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MODELLING OF HOT METAL FORMING IN THE CONDITIONS
OF VARIABLE STRAIN RATES AND TEMPERATURES

M. PIETRZYK

UNIVERSITY OF MINING AND METALLURGY KRAKOW
Al. Mickiewicza 30, 30-059 Krakéw

The model, based on the internal variable theory, describing behaviour of metals during
hot plastic deformation, is presented. This model is coupled with a typical thermal-mechanical
finite-element solution for hot metal forming processes. Problems connected with simulation of
hot forming of steel and aluminium alloys in the variable conditions are discussed. Two types
of materials are considered: i) those showing a delay of the response in transient conditions, ii)
those reaching without delay a new level determined by the equation of state for new conditions
of deformation. The model is verified experimentally.

1. INTRODUCTION

Understanding of basic principles of metal behaviour during plastic deforma-
tion is necessary for proper design of metal forming processes. Modelling of vari-
ous phenomena, which take place during hot plastic deformation, is an important
factor aiding the technology design. It enables the prediction of microstructure
and properties of final product, which are often difficult to be determined ex-
perimentally [1, 2]. Several models describing the processes taking place during
hot and cold plastic deformation, creep, superplastic deformation, annealing and
fracture, have been elaborated. One should realise that most of these models do
not have physical interpretation and further research should be carried out to
improve them. These models usually fail in the case of processes characterised
by variable conditions of deformation or varying directions of strains. Applica-
tion of internal variables to the description of the state of material during hot
deformation introduces a physical basis to the models.

Changes of the main directions of strains during plastic deformation are
important both for the users of products (fatigue) and for the producers (e.g.
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rolling). Even in the geometrically simple process like flat rolling, elements near
the contact surface are subjected to a reverse shear strain. Figure 1 shows the
calculated distributions of the longitudinal strain, the shear strain and the ef-
fective strain during rolling of a 20 mm thick plate with the reduction of 0.2.
Calculations were performed using the program described in Sec.3. Reversed
shear strains are well seen in Fig. 1. The shear strains have been calculated by
integration of the shear strain rates along the flow lines in the roll gap. The
integration leads to almost zero shear strains at the exit plane. Distribution of
the longitudinal strain across the thickness at exit is uniform. Effective strains,
which account for the contribution of the reversed shear strains, are distributed
non-uniformly, with the lowest values in the centre of the plate.
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F1G. 1. Calculated distributions of the longitudinal strain, shear strain and effective strain
during rolling of 20 mm thick plate, reduction 0.2. Due to symmetry, only upper half of the
roll gap is presented.

Reversed shear strains are not so large in rolling; however, they may reach
larger values in other forming processes. These strains may influence some mi-
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crostructural parameters during hot deformation, such as kinetics of recrystalli-
sation or grain size [3|. Reversed strains usually affect both the external variables
(yield stress) and the internal variables (energy accumulated in the dislocation
substructure). Several researchers showed that yield stress of various metals and
alloys decreases when the strain is reversed [3] or when the main directions of
strains are changed [4]. The objectives of the present work are formulated with
the above remarks in mind. They include modelling of hot deformations in the
variable conditions, including changes of strain rate or temperature or strain di-
rections during the process. The model based on the internal variable approach
achieves this objective.

2. INTERNAL VARIABLE MODEL

A general frame for the model is given on the basis of its application as a
constitutive law, as described by ESTRIN [5]. He shows how the problem of con-
stitutive modeling can be reduced to operating with a scalar instead of tensorial
quantities. The components of the tensor of total strain rate ¢ are given by the
sum of the elastic and plastic components, £¢ and €P, respectively,

(2.1) €= g8 4 éP,

The elastic part obeys the Hooke’s law, while the plastic component of the strain
rate tensor is expressed in the form of the Lévy-von Mises equation. In this
equation the Huber-Mises effective quantities:

