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TRANSIENT VIBRATION OF UNSTEADY LINEAR CLOSED LOOP
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A problem of unsteady linear closed loop system vibration is formulated and solved in
this paper. Proportional, ideal derivative and delayed feedback interaction is considered.
The mixed method of rigid and deformable finite elements is extended by including coupling
elements, and applied to modelling the system. An unconditionally stable numerical integration
variant of the Newmark method is used for solving the problem. Special computer software is
implemented and illustrative calculations of the traverse shaper’s model are performed. Time
and frequency plots for chosen generalised coordinates of the model and for several cases of
the feedback interaction, are obtained as results.
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1. INTRODUCTION

An analysis of dynamic phenomena of real mechanical structures has recently
become a basis of knowledge for the development and improvement of engineer-
ing instrumentation. It usually depended on investigations of the structural be-
haviour due to the presence of external exciting forces, called “INPUT SIGNALS”.
Referred generalised displacements of chosen structure’s parts have been defined
as the “OUTPUT SIGNALS”. However, a special behaviour of many kinds of
machine structures (e.g. machine tools, manipulators, driving systems) is ob-
served. These dynamic systems, which show a feasibility of interacting between
the desired input and output signals quite naturally, are called closed-loop sys-
tems [1]. One approach, based on simultaneous investigation of the structure
with an accompanying process of the feedback interaction, was worked out a few
years ago [2].
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If we define, that:

e the x(t)4x1 vector with ¢ components is an input to the chosen part of the
system called: FEEDBACK UNIT;

e the y(t)px1 vector with p components is a response of the FEEDBACK
UNIT to the x(t)qx1 vector;
the following relationship will be derived [3]:

(1-1) Y(s)pxl = T(s)pqu(s)qxla

where T(s)pxq = [tij(s), 7 = 1,2,...,q, ¢ = 1,2,...,plpxq — complex matrix of
one-dimensional closed loop transfer functions, y(s)px1 — Laplace transform of
the y(t)px1 vector at zero initial conditions, x(s)gx1 — Laplace transform of the
x(t)gx1 vector at zero initial conditions, ¢ - time, s — complex variable.

Moreover, the presence of large relative motions of several substructures is
observed during the work of real mechanical devices (e.g. machine tools, lift-
ing machines and manipulators). These motions are usually implied by the de-
sired functions of the machine. Considering the following aspects of the machine
structure behaviour, that is to say: the large desired motion of several machine’s
substructures and small vibration of elastic parts of the structure, we will get
a parametric (unsteady) model of the system, whose configuration changes with
time [4]. The transient vibration analysis is to be performed in this case.

A more difficult mathematical description of the parametric closed-loop sys-
tem’s transient vibration, implies the effective solution of the problem only for
particular types of feedback interaction. Therefore, the following types of inter-
action are included in this paper: proportional, ideal derivative and delayed (1,
3]. Basic equations, which describe transfer functions of one-dimensional closed
loop interactions, are shown in Table 1.

Table 1. Transfer functions of some one-dimensional feedback interactions.

Type of feedback interaction | Transfer function
Proportional tij (8) = kij

Ideal derivative tij(s) = kijs
Delayed tii(s) = kije~Tii®
NOTATION:

tij(s) — transfer function of one-dimensional
feedback interaction
kij — gain coeflicient
Ti; — time-constant
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2. THE CALCULATION MODEL DESCRIPTION

The calculation model of the parametric linear closed-loop system contains
(Fig. 1):

/./"' ) i —~—. movable
. Z subsystem
-~ RFEnor X3 MP \

/ "/

'k Y, I sliding kinematic pairs
' X, _— '/. i bl

2 . immovable
\~\_ . . e subsystem

F1G. 1. Discrete model of the closed loop system whose configuration changes with time.

e rigid bodies, which have mass properties only, and are called rigid finite
elements (RFEs). A motion of RFE no. r is described in the local z,1Zr2%r3
coordinate system. These axes are principal axes of inertia for RFE no. r;

e flexible bodies, which have mass, damping and elastic properties. They are
called deformable finite elements (DFE). Two nodes, 7 and 7, are defined for DFE
no. e whose motion is described using the local coordinate system T¢iZeoTes;

e massless points which have elastic properties and an ability of dissipating
energy. They are called spring-damping elements (SDEs). The deformability of
SDE no. k is described using the local coordinate system y1yxoyks;

¢ massless coupling elements (CEs), which are introduced additionally in
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order to idealise the process of feedback interaction. Their behaviour is described
using the y;1y2y13 local coordinate system.

