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The heat conduction equation in the context of generalized theories of thermoelasticity is used to
study the propagation of plane harmonic waves in a thin, flat, infinite, homogeneous, thermoe-
lastic isotropic plate of finite width. The frequency equations corresponding to the symmetric
and antisymmetric modes of vibration of the plate are obtained, and some limiting cases of
the frequency equations are then discussed. The comparison of the results for the theories
of generalized thermoelasicity have also been made. The results obtained have been verified
numerically and are represented graphically for aluminum epoxy composite plate.

1. INTRODUCTION

The basic governing equations of thermoelasticity in the usual framework of
linear coupled thermoelasticity consist of the wave-type (hyperbolic) equations
of motion and the diffusion-type (parabolic) equation of heat conduction. It is
observed that a part of the solution of the energy equation propagates with an



300 K.L. VERMA and N.HASEBE

infinite speeds. This implies that if an isotropic homogeneous elastic medium is
subjected to thermal or mechanical disturbances, the effects in the temperature
and displacement fields are felt instantaneously at an infinite distance from the
source of disturbance. Therefore, a part of the solution has an infinite velocity
of propagation, which is physically impossible.

To overcome this problem, some researchers such as [1 — 5], have tried to
modify the Fourier law of heat conduction so as to get a hyperbolic differential
equation of heat conduction. These works include the time needed for acceler-
ation of the heat flow in the heat conduction equation along with the coupling
between the temperature and strain fields. The paradox in the existing coupled
theory of thermoelasticity has also been discussed by BOLEY [6]. This new the-
ory that is named the “Generalized Theory of Thermoelasticity” eliminates the
paradox of an infinite velocity of propagation and is based upon the more general
linear functional relationship between the heat flow and the temperature gradi-
ents. LORD and SHULMAN [7] have formulated a generalized dynamical theory of
thermoelasticity (here in after called LS theory) by using a form of the heat con-
duction equation that includes the time needed for acceleration of the heat flow.
Some researchers such as ACKERMAN et al. [8], NAYFEH and NASSER [9] have
investigated the Maxwell’s surface waves propagating along a half-space consist-
ing of linearly elastic materials that conduct heat. MONDAL[10] obtained the
frequency equations, corresponding to a thermoelastic plane wave in an infinite
thermoelastic plate immersed in an infinite liquid that is kept at uniform tem-
perature, for symmetric and anti-symmetric vibrations about the vertical axis,
taking into account the thermal relaxations.

Recently, the theory of thermoelasticity without energy dissipation, which
provide sufficient basic modifications in the constitutive equation that permit
treatment of much wider class of flow problems, is proposed by GREEN and
NAGHDI [13] (here in after called GN theory). The discussion presented in [13]
includes the derivation of a complete set of governing equations of the linearized
version of the theory for homogeneous and isotropic materials in terms of dis-
placement and temperature fields, and a proof of the uniqueness of the solution of
the corresponding initial mixed boundary value problem. The uniqueness of the
solution for an initial boundary value problem in this theory, formulated in terms
of stress and energy-flux, has been established in [14]. CHANDRASEKHARAIAH
[15] investigated the one-dimensional wave propagation in the context of the GN
theory.

VERMA [23] studied the field equations of linear thermoelasticity in GN the-
ory with the help of integral transforms. They have discussed the dynamic be-
haviour of an elastic half-space due to a thermal shock and a mechanical load
on the boundary, and found that the disturbances consist of two coupled waves
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that propagate with finite speeds, without attenuation, and displacement is con-
tinuous at both the wavefronts while the temperature, strain, and stress are
discontinuous.

In this paper, we investigate the propagation of plane harmonic waves in an
infinite homogeneous isotropic plate of thickness 2d according to the generalized
theories of thermoelasticity[7, 13]. The frequency equations corresponding to the
symmetric and antisymmetric modes of vibration of the plate are obtained, and
some limiting cases of the frequency equations are then discussed. The compar-
ison of the results for LS and GN theories of generalized thermoelasticity have
also been presented. We found that the in GN theory, coupled waves propagate
with finite speeds, without attenuation. It has also been observed that, on the
whole, the results obtained of the GN theory are qualitatively similar to those
of the LS theory. The results have been verified numerically and are represented
graphically for aluminum epoxy composite plate.