2

(2.2) el = géfjéfj (effective plastic strain rate)

and

/3
(2.3) i =4/ 5905 (effective stress)

are used. This implies plastic isotropy of the material during deformation. The
specifics of the model enter through the particular form of the equation relat-
ing the effective plastic strain rate and the effective stress referred to as kinetic
equation (see MECKING and KOcCKs [6], ESTRIN and MECKING [7]). Material
characteristics given by the experimental data, which are obtained in the plasto-
metric tests, impose the choice of a suitable form of the kinetic equation operating
with a scalar. A power-law is the most commonly used form of this equation:
AN

(2.4) g =a (%),

o
where o — an internal variable representing the state of the material, €y,n -
material parameters.
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Equation (2.4) is just a convenient representation of the Arrhenius equation
for thermally activated plastic flow by dislocation glide. Accordingly, the temper-
ature dependence of the plastic strain rate is contained in the stress exponent n,
which is a function of the activation volume for the underlying thermally activated
dislocation mechanism, the Boltzmann constant and the absolute temperature.
The parameter is proportional to the density of mobile dislocations. Another
variant of the kinetic equation, in which the Arrhenius form is preserved, is:

(2.5) & =é0€XP{“%§T‘O [1 - (%’)p]q}

where: AGq — the Gibbs free energy of activation at zero stress, o — Boltzmann
constant, p,q — material parameters determined from fitting the éfvs.o; curve,
£g — constant.

It should be noted that in the limit of o; — 0, Eq. (2.5) yields a finite
plastic strain rate. In what follows, the kinetic equation in the form of Eq. (2.5)
will be used. Thus, it should be implied that a definite non-zero plastic strain
rate corresponds to any value of stress, however small it may be. It means that
this model is characterized by no yielding and loading/unloading condition. A
number of constitutive models [6, 7] share this property.

The kinetic equation refers to a fixed microstructure, i.e. to a constant value
of the internal variable 0. However, as the microstructure varies in the process of
hot plastic deformation, a separate equation is needed to describe the evolution
of 0. It can be written in a general form:

do

2.6 — = f(0,€%,T).
(26) =l ean

This equation suggests that the rate of change of the internal variable is
determined by its current value and no memory or path-dependent effects are
included. Once the concrete form of the function f is specified, the constitutive
formulation is complete. According to the earlier discussion, the quantity o is
the sole internal state variable, which represents the microstructural state of a
material [7]. However, it can generally be expected that several internal structure
variables, characterized by different rates of relaxation towards their steady state
values, are needed to describe properly the mechanical response of a material.
More sophisticated models with two and more internal variables can be invoked
[5], however, they are not discussed in the present work.

2.1. Hardening and recovery

The general framework of the one-internal variable model is presented on the
basis of the research of MECKING and KOCKS [6]. Their model, known in the
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scientific literature as Kocks-Mecking model (K-M model), can be considered as
a fundamental approach that has pointed the direction for later developments
and more recent theories. It is based on the kinetic relationship in the form of
Eq. (2.5), where the internal variable o is related to the total dislocation density p:

(2.7) o = MraGb/p,

where G - the shear modulus, b — the Burgers vector, M - the average Taylor
factor, @ — a constant.

The model implies that the strength of the material is determined by
dislocation-dislocation interactions. All other sources of resistance to disloca-
tion glide have been disregarded at this stage. Arguments justifying this choice
of the internal variable and proving that Eq. (2.7) can be assumed to have general
validity are given in [5]. The Taylor factor My accounts for the texture evolution
and will not be considered here.

The evolution equation for the dislocation density p is derived accounting for
the concurrent effects of storage and recovery:

dp 1 dp ¢ ,
(2.8) i kep  or prinly kope,
where the recovery coefficient is strain-rate and temperature-dependent:
é Qs 1/n
2.9 ko = koo | — - .
(2.9) 2 20 L’o exp < RT)J

In Eq. (2.9) kg is a constant. The temperature dependence of ks at high temper-
atures is contained in the Arrhenius term in the Eq. (2.9), while n is a constant,
typically about 4. In the low temperature range, the temperature dependence is
contained in n, and then n is inversely proportional to T, while the Arrhenius
term is omitted. In Eq. (2.9) Q, represents the activation energy for dislocation
climb equal to that for self-diffusion [7].

