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ON THE MACHINE TOOL SUBSTITUTIVE MODEL
CREATION, SUPPORTED BY THE FINITE ELEMENT METHOD
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A primary model is created by the rigid finite element method. The selected “rigid” part
which is supposed to be flexible, is idealised by classic finite elements of various kinds. The
solution to dynamics of the model introduced is a pattern which the primary model should
follow. Suitable accuracy criteria are included to compare the results. If the chosen criterion is
satisfied, flexibility of that “rigid’ part will be distributed over some spring-damping element. If
the latter is not accomplished, the “rigid” part will be subdivided into two rigid finite elements,
connected by additional spring-damping element. Some illustrative examples are included.

Key Words: Discrete Modelling. Finite Element Method. Dynamics. Machine Tools. Numeri-
cal Analysis. Computation.

NOTATION

B diagonal damping matrix of SDE no. h
By diagonal damping matrix of SDE no. k
Cs diagonal stiffness matrix of SDE no. h

Cyk diagonal stiffness matrix of SDE no. k
() number of SDEs attached to RFE A

ixg  number of SDEs attached to RFE B

ina  number of nodes corresponding to RFE A
inB number of nodes corresponding to RFE B

j imaginary unit
K stiffness matrix of the whole discrete system
L damping matrix of the whole discrete system

IlrrE  number of RFEs

Ispe  number of SDEs

lsw number of nodal degrees of freedom of the FE
L number of nodes of the FE
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number of harmonic components from the Fourier

decomposition of excitation p(t)

inertia matrix of the whole discrete system

inertia matrix of RFE no. r

shape function matrix of FE no. e;, to which point j belongs, and
calculated in the coordinate system of this point

shape function matrix of FE no. e;, to which point j belongs, calculated
in the coordinate system of this point and expressed in the global
coordinate system zi1z2z3 of the DFB

vector of generalised forces of the model

vector of generalised forces of RFE no. r

vector of generalised displacements of the model

vector of generalised coordinates of FE no. e

generalised displacement of node no. j of the DFB along direction no. i
vector of generalised displacements of RFE no. p

vector of generalised displacements of RFE no. r

generalised displacement of point no. j of RFE no. r along direction no. 4
vector of nodal displacements of FE no. e;, to which point j belongs,
expressed in the global coordinate system x1z2z3 of the DFB
matrices of connection coordinates of SDE no h to RFEs:

A and B, respectively

matrices of connection coordinates of SDE no. k to RFEs:

A and B, respectively

matrices of connection coordinates of node no. i to RFEs:

A and B, respectively

matrix of coordinates of point j, which belongs to RFE no. r
matrices of connection coordinates of SDE no. k

to RFEs no. r and no. p, respectively

matrix of connection coordinates of point 7, transformed to

the global coordinate system zix2z3 of the DFB

desired allowable value of index W

allowable difference in generalised displacement of point no.

Jj along direction no. 1

matrices of direction cosines between coordinate system of SDE
no. h and those of RFE A and RFE B, respectively

matrices of direction cosines between coordinate system of SDE
no. k and those of RFE A and RFE B, respectively

matrices of direction cosines between the x1z2z3 coordinate system
of the DFB and those of RFE A and RFE B, respectively

matrices of direction cosines between coordinate system of point j
and those of RFE no. r

matrices of direction cosines between coordinate system of SDE no. k
and those of RFE no. 7 and RFE no. p, respectively

angular frequency of harmonic component no. o from the Fourier
decomposition of excitation p(t)
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1. INTRODUCTION

A study of machine tool phenomena yields the observation that the basis
Is its a carrying system. It usually consists of the frame, the bracket (console
milling machines), the bed (lathes, shapers), slides (transverse and longitudinal),
the table (milling and drilling machines), the independently driven beam (some
milling machines), the spindle head (milling machines), the spindle box (lathes)
and the tool carriage (lathes, shapers). A consistence of such a structure is quite
general. Because of a variety of machine tools, an explicit description is possible
only for special types.