2. FORMULATION

We consider an infinite homogeneous isotropic, thermally conducting elastic
plate at uniform temperature 6y in the undisturbed state having thickness 2d.
Let the faces of the plate be the planes z = +d, referred to a rectangular set of
Cartesian axes O(z,y, z). We choose z-axis in the direction of the propagation of
waves so that all particles on a line parallel to y-axis are equally displaced. There-
fore all the field quantities will be independent of y-coordinate. The motion is
supposed to take place in two dimensions (z,z). Here u, w are the displacements
in the z, z directions respectively. In linear generalized theory of thermoelasticity,
the governing field equations for the temperature 6(z, z,t) and the displacement
vector u(z, z,t) = (u,0,w) in the absence of the body forces and heat sources
are [7] given by

(2.1) pV2u+ (X + p)Vdiva — BVE = pii,

(2.2) KV?0 — pCe(8 + 708) = OoBdiv(a + moid),
where

(2.3) B = (3)\+ 2u) ey,

A, p are Lamé’s parameters; p is the density of the medium; C, and 7y are
the specific heat at constant strain and thermal relaxation time, respectively; K
and a; are, respectively, the coefficient thermal conductivity and linear thermal
expansion, an overdot denotes the partial derivative with respect to the time
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variable. We define the following dimensionaless quantities:

2 3 3

* U1 n * 8 * vip * e
2.4 ¥ ==z, F=-—z "=t u'= u, = w,
(24) k1 k1 k1 k18To k1B8Ty

13290 * 6 * V12 I
2. A L A S < U S B
25) & pCer?’ 0’ To k1 70, €2 2\ + 2u)’ e 2
A4 2u\ 2

Here 1y = is the velocity of compressional waves and k; = K/pC,

is the thermal clloiﬁ"usivity in the z-direction.

Moreover ¢; is the thermoelastic coupling constant, and 7§ is the thermal
relaxation constant. Introducing the above quantities (2.4) and (2.5) in Egs.
(2.1) - (2.2), after suppressing the *, we obtain

(2.6) c2V?u + 3V divu — V4 = @,
(2.7) V20 — (8 + 7o) = e1div(n + Toid),
where ¢ =1 — co.

The stresses, and temperature gradient relevant to our problem in the plate
are

o 9
(2.8) = [(1 ~20) 2t + 50 - 0] 505,
ou 9
(29) e = Ptoca (5 + 5.
96
(2.10) = 5.

For a plane harmonic wave travelling in the z-direction, the solutions u, w, and
0 of Egs. (2.6) - (2.7) take the form

(2.11) u = f(z)exp[i&(z — ct)],
(212) w = g(z) explié(z - b)),
(2.13) 6 = h(z)exp[i&(z — ct)],

where ¢(= w/£) and ¢ are phase velocity and wave number respectively; w is the
circular frequency.
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Substituting u, w, and 6 from Egs. (2.11) - (2.13) into Egs. (2.6) - (2.7), we
get

(c2D? - € + £2A) f + i€c3Dg — ih = 0,
(2.14) #e3Df + (D? - ¢2¢? + £2c?)g —~ Dh = 0,
€17 f + e17DE2c?g + (D? — €2 + 7€22)h = 0,
where
(2.15) T =19 +i/ct.
The solution to Egs. (2.14) is
f(z) = [Prexp(—€s12) + Pyexp(—Es2z) + Pyexp(—£s32)
+Q1exp(£s12) + Q2exp(€s22) + Qsexp(€s3z)),
(216)  g(2) = [m1Prexp(—£s12) + myPrexp(—Eszz) + maPyexp(—Es32)
—m1Qrexp(ks12) — maQrexp(kszz) — m3Qsexp(kssz)],
h(z) = £[liPrexp(~€s12) + ly Prexp(—€s92) + I3 Psexp(—£s32)
+hQ1exp(£s12) + l2Qaexp(€s22) + 13Q3exp(€s32))],

where

m; = 184, mg = 0,
(2.17) T

1 .
lj=;:[8§—1+c2], I3=0, j=1,2

Pj, Q; (j = 1,2,3) are arbitrary constants, and 5%, s2 are the roots of the
equation