The approach described above is called the hybrid method of rigid and de-
formable finite elements (RDFEM) [3, 5]. The discrete model of a closed loop
system is obtained as a result.

The following basic assumptions are taken into consideration:

e each SDE or CE connects either one DFE with one RFE, two DFEs, or two
RFEs together;

¢ two DFEs may also be connected to each other in their nodes;

e an immovable subsystem, which may experience small vibration only, is
separated. The immovable coordinate system X;Y)Z; is introduced for this pur-
pose;

e there is also a separate movable subsystem, which displaces with constant
linear velocity v with respect to an immovable one. Its small vibration is de-
scribed using a local (movable) co-ordinate system X,Y5Zs;

e sliding kinematic pairs are considered in the model.

Moreover, an external force P, is acting on RFE no. r, while an external
force P, — on DFE no. e. Coordinate axes systems 2zrx12rx22rx3 a0d Zex1Zex2Zex3
correspond with RFE no. 7 and DFE no. e, respectively.

The first step of consideration depends on analysing the discrete system as
a steady system. It was proved that the dynamic equation of this system with
n degrees of freedom, which is composed of i, RFE, 7, SDE, i; CE and 7, DFE,
has the form [1]:

(2.1) (Ms? 4+ Ls + K — D(s))a(s) = p(s),

where: M - inertia matrix of the whole discrete system, L - damping matrix of
the whole discrete system, K - stiffness matrix of the whole discrete system, D(s)
— complex matrix of feedback interactions of the whole discrete system, q(s) -
Laplace transform of the generalised coordinate vector, p(s) — Laplace transform
of the generalised force vector, s — complex variable.

From the q vector we separate the following subvectors: one of the indepen-
dent coordinates q;, one of the dependent coordinates q4 and one of the given
coordinates qq [4]. By analogy, from the p vector we get one which corresponds
to independent coordinates p;, one which corresponds to dependent coordinates
Pq and one which corresponds to given coordinates p,. It is expressed by the
notation:

qQi
(2.2) q=|qq |,
qq
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Pi
(2.3) P=|pda
Py

A relationship between the coordinates q; and qq is determined by the equation
of constraints, which may be written as [1, 4]:

(2.4) [WiiW,] [ g; ] =0,

where: W;, Wy — constraints’ matrices of independent and dependent subsys-
tems, respectively, or after small rearrangements:

(2.5) ¢ = Wq;,
where
(2.6) W= —(WiWy) 'Wiw,.

If the dynamics of each subsystem (i.e. movable or immovable) is described in
its local reference system, matrix W will become one of the given time functions:

(2.7) W =W().

After differentiation with respect to time, we get:
(2.8) i = Waq; + W,

(2.9) ds = Wq, + 2W¢; + W

A complex dynamic equation of the closed loop system is to be presented using
the time-dependent form. If we use the notation

(2.10) E(s) = D(s)q(s),

and suppose that there exists an inverse Laplace transformation, i.e.:
(2.11) L7Y(EB(s)) = B(¢),

the following matrix differential equation will result:

(2.12) Mg+ Lgq + Kq = p(t) + E(t).

Considering Eqgs. (2.2) and (2.3), and separating from the E(¢) vector sub-
vectors: E; whose components are acting along the independent coordinates, E,4
whose components are acting along the dependent coordinates, and E, whose
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components are acting along the given coordinates, Eq. (2.12) may be written in
the form:

Mi; Mg My Qi Lii Ly Ly q;
(2.13) My; Mgy My, Q¢ | + | Lei Lag Lgg qq
Mg Mg Mg g Lgi Lga Lgg g

Ki Kia Ky q Pi E;

+ | Ki Kas Ky Q | = | Pa |+ | Ea

Kgi Kga Ky Y Py o

These are ordinary differential equations of a de-coupled mechanical system, be-
cause the movable subsystem and immovable subsystem at this stage are sepa-
rated from each other. In order to “connect” them, the constraints’ Egs. (2.5),
(2.8) and (2.9) with the respective constraint reactions’ Eq. [4]:

(2.14) R; + WIR, =0,

where R;, Ry — vectors of constraints’ reactions, which are acting along in-
dependent and dependent coordinates, respectively, must be included into the
description of the model. We then obtain an equation of motion, referring to
independent coordinates:

(2.15) A", +B*q; + C*q; = p* + E*,
where:

(2.16) A* = M;; +M;gW + WMy + W MW,
(2.17) B* = Ly + LigW + WTLy; + WLy, W
+2M,;, W + 2WT MW,
(2.18) C* = Ki; + KigW + WKz W + WKy
+L;yW + WTLg W + MgW + WTM W,
(2.19) P' =pi— (Migflg + Lig‘EIg + Kig‘lg)
'*‘WT[Pd — (Mag@g + Lggqq + Kyq)),
(2.20) E* = E;+ WTE,.
Matrices A*, B*, C* and p* are time-dependent functions, but the vector

E* is a function of time, generalised coordinates and their derivatives. Thus, we
can write:

(221) E* = E*(t,quqla(ha)
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In a particular case, when only proportional, ideal derivative and delayed
feedback interaction are considered, the matrix of feedback interaction D(s) is
able to be expressed, as

(2.22) D(s) = [dpij + sdyi; + dOije_Ts]nxn ,
or
(2.23) D(s) = Dp + sDy + Dpe™ T2,

where: Dp = [dp;;] — matrix of displacement feedback interaction coefficients,
Dy = [dvi;] - matrix of velocity feedback interaction coefficients, Do = [doij] -
matrix of delayed feedback interaction coefficients. Here it was supposed that the
delayed feedback interaction had been common for the whole dynamic system,
Le. one value of time-delay T is needed to describe the interaction only. Then,
the E(s) vector can be written as

(2.24) E(s) = (Dp + sDy + Doe_Ts)q(S),

or after the inverse Laplace transformation

(2.25) E(t) = Dyq(t) + Dpq(t) + Doq(t - T).

Following this we can write, that

E;(t) Dvii Dyig Dy q;(t)
(2.26) E4(t) | = | Dvai Dvas Dvag qa(t)
Ey(t) Dvgi Dvga Dyyy qq(t)

Dpii Dpia Dpig q;(t)
+ Dpyi Dpyg DPdg Qd(t)

Dpgi Dpga Dpgg qy(t)

Doii Doia Do qi(t—T)
+ | Doai Doda Dogg qi(t—T)

DOgi DOgd DOgg Qg(t_T)
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Then, the E* vector (see (2.20)) will take the form:
(2.27) E* = (Dvii + DyigW + WDy g + W Dy ggW)a;
+(Dyig + WIDyy)dy + (Dpii + DyigW + DpigW
+ WIDpg + WDy gqW + WTDpyyW)q;
+ (Dpig + W' Dpgy)q, + (Doii + DoiuW
+WTDogi + WIDoyaW)ai(t ~ T)
+ (Doig + WIDogg)qq(t — T).

If we consider Eq. (2.27) in the (2.15), the final form of the dynamic equation
will result. This is an equation of excited vibration of the parametric system,
considering proportional, ideal derivative and delayed feedback interactions. It
has the form:

(2.28) A4 +Bqi + Cq =p(t,t - T),

where:

A

A,

B = B* — (Dyy; + DyigW + W Dyy; + WDy W),

o
i

C* — (Dpii + DviaW + DpigW + WIDpy;
+WTDy4yW + WIDpy W),

p(t,t —T) = p* + (Dvig + WIDyyy)dg + (Dpig + W Dpyg)q,

+(Doii + DoiaW + WIDoy + WDy W)q;(t — T)
+ (DOig + WTDOdg)qg (t - T).

Equation (2.28) is a linear differential equation whose coefficients change with
time. Its solution depends on determining the time response of the system to
the explicitly known function p(¢,¢ — T). In order to find a numerical solution
of Eq. (2.28) we have applied an unconditionally stable numerical integration
variant of the Newmark method [6, 7, 8].
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3. NUMERICAL EXAMPLE

A process of machining long pieces of material by the traverse shaper
(Fig. 2a) is analysed. The slide with the tool is displaced along the shear di-
rection with constant velocity of the work motion 1, and lost motion v, (along
run distance sy, cutting distance s and coasting distance s¢). The parameters of
fixed and movable joints are steady and their values were determined previously
1, 5].