Due to extremely inconvenient working conditions (i.e. vibration, fatigue
loads, thermal effects), and the necessity of high quality machining being as-
sured (that is to say: accuracy, efficiency, reliability and industrial safety), each
sub-unit should be an extremely reliable element of the structure. Thus, they
are created as solid bodies, usually made of cast iron or machine steel. They
are manufactured as castings or welded structures, and subsequently formed or
machined. Also structures which have been composed of screwed-on parts, can
be observed (e.g. frames and boxes).

Several substructures are coupled by movable connections (e.g. guides, turn-
around tables, roll carriages, bearings) or by fixed joints (bolted, pin, spigot,
welded, clamped guides etc). Certainly, the joints in the structure cause reduction
in stiffness of the carrying system. Thus, the presence of:

e solid and rigid sub-units, usually with perfect geometric properties, and

e flexible constructional joints is an important feature of the carrying system.
The reasons above support the aim of using the conventional rigid finite element
method (RFEM) [1] as an attractive tool for making a primary discrete model. It
is to be emphasised that the process of subdivision is performed quite naturally,
because [2]:

e several substructures of the machine tool are solid bodies with their own
high rigidity, and so they may be idealised as rigid finite elements (RFEs);

e the flexibility of constructional connections (as movable as those fixed) is
significant, so that they can be favourably modelled by spring-damping elements
(SDEs).

In order to make the model adequate, the main goal depends upon proper
estimation of the inertia parameters of RFEs and the spring-damping coefficients
of SDEs. The following methods are applied for this purpose:

e analytical methods, which are usually supported by commercial computer
software (3, 4];

e identification procedures, which are based on the results of measurements
from a real structure [5];
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e both experimental and numerical approaches simultaneously [6].

Unfortunately, the primary model of the carrying system must be verified
very often. The reason is that the rigidity of some solid bodies of the model
may appear to be insufficient, and then it makes the model inadequate. In the
next section a new approach will be suggested, which allows to apply the classic
finite element method (7, 8] in order to examine and, if necessary, to improve
the quality of conventional modelling by the RFEM. As a result, more adequate
model of the real structure is obtained.

2. GENERAL CONCEPT

The proposed approach depends first on application of conventional RFEM to
modelling, so that machine tool substructures are considered as separate RFEs.
A primary model, which is composed of such RFEs connected with each other by
SDEs, is obtained in the above suggested way. A dynamic problem of the model
(described below) is computed. Following that, the chosen “rigid” part, which is
assumed to be flexible, is to be idealised by the classic finite elements of various
kinds (Fig. 1), and the relevant dynamic problem is computed again.

If someone is not sure whether the chosen part is really flexible, the trial-
and-error approach is recommended for this purpose. Besides, a thorough study
on geometry and properties of the part, supported by experience and engineering
intuition, are the bases of selection. In case of uncertainty or lack of experience,
the approach enables the examination for any part of the primary model.

Application of the FEM does not mean that it improves the results of calcu-
lation. However, some features of the method (e.g. high density of discretization,
true idealization of perfect geometry of real structures) cause that it is difficult
to find any alternative approach at this stage of computation, which could be
treated as a pattern.

The examination means a comparison between the results of both computa-
tions outlined above and a suitable accuracy criterion is included for this purpose.
If the latter is not accomplished, the primary model should be improved. It de-
pends upon subsequent division of the RFE previously separated into two new
RFEs, which are connected by one SDE. New parameters of them must be de-
termined and then substitutive model of the structure is derived at the end.

Let us analyse a dynamic equation of a primary model, which is composed
of RFEs, connected by SDEs (Fig. 2), that is:

(2.1) Mq + Lq + Kq = p(1),
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Fi1G. 1. Some typical machine tool substructures, which could be idealised by RFEs and FEs.
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where:
(22) = COI(qlqua"'aqTa"vquFE)a
(23) P = COl(p17p2a""7p7')"'aleFE)a

RFE or DFB composed of finite elements

F1G. 2. RFE no. r, which is replaced by DFB composed of a number of FEs.