(2.18) s*+A4s’> + B=o,
where
(2.18); A=(c?~-2) + 71+ &1)],
(2.18), B=[1-1c(1+¢)+cdr-¢?)
and

2

c
(2.18)3 si=1- =
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52, s2 correspond to the coupled longitudinal and thermal waves, whereas s3

corresponds to the transverse wave. This is in agreement with the corresponding
results obtained by NAYFEH and NASSER [9]. The displacements and temperature
of the plate are thus

u = [Prexp(—&s12) + Prexp(—€s22) + Paexp(—£s32)

+Quexp(€s12) + Qaexp(€s22) + Qsexp(€ss)expli(z — cb)],

(2.19)  w = [myPiexp(—€s12) + maPrexp(—Esyz) + maPsexp(—Es32)
~m1Q1exp(£s12) — m2Qaexp(€s22)
—m3Qsexp(€s3z)]expli(z — ct)],
0 = [l Prexp(—£512) + laPyexp(—Esaz) + 3 Psexp(—£s32)
+11Q1exp(€s12) + laQqexp(€s22)

+13Q3exp(€s3z)]expli(z — ct)].

3. BOUNDARY CONDITIONS

The boundary conditions demand that stresses and temperature gradient on
the surfaces of the plate should vanish. Hence for all z and £,

Tor = Tez =0, =0 onz=—d,
(3.1)

Tz = Tgz =0,=0 onz=d.

Substituting the expressions (2.19) for the displacement components and temper-
ature into (2.8) — (2.10), and introducing the boundary conditions for the stresses
and temperature gradient (3.1), we obtain the following six equations involving
the arbitrary constants Pi, P, P3, @1, Q2, and Q3:

(iF — cimjsj — lj(P}-e—fsfd + Qjefsjd) = 0,

R

j=1

3
(3.2) Z vmy — s;)(Pje” £sid _ Q ey = 0,
j=1



J
where F =1 —2¢y, j=1,2,3
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3
j=

1
3

7=1

3

7=1

4. FREQUENCY EQUATION

(’iF —Cc1m;s; — lj)(Pjessjd + Qje_gsjd) =90

(emy — sj)(Pjefsfd - Qje_gsfd) =

(=ljs;)(Pje %% — Q;et%d) = 0,

)

0,

3
(—1js;)(Pje*id — Qje~¢%4) = 0,
38N J
=1

305

In order that the six boundary conditions could be satisfied simultaneously,
the determinant of the coefficients of the arbitray constants must vanish.This
gives an equation for the frequency of the plate oscillations. The frequency equa-

tion is found to split into two factors, each of which yields the equations

(4.1)

and

4.3

>~
=~

N
[= A

(4.3)
(4.4)
(4.5)
(4.6)

DGy COth(fsld) — DGy COth(ngd) + D3G3 COth(ES;;d) =0,

DGy tanh(fsld) — DGy tanh(f.s’gd) + D3G5 tanh(és;;d) =0

Dj =1F - C1m;s; — lj,

Gl = _},3Z2a
Ge = -Y3Z,
Gs = Y125 - Yo7,

Y; =imj—s;, Zj=-ls;, j=1,2,3,

where m; and I; are given in Eq. (2.17).
These are the period equations which correspond to the symmetric and anti-
symmetric motion of the plate with respect to the medial plane z = 0. It can be

b
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shown that (4.1); corresponds to the symmetric motion and (4.1)2 corresponds
to the antisymmetric motion .
The displacements and temperature in the symmetric motion are given by

w = [H cosh(ésid) + Ha cosh(€sad) + Hs cosh(€szd)] expli€(z — ct)],
(47)  w = [myH sinh(és1d) + moHy sinh(€szd)
++ms Hy sinh(£s3d)] expli (z — ct)],