Using the RDFEM, a discrete plane model of the system (Fig. 2b) is created.
Some RFEs are used to idealise the frame (RFE 1), two legs (RFE 3 and 4)
and the slide with the tool (RFE 2). Some 2-nodal DFEs, which are classical
Timoshenko beams [1, 5], are applied for idealising the shear, the workpiece, the
table and the bed. Their nodes are shown in the figure. RFEs and DFEs are
connected by SDEs, which are also presented. In order to include the cutting
dynamics interaction, one CE is introduced. Suitable parameters of the discrete
model are given in Table 2.

It is easy to separate two subsystems: the immovable subsystem, which ex-
periences small vibration only, and the movable one. Both these subsystems are
accompanied by reference coordinate systems X1Y; and X,Y5, respectively.

In order to “connect” the subsystems mentioned above, two massless RFEs
5 and 6 are introduced into the model. The first one idealises the conventional
contact point of tool and workpiece, while the second idealises the conventional
contact point of slide and shear. All their degrees of freedom are dependent
coordinates, while the degrees of freedom of other elements (as well of RFEs as
of DFEs) are independent. The parts of the system with given motion (i.e.. solid
rest bodies, which idealise the machine foundation), are shaded in the picture.
Those degrees of freedom refer to the given coordinates.

Let us analyse the geometry of the shaping process (Fig. 3). An ideal situ-
ation occurs, when a desired constant value of the cutting zone thickness ho is
maintained during the whole process. Also the desired longitudinal velocity vy,
of the tool with respect to the workpiece (called cutting velocity) is maintained
all the time. In this case we would observe constant values of interaction forces
Fy and F; (called desired forces) between the tool and the workpiece, which are
strictly accompanying steady conditions of the process.

Due to dynamic interaction between the tool and the workpiece, the change
Ah in the cutting zone thickness occurs, while additional relative displacement
of the edge g, along the main direction of motion is observed. It implies a real
cutting zone thickness A during the process.
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FIG. 2. The traverse shaper: a) overall design, b) discrete model of the finite element method.
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F1G. 3. Modelling the cutting process interaction using the coupling element (CE).

As a result, the real cutting force components are as follows:
(3.1) F") = F, - AF,,
(3.2) F{) = F, - AF,,

where AF,, AF, - dynamic changes in cutting force components, which are
described by a modified theory of GRASSO - NOTTO LA DIEGA - PASSANNANTI
[9], that is to say:

(3.3) AF, = K14,(t) + K4 Ah(t) + K3 Ah(t) — K7 Ah(t — T),
(3.4) AFy = Ky4,(t) + KeAh(t) + Ks Ah(t) — KgAh(t — T).

Here K, Ko, K3, K4, K5, K¢, K7, Kg — constant coefficients, which are usually
determined experimentally [9], T is the time-delay between two subsequent passes
of the tool.

It should be noticed that this dynamic interaction of the cutting process may
be idealised by CE. The results of the above considerations are the following:

One CE, which is involved in order to present the dynamics of the cutting
process;

Outer desired cutting forces F, and Fy of the CE, which also act on RFE 2
and on RFE 5.

Using the matrix form for the plane case of dynamics, we can write

(35)  Pit) = P{") - Dy Av(t) - Dyp Awi(t) — DioAwy(t - T),
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where:
(3.6) P,(t) = col(F{", F{",0),
e vector of real cutting forces during the shaping process for CE no. [,
Ki Ky O
(3.7 Dy=| Ky Kg 0],
0 0 O

e matrix of derivative feedback interactions for CE no. [,
0 K3 0
(3.8) Dp=|0 Ks O [,
0 0 O

e matrix of proportional feedback interactions for CE no. I,

0 —-K7 0
(3.9) Do=|0 -Ks 0|,
0 0 0

e matrix of delayed feedback interactions for CE no. [,

(3.10) P = col(F;, Fy,0),

e vector of desired cutting forces during the shaping process for CE no. I,

(3.11) Aw(t) = col(g:(t), Ah(t),0),

e vector of connecting points displacement differences for CE no. [, for an instant
of time t,

(3.12) Aw(t — T) = col(q,(t — T), Ah(t — T),0),

e vector of connecting points displacement differences for CE no. I, for an
instant of time ¢t — 7.