For a steady state, the dynamic problem (which is described by Eq. (2.1)) is
solved using a Fourier transformation [2]. As a result, we get

M-1 M-1
(24) Z (K - Mwi +jwaL) q(jwa) = Z P(jwa),
a=0 a=0

The future research will refer only to dynamics of the system for harmonic compo-
nent «, and the accompanying amplitudes of generalised displacements. However,
a range of validity of the method proposed is restricted by no means. The fre-
quency value w, sought for should be selected from the real spectrum, observed
during machining. Thus, we obtain

(2.5) (K - M2 + jwaL) q(jwa) = p(jwa)-
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The solution of the above equation contains the vector function of angular fre-
qUENnCy we,

(2.6) q = q(jwa).

In the case where RFE no. r is supposed to be insufficiently rigid, subsequent
idealisation is necessary using some classic finite elements (Fig. 2). A new cre-
ation, which is obtained in such a way, is called a discrete flexible body (DFB).
Equations of dynamics of the model have a similar form, as described by (2.1).
The difference is in the q vector, in which generalized coordinate vector q, of RFE
no. r is replaced by the q, generalized coordinate vector of the DFB, that is

(27) q= COl(qh q2y .-y Qhy -y quFE)a
where:
(28) qnp = COI(th), s = 172) --~>lwlsw-

The generalised displacements of point j of RFE no. r (i.e. rigid body) are
determined using the expression

(2-9) qrj = ®ijQT-
If we replace the RFE by the DFB, which is composed of deformable elements,

the generalised displacements of point j are determined by the expression

(2.10) an; = Nejqe.

In order to assess the rigidity of RFE no. r, the displacements of chosen points
(which are determined by Egs. (2.9) and (2.10)) should be compared with each
other. Some accuracy criteria to be described in the next section, must be intro-
duced for this purpose.

3. ACCURACY CRITERIA

Criterion 1.

This concerns the determination of the generalised displacements of all nodes
of the DFB. Following that, the results are to be compared with those points
of the RFE, which refer to nodes of the DFB. The criterion for RFE no. r is
assured, when:

(3.1) Hanji | =l arjil] < iy G=1,.0 b, i =1, lsn.
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Criterion 2.

This concerns a comparison of relative displacements of those points which
refer to all nodes of the DFB. The performance index is defined below. In this

case:
S5 (lanji 1~ arsil)®
7 [

E , z :‘thi|2

7 [

If suitable generalised displacements of the referred points of the RFE and DFB
were equal (i.e. RFE with infinite rigidity), the index value should be W = 0.
This is its minimum value. We consider that RFE no. r is satisfactorily rigid,
when

(3.3) W < Wy

Criterion 3.

- 100%.

(3.2) W=

This concerns a comparison of the relative displacements which refer only to
chosen points of the DFB. These are usually points in which SDEs are attached
to RFE no. r.

4. A METHOD OF DISTRIBUTION OF THE FLEXIBILITY

If the selected criterion of rigidity is fulfilled, a subdivision of RFE no. r
is not relevant. However, in order to improve the accuracy of modelling, it is
suggested that the flexibility of RFE no. r should be distributed over the SDEs,
which are attached to it. This means that the stiffness coefficients of these SDEs
have to be corrected.

Let us consider a part of a primary model, which contains two RFEs no. r
and p, connected by SDE no. k (Fig. 3). The deformations of SDE no. k are
described by the relationship

(4.1) Awy = | OpSpi: — Grksrk] [ & } ,

where
Awk = COl(A’wki), 1= 1, ...,6.

The following matrices are explicitly known in the model:
Cy = diag[cg), 1=1,..,6,
Bk = diag[bki], 1= 1, ...,6,
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M, = diag[m,], 1=1,..,6.

~

P/;rl BFE no. r

FiG. 3. A part of primary model, which contains RFEs no. r and p and SDE no. k.

Now we substitute RFE no. r with a set of deformable elements (i.e. DFB,
Fig. 4). After solving the dynamic Eq. (2.1) again, the generalised displacements
q;, of RFE no. p and the generalised displacements of the DFB nodes are derived.

qlp A lpa
T
N SRR
P/xpl RFE no. p b1 1 B0y
SDE no. k X
>
/
//
/ \
Iy 1R no. ¢ \point i

Fi1G. 4. A part of a model, which contains RFE no. p, SDE no. k and the DFB.