0 = [l H) cosh(£s1d) + laHa cosh(€sad)] expli€(z — ct)],
and in the antisymmetric motion by

u = [Hy sinh(€sid) + Hy sinh(ésad) + Hj sinh(€szd)] explié(z — ct)),
(48)  w = —[myH, cosh(£s1d) + moHy cosh(Esyd)

+m3 Hj cosh(€s3d)]] exp[ié(z — ct)],
6 — [lLH, sinh(£s1d) + I Ha sinh(¢s2d)] expli€(z — ct)],

where m;(j = 1,2,3) and lx(k = 1,2) are given in Eq. (2.17).
The discussion of transcendental Eq. (4.1) in general is difficult; we therefore,
consider the results for some limiting cases.

5. SYMMETRIC MODES

For waves long compared with the thickness 2d of the plate, £d is small and
consequently £dsy, £dso and £dsz may be assumed to be small as long as c is
finite. Hence the hyperbolic function can be replaced by their arguments and
from Eq. (4.1) we then obtain

(5.1) (52 = s2)][(1 + s3)? {s% + 824+ - 1} — 45%5%] = 0,
where

(5.2) 2482 = —[® -2+ (L +e1)],

(5.3) s2s2 = (®1 = 1)(% - 1) - c*7ey.

Hence either
(5.4) (st —s3) =0,
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or
(5.5) [(1+ sg) {s% + s% +c% - 1} - 43%3%] =0.
If

(5.6) % = 52

the form of the original solution assumed, (2.19), cannot satisfy the boundary
conditions. Hence Eq. (5.5) holds. On using the Eqgs. (5.3) - (5.4), Eq. (5.5)
reduces to

972
(5.7) [2 - i] [1-¢r( +e1)] =4 [(c%- —1)( - 1) - exc?r].
C2

This equation gives the phase velocity of long compressional or plate waves Cp in
the generalized theory of thermoelasticity. For aluminum epoxy composite plate,
for which the physical data will be given in Sec. 8, the velocity of plate waves is
¢p = 0.554 (non-dimensional).

When the strain and thermal fields are uncoupled, the coupling constant ¢;
is identically zero, and Eq. (5.7) reduces to

(5.8) ¢ = 482 (1 - g—z) ,

which agrees with EWING et al. [22].
For very short waves and c such that s, s; and s3 are real, &d is large and
the hyperbolic functions tend to unity. The Equation (4.1) becomes

(59) (81 - 82)[—(1 + S§)2 {S% + S% + 5182 + A3 - 1} + 4813283(81 + 82)] =0.
Evidently (s; — s7) is a factor, factorizing (5.9), and we obtain
(5.10)  [~(1+s2)? {s% + 52 £ 5189+ % — 1} + 4s15983(s1 + s2)] = 0.

Equation (5.10) can be identified with the phase velocity equation for Rayleigh
waves in isotropic half-space. This is in agreement with the corresponding result
of NAYFEH and NASSER [9]. For aluminum epoxy composite plate for which the
physical data are given in Sec. 8, Rayleigh waves speed have been found to be
cr = 0.384 (non-dimensional).

5.1. Classical case

When the strain and thermal fields are uncoupled to each other. The coupling
constant €; is identically zero, and Eq. (5.10) reduces to

4
(5.11) [2 - f] = 16(1 — ¢?) (1 - fi) :

8 C2
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This is in agreement with the corresponding result of NAYFEH and NASSER [9].

5.2. Case of coupled thermoelasticity

This case corresponds to no thermal relaxation time, i.e. 79 = 0 and hence
for 7 = i/€c. Proceeding along the same lines as in the previous section, we again
arrived at Eq. (5.10) with sy, so satisfying Egs.

si+s5 = [ —2+cit7 (1 +e)),
(5.12)
sis3 = [(cit™! — 1)(c? — 1) — cit " 'ey),

and s3 as in (2.18)4.
In this case, the frequency equation after some algebraic manipulations and
using the condition w(= &c) > 1, (5.10) reduces to

1
(5.13) (1+e) <2 - 'Z‘z') =16 [(1 +e1) - 02] (1 - ﬁ) ;

2

which agrees with the results of LOCKETT [21].
Also when €7 = 0, the frequency equation in the coupled thermoelastic case
reduces to ¢ = 1/iw and (5.11) represents the classical Rayleigh waves .