It is evident that no. [ refers to only one CE in this case. Suitable values of
feedback interaction coefficients for the shaping process (Table 3) are the basis
of the numerical computation. The desired cutting forces have the values F, =
3260 N and F, = 1240 N.
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Table 3. Coefficients of the feedback interaction for the shaping process.

Workpiece: steel 40 Tool: sintered carbide 7 = 5°, A, = 0°
b Vi vy K, Ko K3 Ky K5 Kg Ky Kg
mm| m/s Ns/m N/m Ns/m N/m Ns/m N/m

2105 (2 |6254 | 2097.0 | 3.8 x 105 | —703.0 | 1.6 x 105 | 1355.0 3.8x10% | 1.6 x 106

In order to determine the correct step of numerical integration, preliminary
computation of natural frequencies of the traverse shaper’s model is performed.
The calculation is made for a chosen time-instant position of the movable subsys-
tem (i.e. at a central position of the slide with respect to the workpiece) so that
the whole system of the machine tool is considered as temporarily steady for this
purpose. Some lowest values of these frequencies (Table 4) should influence the
dynamic response of the system. The reason is that a contribution of eigenmodes
accompanying them is significant for those parts of the system which model the
tool and the workpiece [1]. Thus, here it is supposed that the step of integration
is h = 1.4 x 1073 sec. It means that four of the first eigenmodes influence the
solution of the differential equations system [7].

Table 4. Some lowest natural frequencies and time-periods of the corresponding
free vibrations for the traverse shaper discrete model.

Number of natural | Natural frequency | Corresponding time-period
frequency f[Hz] T [s]
1 76.20 0.0130
2 84.70 0.0118
3 115.56 0.0086
4 140.52 0.0071
5 176.96 0.0057
6 21741 0.0046
7 237.30 0.0042

Computer calculation (IBM-PC) of the conventional tool and workpiece con-
tact point vibration ¢; along horizontal co-ordinate Z51, and similarly, of the
vibration g along vertical co-ordinate Zs2, is performed for the following cases:

a) the model without feedback interaction (Fig. 4 and 7). All components of
matrices (3.7), (3.8) and (3.9) are equal to zero all the time;



uuuuuuu

vvvvvvv

........

S e T B T e

i

PPN | (R PSS

xxxxxxxxxxxxxxxxx

|
l

||||||||

P 15 O IO
Py, 3 T U

[w] auawmanetdsTq

time([=]

FIG. 4. The tool and workpiece conventional contact point vibration along the zs: coordinate

for the system without feedback interaction.

%109

S

Frmmmmmman

5
'
’
'
*
.
]
t
[ PP T repupp.

Mmeeenpmena

U R S

-1 bt

[w] zuewmeneTdsSTQ

I

time[s]

F1G. 5. The tool and workpiece conventional contact point vibration along the x5, coordinate

for the system with proportional and ideal derivative feedback interaction.

[262]



%108

B PR

LT EOSN R S

¥ ' '

i i i
Ll o m

[ [ I

[w] qusweneTds g

-4 f--
O R,
6

time[s]

g the z5; coordinate

F1G. 6. The tool and workpiece conventional contact point vibration alon

, ideal derivative and delayed feedback interaction.