230 K.J. KALINSKI and T. KUCHARSKI

Because we supposed the stiffness criterion to be fulfilled, subdivision of RFE
no. r is not advised. It still remains one rigid body (Fig. 5), but now it is called
RFE no. r'. However, the vector of its generalised displacements q’. should be
defined such as to idealise the true image of motion of the DFB. Thus, we choose
! points j of the DFB (Fig. 4) and define their displacements in the form

SDE no. k connection point

Fic. 5. The RFE, which replaces the DFB.

~

(42) q; = Nejdej-

Next, the displacements of point j are expressed as a function of vector ¢ of
RFE no. 7/, that is

(4.3) 9.5 = S;d;.

Since
qj = col(qj,-), ] = 1, ...,6,
q;j = COl(q,/nji)» i=1,..,6,

it is required that

[l 6
(4.4) > (g5i — ¢4)* = min.

j=1li=1
Since
6
(4.5) Grji = ) Sjindrns
k=1
we obtain the equation
6 6

(4.6) Z Z qji — Z Sjirgl)? = min,

j=1li=1 K
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which allows the components of vector ql. to be determined by the least square
method. Following this, a new vector of deformation of SDE no. k is expressed
in the form

f
(4.7) Aw), = |OpSpk: — B,ksrk} ! :p ] -

r
r

where
Awj, = col( Awly), i=1,..,06

If we apply the potential energy conservation law to SDE no. k, improved values
of its stiffness coefficients are calculated in the form

2
{48} Ciﬂ- = (m) Ciei, o= ],i,,,ﬁ.

If we assume that the energy dissipation function of SDE no. k does not change
[1], it is easy to find the improved values of the damping coefficients in the form

2 2
A Awy; :
{49} biﬂ = (ﬁ) bki' - (':"EE'E'IT) bki:l 1= 1: '"?ﬁr
i T

and, if we apply the kinetic energy conservation law to RFEs no. r and ', values
of the inertia coefficients of RFE no. r' are calculated in the form

; 2 2
(410)  ml= (E,—”D s = (%) ey =16,
ri ri

where
ﬂﬂ-';;-;; = jwo Awy;, Gri = JWaQri, ‘i"f-i = jmufi‘:r

5. THE METHOD OF SUBDIVISION USING RFES

If the chosen criterion of rigidity is not satisfied, a subdivision of RFE no. r
into two rigid finite elements connected by an additional spring-damping element
is advised. Thus, the DFB is replaced by RFEs A and B, which are connected
by SDE no. h (Fig. 6). Both these RFEs should idealise a true image of the DFB
motion, so that the respective vectors of generalised displacements g4 and gg are
introduced. For this purpose let us choose [ points j of the DFB, which belong
to RFE A as well. Then we describe their generalized displacements, referred to
the global coordinate system z,x923, i.e.

(5.1) qQ; = ﬁe.jﬁej-.-
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FI1G. 6. Division of the DFB into two RFEs, which are connected by SDE no. h.

where

q; =col(qji), 1= 1,...,6.
If we assume that point j is that of RFE A (solid body), its generalised displace-
ments, referred to the global coordinate system, can now be described in the
form

(5.2) qf = Saqa
Since
4 = col(g?) i =1,....6

q; co dji)s t 3oy Uy

q]' = COl(qji), 7 = 1, ...,6,

6 A
qﬁ = Z S 4jikG Ak,
k=1
it is required that
I 6 6

(5.3) Z Z(Qﬂ Z Sa jm(JAn = min.
Components of the q4 vector are determined using the least square method. We

obtain
qa = col(qax)-
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Similarly, vector qp can also be determined.

