(3.16) V., =—-Vsing, V,=-Vcosg,
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What is important to note is that condition (3.10) is equivalent to the follo-
wing relation:

(3.17) Bt,re) — dn(t,7e) £0, t€(0,1), 7, € (re, Re).

The last fact shows us that there is no necessity to check the condition (3.10)
separately, because it has to be done in the process of determination of the
velocity field.

Now, the strain-rate tensor can be calculated

¢ _ Ov, ; _ Ov, : vy : ! 6vT+sz>
"o P 9z T 2T o \%6: Tar )0
and finally, by the Saint-Venant — Levi — Mizes hypotheses (see for example
[12]) the stress tensor o; = 0j — 0d;; with accuracy to an unknown hydrostatic

ij
pressure ¢ is of the form:

V2k(s)
Here k. and k, are maximal tangential stresses of the components of the composed
material in the core and the sleeve.

(3.18)

4. NUMERICAL RESULTS AND DISCUSSION

Basing on the concept presented in the paper [10] the velocity field is described
by using the parameters of the plastic zone [6, 8, 9]. The parameters Ry, R, o, e
are calculated with sufficient accuracy (with relative error less than 1%), but the
remaining ones (a,a’, b, s,b) can be estimatelly found from the analysis of a kind
of grid distortion and the changes of macrostructure {10].

Some remarks to numerical procedure are presented below. To find velocities
in an arbitrary point (ry,2) in the core (sleeve) we first localize this point in a
small domain [ty, tar] % [r}, 73] and then the domain is parametrized as it is shown
in Fig. 2. Further, velocities in each node (t;,7¥) (1 < 4,7 < M) which corresponds
to the respective point (z;,7;) in the mentioned domain are calculated from the
equations (3.15) ~ (3.16). During the calculations the core (the sleeve) is divided
into 400 parts to localize the point under consideration and then the obtained
domain is parametrized by 41 x 41 nodes (M = 41).

Further, velocities and components of the strain rate tensor are calculated
by the least square method. Namely, the velocities are approximated by linear
relations:

vp(r,2) = Ar + Be(r —mp) + Cr(2 — z),

\/(r—rb)2+(z—zb)2<e,
vy(r,z) = A+ B,(r —rp) + Cu(z — z),
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and then values of the parameters have to be found as the best approximation
for the points (2;, ;) belonging to a small circle (with radius equal to €) with the
center in the point (zp, 75) shown in Fig. 2. Then the velocities and the strain rate
components in the point (73, 25) under consideration are defined by the equations:

Vr = Ar, Uy = Az, Erp = By, €, =C,, &, = (Bz + Cr)/2~

What is important to note is that the strain-rate tensor is calculated, in fact,
without any special numerical differentiation.

Fia. 2. Localization of an arbitrary point under consideration.

The comparison of the results obtained by the hypothesis of straight lines
flow and the present approach is presented below.

In Fig. 3 plastic zone and the corresponding flow lines are presented for the
extrusion of two different materials: the hard core (hard lead alloy — OT3) and

a) b)

Fia. 3. Plastic zone and flow lines for both different models for Pb/OT3 composite (the hard
core) A =3 and Ro/R. = 2.
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the soft sleeve (soft lead Pb). Exact dates for the experiment can be found in
papers [6, 7, 8]. The definition of the boundaries of the plastic zone determined
by the relations (3.2) — (3.4) was presented in the previous paper [10].

In the next figure grid distortions for both models for the similar composite
are presented. As it follows from Fig. 4 grid distortions are of little difference.

T g I -

& "-Q_-*m-m.—',u oo i

Fig. 5. Experimental grid distortion for Pb/OT3 composite (the hard core).

In Fig. 6, 7 distributions of the velocities V,., V, are shown. We do not present
here results for the strain-rate tensor, because its components are drastically
different for straight lines model and for the smooth flow lines model near the
boundaries of the plastic zone, which is the natural consequence of the fact that in
the case of the straight lines model these boundaries are discontinuity boundaries,
in fact.

In Fig. 8 — 11 numerical results for normed components of the stress deviator
are presented.
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5. CONCLUSIONS

The presented numerical results of the modelling composite plastic flow de-
monstrate velocity field, grid distortion and stress distribution in the deformation
zone. Very good agreement with experimental dates confirms the concept of the
model and the chosen solution. The results indicate that it is possible to prove
the design of composite products obtained in the course of the metal forming
processes by taking into account the features of the actual non-uniform defor-
mation of composite material. Assumptions for modelling are rather simple, but
results are very close to the actual ones, so, such a solution may be useful from
the practical point of view.

1. The proposed model of a kinematically admissible velocity field of com-
posite bimaterial can be constructed for an arbitrarily determined boundaries of
the plastic zone and always lead to smooth flow lines.

2. The presented method is not time consuming and the results of solutions
give sufficiently exact information on the character of the flow of the composite
material. Moreover, the numerical procedure is as simple as it has been in the
case of the straight line model.

3. The conditions of existence of the proposed kinematically admissible field
(3.10) or (3.17) are checked in the numerical procedure itself so it is not necessary
to do it separately.

4. Numerical results concerning velocities and the grid distortion show good
agreement with the experiments [6, 7, 8]. They may indicate the way in which
modelling and engineering of this type of the composite material can be improved.

9. Basing on the exposed relations it is possible to predict the mode of defor-
mation in the extrusion and the permissible degree of deformation of the com-
ponents and the composite. Advantages of this model let us develop and apply
it to obtain a better optimization of the extrusion process e.g. including the up-
per bound method. It makes it possible to include friction conditions into the
consideration.

6. The proposed kinematically admissible velocity field for bimaterial com-
posite can be generalized in the case when the composite consists of more than
two materials. In such a case all materials except one should be considered as the
next consecutive layer.
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