for the system with proportional

x104

{w] jusweneTdsTqg

! T T 1 T T
] ) ’ 1 . i
' ' ' ' ' '
' ' ‘ ' ' ‘
‘ ' ' ' ' '
' i ' ‘ ' ‘
' ' ' 1 ' '
t ' ) 1 ' ‘
' ' ' ) ' '
) + 1 1 +
nnnnnnn B R e et T T TR Uy USRI AP
' ' h . '
' ' ' 1 '
' L} 1 ) ]
' . v . '
' ' ' ' '
' s y ' '
' ' ' ' '
' ) 1 1 1
' ) ' ' '
....... He e e rmeegeancmcojescermeqemecarapome o ae——————
1 . ) . 1
1 + ' ' '
1 ' ' ' 1
' ' » . '
' ' ' 1 '
' ' . ' '
' . . ' .
. + ' ' ' 1
' ) ' ' ' 1
||||||| B e e T R L CEpuyu U FN
) 1 ' ’
' ' ' ' '
' ) ) ‘
' l ) 1 1
' ' ' '
V ' 1 ' '
1 ' l ' '
‘ ==z ' ' ' '
' — ' ' 1 '
....... DeaT Passscrmleeacecadancccealonanemnlceannad
\ Sy S5 v i h i
' e — 1 1 ' v
) = ' ) '
' e ' ' 1
1 = 1 1 1 1
' ' h ‘
v ' ' '
' ' ' '
: ) 1
' : ' 1
....... R 4 +
' ) '
' ) '
1 ]
' ' 1
. ' h
' ' '
' s )
' '
] '
lllllll hn e
' '
' '
' '
' '
' '
' '
' '
' '
. '
............... .
} v
' ) '
' ' '
' ' '
' ' '
' ' 1
' ' '
— ——
» ' v 1 ' '
i H H H 1
o Ll oN m - n e
1 } 1 ! 1 1

time([s]

F1G. 7. The tool and workpiece conventional contact point vibration along the zs2 coordinate

for the system without feedback interaction.

[263]



%104

T T T T L) T
H H ¥ H “ H
H H ' | M ‘
' ' ¥ " . "
' . i ' M ‘
‘ I . v . v
N ' ‘ ' . '
‘ ‘ " ' . M
‘ H " H . .
v ' . : H ‘
....... Y. DU SIS SIPISIP SNSRI, SRR
H v H ' H j
H " H H H |
H ‘ ‘ V H i
' . N H M Y
H N . H . "
H ' . H H
H ' H H . .
1 . ' ' H .
H V N : i .
....... S . RS, SRS SUPRPIL SO
3 ¥ H i i .
' v v . H i
H ¥ H i . "
H H ' . H '
H v v b » '
' ' 4 Y H H
' P H ' H .
’\’QN. Ll . * Al . .
' v I v * '
...... S-SR SR PU U R-RR S
' ¥ ¥ " . v
' H N ' » H
' ' I ' i ,
¥ h v . i
v ' v ' » M
' ' i ' i 0
A Mj t a 1 » W
‘ H v ' 4 '
H ' v » H ¥
lllllll - L T R D et
d ¥ f l . v
Ll L] » L L]
N EX H v . .
H ' y M i .
‘ ' V . ' v
H i H . M :
v i H v v .
' ‘ H ) i ¥
H v ’ H . v
H ' 3 . '
....... SR .. SV SO IR, S
¥ H .Wh . H u
' ' = . H "
¥ ' : ‘ H "
H ; HE S H :
H ' i " H .
H v 0 . H "
v ' h ' i
H B ' H H
H ’ a H '
....... . S, AR - A PR, SRS, SRS
H v . v H H
H ' . . . V
' ' H . ' i
‘ v M ¥ i i
' ¥ . ' H i
H v y b H "
‘ v . v H "
‘ M . H )
' ¥ ' ' i
....... PR S A DY U
v ‘ v ]
. ' v v
' 1 ¥ '
v H H
. 4 a »
. . L]
. " 1 '
H
' 1 v 1 H 1
i H H i i H
o - w o n © w
- ' . 1 . 1 -
o ~ ™ L]
t i 7 t

[u] zuowsseTdsTa

1.8

1.4

0.4 0.6 0.8

0.2

time(m)

F1G. 8. The tool and workpiece conventional contact point vibration along the zs2 coordinate

for the system with proportional and ideal derivative feedback interaction.
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F1G. 9. The tool and workpiece conventional contact point vibration along the zs2 coordinate

for the system with proportional, ideal derivative and delayed feedback interaction.
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b) the model with proportional and ideal derivative feedback interaction (Fig.
5 and 8). All components of the matrix (3.9) are equal to zero. This case
corresponds to the phenomenon of a single tool’s passing along the cutting zone
(so-called inner modulation |1, 9]);

¢) the model with delayed feedback interaction in addition (Fig. 6 and 9).
It corresponds to the phenomenon of a multiple tool’s passing along the cutting
zone (so-called inner and outer modulation [1, 9]). This case illustrates the perfect
description of the cutting process, because the greatest number of various effects
is involved in the model.