The recovery processes included in the equation (2.8) are of dynamic origin.
Static recovery, in which a decrease of the dislocation density is proportional to
the corresponding time increment, can be introduced in equation (2.8) in the
following way:

(2.10) d _ ¢

= — — kopé — R,.
at bl PR T
Assuming that static recovery is driven by the stress determined by the square
root of the current dislocation density, a reasonable phenomenological model for

the static recovery coefficient, R,, is [5]:

_ Co\ . Ciy/p
(2.11) R, = R, pexp <—ﬁ> sinh ( T ) ,

g

where %9, Cy and C; are constants.
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The form of the evolution Eq. (2.8) for the dislocation density provides a
possibility of incorporating in the model metallurgical characteristics and mi-
crostructural features of the material. In a material, which is coarse-grained and
single-phase, the only kinds of obstacles to moving dislocations will be those
related to the dislocation structure itself and those provided by the grain bound-
aries. Regardless of how the dislocations are arranged, whether completely at
random or in a cell or subgrain boundary structure, the mean free path of dislo-
cations [ is proportional to p~%%. Since the free path [ is usually much smaller
than the grain size of the material, Eq. (2.8) becomes:

(2.12) %g = k1€+/p — kape,
where k1 and kg are constants, with ko being given by Eq. (2.9).

The constitutive Eq. (2.12) can be integrated analytically, at least for the
case of uniaxial deformation with constant plastic strain rate [6] and for constant
stress creep [7]. The hardening term in Eq. (2.12) has to be changed when the
density of geometrical obstacles becomes larger than that of the obstacles caused
by other dislocations in the population. The mean free path [ is then identified
with spacing between these geometrical obstacles d. Assuming that the distance
between obstacles does not change during the deformation and, further, that the
obstacles do not affect the recovery coefficient ko, their only influence on the
flow stress will be through the effect on the rate of dislocation density. The
kinetic equation is then still given by Eq. (2.4), whereas the evolution equation
for dislocation density is written as:

dp ¢

(2.13) i

It should be mentioned here that some of the scientists (SANDSTROM and

LAGNEBORG [8, 9], ROBERTS and AHLBLOM, [10]) adopt a recovery term derived

from Friedel’s treatment of the climb-controlled dislocation network. This ap-

proach is related to the probability of dislocations meeting and annihilating one
another, which is proportional to p?:

dp _ €

— 2T Mp?,
where M is dislocation mobility which, in a pure metal, is directly related to the
self-diffusion coefficient, 7 is dislocation line energy.

Kocks and MECKING [6] have argued that Friedel’s development is based
on a model for static rather than dynamic recovery and some caution must be
exercised when applying it. A particular case to which the model represented by
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Egs. (2.13) or (2.14) will be applied is that of grain boundary hardening. ESTRIN
[5] points out, however, that the limit case of the grain size being the smallest
characteristic length in the structure, applies only for the sub-micron grain sizes
warranting that d < 10p™%®. The modified constitutive model now given by
Eq. (2.13), enables simple integration.

The above considerations apply if geometrical obstacles outnumber the
dislocation-structure related ones. In a more general case, when a superposition
of the immobilizing effects of both types of obstacles is considered, the inverse
obstacle spacing 1/l in Eq. (2.8) can be expressed as a linear combination of
the inverse spacing of the two types of obstacles taken separately. The resulting
evolution equation for dislocation density is [7]:

(2.15) (;—[t) =€ (1‘)18 + kl\/ﬁ> - kgpé.

ESTRIN [5] presents an integration of the constitutive model (2.15). He also
shows other applications of the model based on the kinematic Eq. (2.5), e.g. to
describe plastic deformation of other systems where the dislocation mean free
path is constrained by microstructural elements, such as precipitates or second-
phase particles. The methodology, which is described above, can be used to
account for the particle effects on the deformation behavior. The constitutive
model based on the kinetic Eq. (2.5) can be as well formulated for materials
containing a dispersion of non-shareable second-phase particles, such as non-
coherent precipitates or oxide or carbide dispersions.