Suppose that the kinetic energies of RFE no. r and of the couple of RFEs A
and B, are equal. This assumption allows us to determine the diagonal matrices
M, and Mp of inertia coefficients of RFEs A and B, as follows:

(5.4) Mg = T;'qapqr M 4, a4 T; ",
where:
My O ) .. ) X
Myp = , Q4B = col(dq4,4qB), 44 = jwada,
0 Mg

4B = jwadB, T; = 4445

The deformations of SDE no. h are described by the vector

(5.5) Awp, = T, [ a4 ] ,
qaB

where
(5.6) Tp = [OanSan — OprSpa],  Awp =col(Awp;), i=1,...,6.

In accordance with the Kelvin-Voigt rheological model [1, 2], the vector of inter-
action forces of SDE no. h is expressed by the form:

(5.7) fr(jwa) = —(CrAwp(jwa) + BrAwp (jwa)),
or, alternatively:

(5.8) fr(jwa) = —(Ch + jwaBp) Awp (jwa).
Here

Ch = diaglcp;),  Bp = diag[bp).

After transforming the fj, force acting onto the mass centres of RFEs A and B
(i.e. points A and B), we get

(5.9) £il8 = —TT(Cp + jwaBr) Awp,.
A vector of interaction forces of SDE no. & has the form
(5.10) fir = =(Ck + jwaBr) Awy,
and, after transforming the above to point A:

(5.11) fi' = 85O %t
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or, after transforming to point B:
(5.12) fF = 8T, ©L,f.

A vector of external forces of finite element (FE) no. eg, which contains mex
nodes, has the form

(5.13) fek = Col(feki), 1= 1, veey Tk s

A vector of external forces fer; of node no. 7 of the FE no. e, (denoted by f,i; in
the global coordinate system), after transforming it to point A, has the form:

(5.14) £ = ST 4O afeki,
or, transforming to point B:
(5.15) £ = Shp O pleni
Once the generalised equation of dynamics is applied to point A, we get:
A inA
(5.16) fa= fflo+ 2 ki — Mada,
k=1 n=1
or, if applied to point B, we get:
1B inB
(5.17) fp = Z f,ﬁn) + Z fﬁc(n)i — MpBqs.
k=1 n=1
Now, it is time to construct suitable vectors of forces of RFEs A and B, i.e.:
(5.18) £4B = col(fs fp),
and to formulate an equation of equilibrium:
(5.19) £AB 4+ £1B = 0.
Making use of Eq. (5.9) and performing some matrix transformations, we obtain
(5.20) f* = C} Awy,
where

f* = (TpT}) ' Taf?,  Cj = Ch + jwaBs.
Moreover,
f* = col(f), i=1,...,6,
and
C; = diag|c,], i=1,..,6.

Once vectors £* and Awy, are explicitly known, solution of Eq. (5.20) provides the
C}, matrix components. Subsequently, all the stiffness and damping coeflicients
of SDE no. h are calculated using the relationships given below:



ON THE MACHINE TOOL SUBSTITUTIVE MODEL CREATION... 235

g

/' \\'\

/ . RFE B
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F1G. 7. A part of the model with SDEs, whose parameters are to be improved: a) the model

before division, b) the model after division.

(5.21) Chi = Re(c;‘li), 1= 1,...,6,
1
(5.22) bhi = —Im(ch;), i=1,...,6,

We
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where

(523) C;“' = fi*/ATUhi, 1= 1, ceny 6.

Moreover, as it was explained in Sec. 4, the stiffness and damping coefficients
of all the SDEs which are attached to RFEs A and B, should be improved. For the
part (i.e. RFE no. r) before its subdivision (Fig. 7a), a vector of deformation of
SDE no. k is described by Eq. (4.1), while for the same part after the subdivision
(Fig. 7b), this vector will have the form:

R
(5.24) Aw;c = [@,,kspkf - G)AkSAk] ::;Z s

if SDE no. k is attached to RFE A, or

S
5,25 A’:[@SE—@ s] 9 |
( ) Wi pkOpk BkOBk LQB_

if SDE no. k is attached to RFE B. Improved stiffness coefficients of SDE no.

k are determined by Eq. (4.8), but improved damping coefficients of SDE no. &
found from Eq. (4.9).