6. ANTISYMMETRIC MODES
For waves long compared with the thickness of the plate, and for s;, s2 and
s3 real, we may replace the hyperbolic functions by the approximation

1
(6.1) tanhz & z — §x3.

After some algebraic transformation and reductions, and neglecting the quantities
of O[¢d]?, we obtain

(6.2) ¢ 45;‘12 {(c2 ~1) (1 + f) -~ fi( 2 _ 1)} .

C2 C2 C2

This is the dispersion equation for long flexural waves and it can be seen that
the phase velocity tends to zero as the wave length increases to infinity.

For waves short compared with the thickness of the plate, that is for {d — oo,
and c such that sy, s9 , and s3 are real, Eq. (4.1); reduces to Rayleigh Eq. (5.10),
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and the propagation degenerates to Rayleigh waves associated with both free
surfaces of the plate in generalized thermoelasticity.

7. THERMOELASTICITY WITHOUT ENERGY DISSIPATION

The fundamental equations for such a medium, with heat sources and body
forces absent, in the context of generalized thermoelasticity developed by GREEN
and NAGHDI [13], are given by

(7.1) pV23u + (A + p)Vdivu — V8 = pi,
(7.2) pC + vBpdiv it = k*V20.

Here u(z, z,t) = (u,0,w) is the displacement vector; @ is the temperature change
above the uniform reference temperature 6q; p is the mass density; C is the
specific heat at constant deformation; A and p are the Lamé’s parameters; v =
(38X + 2u)B*; B* is the coefficient of volume expansion; and k* is a material
constant characteristic of the theory.

The strain tensor E and the stress tensor T associated with u and  are given
by the following geometrical and constitutive relations, respectively, as

(7.3) E = %[Vu + Vul],

(7.4) T = Mdivu) + p(Vu+ vuT) - 461

In all the above equations, the direct vector/tensor notation [23] is employed;
also, an overdot denotes the partial derivative with respect to the time variable
t. Some of the symbols and the notations used here are slightly different from
those employed in [13]. We suppose that the constants appearing in Egs. (7.1)
and (7.2) satisfy the inequalities

(7.5) p>0, A+2u) >0, p>0, >0, C>0, p>0, k*>0.

Then Egs. (7.1) and (7.2) represent a fully hyperbolic system that permits finite
speeds for both elastic and thermal disturbances, which are coupled together in
general.

Define the dimensionless quantities

1(A+2u)
r_ 2 t’=2 r_t
* =0 it [ 26
(7.6)

gfzﬂ E’=ME T’__l_T
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Here [ is a standard length and v is a standard speed. Introducing Eq. (7.6)
into Egs. (7.1) — (7.4) and suppressing primes, we obtain

(7.7) C2V?u + (C? — C2)Vdivu — C?V0 = i,
(7.8) C2V%9 = 6+ € div,
1 T

(7.9) E = 5[Vu+Vu 1,

2 2
(7.10) T = (1 - 2—2—%) (diva)l + %(Vu + vuT) - 61,

1 1
where R

A+ 2u [ k* 728,
.1 2 = —— 2 = — = - = T .

(7.11) G==pm G, S0 O ciro

We observe that C; and C,, respectively, represent the non-dimensional
speeds of purely elastic dilatation and shear waves and that C3 represents the
non-dimensional speed of purely thermal waves. Also, ¢; is the usual thermoelas-
tic coupling parameter. It is also seen that the expression for the non-dimensional
speed C3 of pure thermal waves in the GN theory differ from its counterparts in
the LS theory. In the LS theory C3 is determined by a relaxation time, while in
the GN theory Cj is determined principally by the material constant k* [25].