A spectral analysis for these time plots (Fig. 10 and 11) is also performed. It
enables the evaluation of the influence of several kinds of the feedback interaction
on dynamics of the system.

4. DISCUSSION OF RESULTS

The plots present dynamic responses of the discrete parametric model along
horizontal (i.e. ¢1) and vertical (i.e. g2) axes, due to the desired cutting force.
This response is observed during the work motion of the tool, along the distance
of cutting s.

Here it is emphasised that there are transient time-dependent oscillations,
which are marked distinctly in the pictures. These are results of the superpo-
sition of some eigenmodes, which significantly influence the dynamics of motion
along the directions ¢; and go. Their natural frequencies have been calculated
previously (Table 4).

When the effect of feedback interaction is entirely neglected, the dominant
resonant peak which corresponds to frequency of 74 Hz, is observed for both
directions. After including the proportional and ideal derivative types of the
feedback, only the resonant peak at the 69 Hz frequency for the ¢; direction is
observed, while it almost vanishes for the go direction. It should be noticed, that
the resonant amplitude for direction ¢; was significantly reduced (about 40%).
Additional consideration of the delayed feedback causes a generation of a new
resonant peak at the 78 Hz frequency. It has been also observed in the previous
case, but its value was rather meagre. Although the resultant amplitudes are
much less than those in the first case, an appearance of new resonance yields a
danger of losing the system stability, when the b width of cutting will be increased.
It means that including the effect of feedback interaction in the model improves
the quality of the discrete system modelling.

Results of the calculation show that several models of the cutting interaction
influence the dynamic response. It concerns both the averaged values of the plots,
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and the bandwidths of oscillations. As it was shown above, case c) is the most
general, but cases a) and b) are derived under some simplifying assumptions.
However, in view of considerible differences of these results, this simplification
must be made with great caution. A suitable sensitivity analysis should be per-
formed before the case of modelling is suggested.

5. CONCLUSIONS

The method presented in this paper gives the possibility of effective calcula-
tion and computer simulation of the transient vibration of parametric closed-loop
systems, which are modelled discretely by the finite element method. The param-
eters of structure are to be determined previously for the steady state. Hence, a
change of the system configuration and the process of feedback interaction should
be included. This concept allows to include various types of feedback into the
same structure, and a variety of large, desired motions of several substructures.
Then, the structure is analysed as a whole multidimensional parametric closed-
loop system. A convenience of this approach is obvious, because it allows the user
to avoid some measuring procedures in this step. However, it has been shown
that the analysis becomes successful only in particular cases of the feedback in-
teraction.

An analysis of the shaping process at transient conditions is given in the paper
and some types of feedback interaction are included. This analysis enables us to
determine, how each type of the feedback interaction influences the dynamics of
a parametric discrete system. However, a strict analysis of the process requires
some experimental verification, which is to be worked out in the future.

Finally, a suitable discussion on practical application of the method proposed
should be performed. The results of the paper prove that the analysis of the ma-
chine tool dynamics indicates the necessity of simultaneous consideration of the
cutting process in the model. The approach seems to be effective and enables the
simultaneous analysis of machine tool dynamics with the accompanying cutting
process. The other approaches to the problem do not satisfy this requirement.
The method predicts also the machine tool vibration at the stage of discrete
model creation. Following that, a proper structure of the machine can be estab-
lished and correct values of cutting parameters (e.g. cutting speed, feed, depth
of cutting) can be determined.

Although the computation has been worked out at stable conditions of the
manufacturing process, the presence of the closed loop interaction during the
cutting process may lead to a loss of stability and generate self-excited vibration,
which is called chatter. In particular, delayed feedback (that is to say: regener-
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ative feedback) is the main reason for it. This phenomenon is very dangerous,
because it causes tool damages during the cutting process. Also the accuracy
of the process decreases and efficiency of machining is extremely reduced in this
case. The method proposed enables computer simulation of the model in order
to preview and assess the cutting process behaviour before its real performance.
Thus, it may secure the machine tool vibrostability conditions and eliminate the
unstable chatter vibration in real structures.
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