6. ILLUSTRATIVE EXAMPLES

The examples below illustrate the application of methodology for creating
substitute models of the selected real machine tool substructures, as described in
previous sections. Stiffness parameters of SDE no. h are computed, and stiffness
values of the other SDEs are improved as well.

The FWD 32J milling machine spindle

A discrete model of the main driving system, whose parameters are reduced
to the spindle [2], is considered as a primary model for calculating the FWD
32-J milling machine spindle. Thus, the model composed of 4 RFEs and 8 SDEs,
is obtained (Fig. 8a). The dimensions of several RFEs are not comparative,
because the RFE, which idealises the spindle end, the arbor and the face cutter,
differs considerably in length from the others. This raises a question whether
this part of the spindle should be really idealised by only one solid body, in view
of the accuracy criteria assumed. For this purpose, the RFE introduced above is
replaced by a single beam deformable finite element (FE 4) [2, 7], while the other
elements of the structure, geometry of connections and external loads remain
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unchanged. The mixed model of RFEs, SDEs and DFB is obtained as a result.
Here, a criterion of accuracy is not fulfilled. Therefore, FE 4 is replaced by two
RFEs 44 and 4B, which are connected by SDE no. h (Fig. 8b). If we suppose
that positions of the connecting points of SDE no. h are to be established, the
task depends upon determination of 6 stiffness coefficients of this SDE.

The basic input data for the FWD 32J milling machine spindle model is
presented in Table 1, while results of computation of stiffness coefficients of the
SDE no. h, and of the SDEs which are attached to DFB, are presented in Table
2. It is seen that the improved values of SDEs no. 7, 11 and 12 are different from
the original ones.

a [0 1A® 1ABIA

ATA TN AN T/

Z4
b) SDE mo. h

A
©) ® A@%@ é@

ATA T AN AN TR
Z 7

NOTATION: |

(D~ RFE

[4]- FE

A\- SIE

Fic. 8. The FWD 32J milling machine spindle: a) primary model, which is composed of RFEs
and SDEs only, b) substitutive model, which contains the couple of new RFEs.
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Table 1. Basic input data for the FWD 32J milling machine spindle model

STIFFNESS COEFFICIENTS OF ALL SDEs

SDE Ck1 Ck2 Ck3 Cra Cks Cr6
no.
[daN/cm] [daNcm])
5 2.4500 x 10% | 8.2750 x 10° | 8.2750 x 10% | 2.0190 x 10% | 2.6660 x 10° | 2.6660 x 10®
6 1.1680 x 108 | 3.9440 x 107 | 3.9440 x 107 | 3.3900 x 107 | 1.0400 x 10° | 1.0400 x 10°
7 | 6.9730 x 10% | 2.3550 x 105 | 2.3550 x 10% | 1.2790 x 108 | 1.9250 x 10® | 1.9250 x 10°
8 2.4860 x 10% | 8.5060 x 10* | 8.5060 x 10¢ | 0.0000 0.0000 0.0000
9 0.0000 3.7830 x 103 | 3.7830 x 103 | 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000 5.4326 x 104 | 0.0000 0.0000
11 0.0000 6.0021 x 10% | 6.0021 x 10* | 0.0000 0.0000 0.0000
12 0.0000 2.1940 x 10% | 2.1940 x 105 | 0.0000 0.0000 0.0000
Table 2. Calculation results for the FWD 32J milling machine spindle model
STIFFNESS COEFFICIENTS OF SDE NO. A
Ch1 Ch2 Ch3 Chs4 Chs Ché
[daN/ cm] [daNem]
1.8529 x 108 | 1.4566 x 10° | 1.4566 x 105 | 2.4012 x 10% | 3.1848 x 108 | 3.1848 x 106
IMPROVED STIFFNESS COEFFICIENTS OF SDEs ATTACHED TO THE DFB
SDE Ck1 Ck2 Ck3 Ck4 Cks Ck6
no.
[daN/ cm] [daNcm]
7 5.0327 x 10% | 2.0525 x 10 | 2.0525 x 104 | 8.1770 x 10° | 6.8940 x 10° | 6.8940 x 106
11 0.0000 3.9526 x 10% | 3.9526 x 104 | 0.0000 0.0000 0.0000
12 0.0000 5.0166 x 10° | 5.0166 x 10° | 0.0000 0.0000 0.0000