Subtituting u, w, and @ from (2.11) - (2.13) into Egs. (7.7) and (7.8), we
obtain

(7.12) (C3D? - C3¢* + €2 f +i€(C} — C3)Dg — iCi¢h =0
(7.13) it(C? — CHDF + (C?D?* — Cot? + ¢%c)g — CIDh =0,
(7.14) i1 f + 1622 Dg + [CHD? — %) + €2c*lh = 0.

The solution to Egs. (7.12) — (7.14) is again of the form (2.16); 23 where

(7.15) m; = 1S, m3=0, j=1,2.
1 2.2 2 2 .
(7.16) lj=E;15[Clsj—Cl+c], I3=0, j=1,2

Here s? and s2 are the roots of the equation

(7.17) s+ As’+ B =0,
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where
- 4 = Wre)CEr cpie - actay
A
(7.19) B - [ -{(1+ £1)C? + C3}c + 01203?],
A
where A = C2C%, and
2
c
(7.20) s2=1-—.
3 022

s{, s3 corresponds to the coupled longitudinal and thermal waves whereas s3
corresponds to the transverse wave.
When there is no coupling i.e. €, = 0, then

(7.21) s’f:—ci—1 s%zﬁ—-l.
ct C3

Thus we see that sf, s% corresponds to elastic and thermal waves, respectively.

Stresses and temperature gradient in this theory are

_ C2\ ou Ow
(7.22) Tz = [(1 - 2‘0712') 2 + i 0} ,
_C% (0u  Ow
(7.23) Tox = 6'? (a + &;) ;
a0
(7.24) 0z = %

Introducing (7.23) - (7.25), into the boundary conditions (3.1)1,2 and proceeding
as in the previous sections, we obtain the frequency equations of the form (4.1)12
with F' = (C% - 2C3).

The displacements and temperature in the symmetric and antisymmetric
cases are given by (4.7);2,3 and (4.8); 2,3 respectively, where m; (5 = 1,2,3)
and Iy (k = 1,2) are given in Eqs. (7.15) and (7.16).

Limiting cases of the frequency equations in the context of linear theory of
thermoelasticity without energy dissipation are now discussed.

7.1. Symmetric modes

For waves long compared with the thickness 2d of the plate, Eq. (5.7) re-
duces to
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c?

2
(7.25) [2“6*’22‘] [Cfcg—c2{c§+(1+51)0%}+c20%c§]

=4[(e - A + (1 +e))CP} + ]

This equation gives the phase velocity of long compressional or plate waves in
linear theory of thermoelasticity without energy dissipation.

For very short waves and c such that s, sg, s3 are real, and £d is large the
hyperbolic function tends to unity, and we obtain the equations which are similar
to (5.9) - (5.10) with s; and sg given in (7.18).

When the strain and thermal fields are uncoupled, the coupling constant &y
is identically zero, and Eq. (5.10) reduces to

21t \ 2
(7.26) [2 - C—%] =16(1 ~ ¢) (1 - 522-> ;

which is of the same form as (5.11) in LS theory.

7.2. Antisymmetric modes

For waves long compared with thickness of the plate, and sy, s, and s3 real,
we may replace the hyperbolic functions by the approximation (6.1), and (6.2)
reduces to

C2 4§2d2 0 62 c2 9
(727) a‘g—T l(02 ——-1) <1+C—22) ”"40—22(6 —1) y

which is of the same form as (6.2) in LS theory.

This is the dispersion equation for long flexural waves and it can be seen that
the phase velocity tends to zero as the wave length increases to infinity in the
linear theory of thermoelasticity without energy dissipation.

For waves short compared with the thickness of the plate, that is {éd — oo,
and ¢ such that sy, so, and s3 are real, Egs. (4.1); 2 reduces to Rayleigh Eq. (5.10)
and the propagation degenerates to Rayleigh waves associated with free surfaces
of the plate in this theory.