Furthermore, a steady harmonic vibration of the spindle end along two mutu-
ally perpendicular directions (i.e. direction 1 and 2) for various values of angular
frequency w is computed. Suitable resonant curves for both the basic model and
the one after division are shown in Fig. 9 and 10. Although it is possible to
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F1G. 9. Resonant curves of the FWD 32J milling machine spindle end along direction 1 for

a) the primary model, b) the substitutive model.
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Fic. 10. Resonant curves of the FWD 32J milling machine spindle end along direction 2 for

a) the primary model, b) the substitutive model.
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find some intervals in which the plots are compatible, we cannot observe it for
a wide frequency band. It is to be emphasised that significant differences are
noticed near the resonant peaks. They concern the value of the second resonant
frequency, but in case of direction 1 — also all resonant amplitudes. The results
for both these models diverge considerably from each other. It means that the
behaviour of improved model differs from the original, which renders the sub-
stitutive model reasonable. It seems to be a promising approach, which makes
discrete idealization of the machine tool more reliable. Although FEM’s idealiza-
tion and substitutive model yield the same number of degrees of freedom, inertia
matrices in case of the latter model remain diagonal. It makes the model more
convenient for dynamic calculations.

The closed profile boz frame

Here a calculation is made for a box frame, whose primary model is composed
of 4 deformable plate-plane elements (i.e. FEs no. 1, 2, 3 and 4) [7, 8] and total
number of six-degree-of-freedom nodes is 8. The elements are connected with one
another at their nodes, and are attached to the ground by 4 SDEs (Fig. 11a). A
suitable accuracy criterion is not satisfied in this case either. Thus, the model is
replaced by two RFEs A and B, which are connected by SDE no. h (Fig. 11b).
The other elements of the structure, connection geometry and external loads
remain unchanged. If we suppose that positions of connecting points of SDE no.
h are known, then the task consists in determination of 6 stiffness coefficients of
this SDE.

The basic input data for the initial model is presented in Table 3 and the re-
sults of the calculation of stiffness coefficients of the SDE no. A, and of the SDEs
which are attached to the DFB, are presented in Table 4. The values of param-
eters of the resultant model significantly differ from those of the primary one.

Table 3. Basic input data for the box frame.

STIFFNESS COEFFICIENTS OF ALL SDEs

SDE Cr1 Ck2 Ck3 Cka Cks Ck6
no.

[daN/cm] [daNcm]

5 9.1000 x 108 | 9.1000 x 108 | 9.1000 x 108 | 2.8000 x 10° | 2.8000 x 10° | 2.8000 x 10°

6 9.1000 x 108 | 9.1000 x 108 | 9.1000 x 108 | 2.8000 x 108 | 2.8000 x 10% | 2.8000 x 108

7 9.1000 x 108 | 9.1000 x 108 | 9.1000 x 108 | 2.8000 x 108 | 2.8000 x 108 | 2.8000 x 108

8 9.1000 x 108 | 9.1000 x 10% | 9.1000 x 108 | 2.8000 x 108 | 2.8000 x 10® | 2.8000 x 108
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F1c. 11. The box frame: a) primary model, which is composed of FEs and SDEs, b) substitutive
model, which contains the couple of two RFEs.
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Table 4. Calculation results for the box frame.

STIFFNESS COEFFICIENTS OF SDE NO. h

Ch Ch2 Ch3 Chq Chs Ché
[daN/em] [daNcm]
4.9223 x 10% | 6.6387 x 105 | 6.4144 x 10% | 1.5376 x 10% | 2.4328 x 108 | 1.9696 x 108
IMPROVED STIFFNESS COEFFICIENTS OF SDEs ATTACHED
TO THE DFB
SDE Ck1 Ck2 Ck3 Chka Cks Cke
no.
[daN/cm] [daNcm]
5 3.0087 x 10° | 4.6872 x 10° | 4.6872 x 10° | 2.0510 x 107 | 5.1686 x 109 | 6.8445 x 10°
6 2.1428 x 10° | 4.6872 x 10° | 4.0104 x 108 | 2.0510 x 10% | 5.1686 x 10% | 6.8445 x 108
7 3.2540 x 10% | 4.0104 x 10® | 4.0104 x 10% | 2.0510 x 10% | 5.1686 x 10% | 6.8445 x 108
8 1.7772 x 109 | 4.0104 x 10® | 4.6872 x 109 | 2.0510 x 106 | 5.1686 x 108 | 6.8445 x 108

The substitutive model has only 12 degrees of freedom. Due to the number
of them in the classic FEM approach, which is equal to 48 (i.e. 8 x 6), the cost
of computation is reduced by the factor of (approximately) (48/12)% = 64.

The reasons explained above make the substitutive model fully justified.

The FWD32J milling machine’s beam

As a result of the analysis of the FWD32J milling machine’s carrying system
[2, 5], its natural discrete model has been created. Suitable primary model is
obtained in such a way and it is a classic RFEM’s representation. One compo-
nent of the structure is an independently driven beam. Its structure is mainly
designed of some frame boxes and is connected with the machine tool frame by
four slideways.

Rough analysis of beam geometry allows us to suspect that its substitution by
one RFE may lead to significant errors of modelling. Therefore, primary model
(i.e. RFE which idealises the beam) has been replaced by a set of 21 deformable
plate-plane elements (i.e. FEs), whose total number of six-degree-of-freedom
nodes is 32 (Fig. 12a). Suitable accuracy criterion has been examined and it
is sure that the examination is not successful. Following that, a couple of two
RFEs, connected by SDE no h has been introduced as a substitution (Fig. 12b).

The latter has only 12 degrees of freedom. Due to a considerably higher
number in the classic FEM approach (i.e. 32 x 6 = 192), cost of computation
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F1G. 12, The FWD 32J milling machine’s beam: a) primary model, which is composed of FEs,
b) substitutive model, which contains the couple of two RFEs.
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is greatly reduced (i.e. approximately (192/12)3 = 4096 times). It really proves
the practical meaning of the method proposed in the paper.

7. CONCLUSIONS

We have proposed the approach to improve the discrete model, which was
primarily created by the rigid finite element method. The reason is that the
primary model rarely satisfies the accuracy criterion, and then their parts usually
require further subdivision. An improved model still remains a set of similar
elements. It also seems to allow to save inertia matrices being diagonal, which is
extremely applicable for dynamic calculation. Following that, the dynamics may
be computed using the same software. It is a very important feature, because
many kinds of computer tools involve various implementations of the rigid finite
element method.

The calculation results shown in the paper evidently support the approach.
It has been proved that corrected values of the parameters differ significantly
from the previous ones. A comparison between resonant curves of primary and
improved model yields significant differences. Therefore it is advised that every
discrete structure which is initially idealised by the rigid finite element method,
should still be examined with respect to the accuracy criterion being fulfilled,
even if it can be imagined as entirely rigid.

There are many approaches to the problem of determination of the structural
parameters. However, in order to make dynamic calculations successful it is not
enough to determine correct values of parameters of the discrete models. It is
more important to produce the model whose performance is an extremely detailed
image of the real structure. The approach proposed satisfactorily accomplishes
such a requirement.

Results of deflections for both the models (i.e. FEM’s one and substitute)
really converge to each other. But if we define the efficiency factor as a quotient
of accuracy and cost of computation, the method of substitutive model is much
more effective than the classic FEM. High efficiency of modelling by the approach
proposed has been proved.

One alternative approach is worthy of being mentioned at the end. It con-
sists in reduction of the number of degrees of freedom in large discrete systems
(e.g. idealised by the FEM) [7]. The approach produces accurate results in case
of calculating the excited vibration problems. However, it is required to make
the reduction on-line (i.e. during the main process of calculation). Therefore,
despite reducing the discrete system size, it does not result in a noticeable short-
ening of the calculation time. The method proposed in the paper is free of such
disadvantages.
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