8. NUMERICAL DISCUSSION AND CONCLUSIONS

In general the waves are dispersive; To discuss the long and short waves,
we need to find numerical solution of the Egs. (4.1)12. For values of ¢ which
makes s1, s9, and s3 imaginary, the hyperbolic functions become periodic and
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so an infinite number of higher modes exists. Computation for the symmetric
and antisymmetric modes have been carried out for a aluminum epoxy composite
plate whose physical data is given as

A =17.59 x 10**dynes/cm?, p = 1.89 x 10! dynes/cm?,

K* = 0.6 x 10~2cal/cm sec°C  p=2.19 gm/cm?,
Ce=0.23 cal/C°, £ =0.073, 75=6.131 x 1073 s.

The phase and group velocities, (c and U = ¢+ ¢ %z;, respectively) dispersion

curves, are plotted as a function of the wavenumber assuming the thickness 2d
of the plate is fixed. These curves have been calculated from expression based
on the dispersion relation in Eqgs. (4.1)1,2, which are decoupled characteristic
equations corresponding to symmetric and antisymmetric modes of vibrations in
LS and GN theories of generalized thermoelasticity.

The additional new mode to those already observed in purely elastic ma-
terials is the quasi-thermal T-mode. Dispersion curves for symmetric and an-
tisymmetric modes in LS theory of generalized thermoelasticity are shown in
Fig. 1 and Fig. 2, the various modes get merged and then approach each other
as wavenumber increases, where the phase and group velocities tend towards
the Rayleigh surface wave speed. The wave modes are observed to be more ef-
fected at the zero wavenumber limit, due to the thermo-mechanical effects. This
clearly demonstrates the difference between the coupled and generalized theory
of thermoelasticity. In the first mode of symmetric vibration, the phase veloc-
ity decreases monotonically with increasing values of wavenumber from ¢p (plate
velocity) at £ = 0 to cg (Rayleigh surface wave speed) at £ = co. The group
velocity has the same asymptotic limits but has a minimum. In the second mode,
the phase velocity is higher than the horizontal velocity of SV waves in the plate.
Again,c > ooand U — 0 as £ = 0 and as £ = 00, ¢ = U — horizontal velocity
of SV waves in the plate. Both the maximum and minimum values of group
velocity are associated with this mode at intermediate wavenumbers. Similar
relations between phase and group velocity for higher modes are demonstrated
in the dispersion curves in Fig. 1.

In the first mode antisymmetric vibration Fig. 2, the phase velocity increases
monotonically with increasing wavenumber values ¢ from ¢ = 0 at & =0to
c=crat{ =00 As& — 0, U — 0, which is characteristic of flexural waves,
and as £ = 00, ¢ = U — cg in the plate. The maximum value of group velocity
1s equal to horizontal velocity of SV waves in the plate. The results obtained
for flexural mode (first mode ) are in agreement with the corresponding results
obtained by EWING et. al. [22] (in Figs. 6-18). Dispersion curves for phase and
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group velocity for higher modes in LS theory are shown in Fig. 2. The turning
of the phase and group velocity curves for fourth mode (antisymmetric), Fig. 2
and fifth mode (symmetric, Fig. 1) approach the c-axis at low wavenumber, at
such a large values that these are multiplied by 10~ to see them on the figures.
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Similar dispersion curves for antisymmetric and symmetric modes in GN
theory of generalized thermoelasticity, for aluminum epoxy composite plate are
shown in Figs. 3, 4. It has been found that phase velocity is equal to group
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velocity i.e., ¢ = U for second and third modes (antisymmetric), third and fourth
modes (symmetric), and therefore these modes show no dispersion in the GN
theory.
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Further, once the solutions obtained, the GN theory shows that there exist
symmetric and antisymmetric modes of coupled (thermal and elastic waves
modes) waves, without any attenuation. The fact that, this is not the case in the
LS theory, is an interesting feature inherent in GN theory, in LS theory the waves
experience attenuation, and the attenuation factors decay exponentially [24, 25].
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It has also been observed that predictions of the GN theory are qualitatively
similar to those of the LS theory.
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When the thermal relaxation time 79 — 0, then the results obtained in the
analysis reduces to conventional coupled theory of thermoelasticity. When the
coupling constant ¢ is identically zero, the strain and thermal fields are uncou-
pled to each other. In this case the results can be obtained as in the uncoupled
theory of thermoelasticity.
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