2.2. Recrystallisation

The theory described in the previous section is suitable for modelling the
situations, in which dislocation interactions result as an immediate response of
the system, which is the dynamic recovery. In real processes this is not always
the case. It is well known, and can be confirmed by experiments, that an excess
of stored energy leads to the occurrence of recrystallisation.

In metals of high stacking fault energy, dynamic recovery takes place rapidly
and a steady state of stress is reached. This is a result of a balance between
work hardening and recovery. The steady state is characterised by a subgrain
size, which in general depends on the Zener-Hollomon parameter Z. Deformation
of materials with medium or low stacking fault energy is characterised by slow
dynamic recovery. Thus, usually the dislocation density is allowed to increase
to an appreciable level and it causes an onset of dynamic recrystallisation be-
fore the steady state is reached. It seems that the dynamic recrystallisation is a
well-known phenomenon now and its major features have been outlined. Never-



328 M. PIETRZYK

theless, there still remain many unresolved problems (MCQUEEN [11]). A survey
of research on hot deformation of steels shows, however, that researchers remain
convinced that generally the material softening is caused by dynamic recrystalli-
sation and plastic instabilities become less likely or frequent as the temperature
increases and/or the strain rate diminishes. Indeed, some scientists have reported
different effects for other materials. WIERZBINSKI and KORBEL [12] observed
that, in the sequence of structural changes during hot deformation of Cu-10Ni
alloy, the shear bands play the most important role in mechanical performance,
while dynamic recrystallisation is a secondary phenomenon. However, for the
objective of modelling the thermomechanical processing of steels, it is assumed
in this work that when the dislocation density achieves its critical value, the dy-
namic recrystallisation starts and becomes the dominant softening phenomenon.
This critical value of the dislocation density corresponds to the critical strain ..
For a given stacking fault energy, the critical strain is a function of temperature,
strain rate and austenite grain size.

Assumption of dynamic recrystallisation, in turn, implies a delay in the re-
sponse of the system whilst the required excess of energy accumulates and can
be mathematically simulated by the modification of Eq. (2.13). This modifica-
tion involves a parameter, which accounts for the development of the dislocation
population (stored energy) to a point at which widespread elimination of disloca-
tions is observed. Thus, recrystallisation is a discrete process, which requires that
some threshold of the stored energy is exceeded and which needs some time to
be completed. Therefore, there can always be a situation in which neighboring
regions in the material have different values of the internal variable. It seems
that a proper approach to this problem requires an analysis of the distribution
of the internal variable within some small volume of the material. This approach
will be discussed in the following sections, while a simplified model assuming an
average dislocation density is described first.

It is claimed (see DAVIES [13]) that dislocations can be treated en masse
without loosing any of the detail, which determines the behavior of a material.
While hardening and recovery in this approach are well described by Eq. (2.13),
modeling of recrystallisation requires an introduction of the threshold for the
dislocation density and it involves an additional term in Eq. (2.13):

(216) D = 2 kgt — ks(p — o).

It can be shown that Eq. (2.16) allows modelling of behaviour of materials
characterised by typical flow stress curves, with maximum followed by steady
state flow. This equation, however, fails in the case of multi-stage deformation
or the deformation, which takes place in variable conditions.
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2.3. Distribution function model

To simulate these complex microstructural phenomena, the dislocation den-
sity cannot be treated as an average value. Rather, the entire spectrum of the
dislocation densities has to be considered. To make it possible, the distribution
function G(p,t), suggested by SANDSTROM and LAGNEBORG [8, 9] and defined
as a volume fraction which has the dislocation density between p and p + dp, is
introduced. As a consequence, the equation, which describes the evolution of the
dislocation populations accounting for recrystallisation, is:

(217 LY~ () - g(e) - DmrpGip, ).

In Eq. (2.17), #(Ae) represents athermal storage (hardening), Ae is strain
increment, g(e) is thermally activated softening (recovery) and 7 = ub?/2. This
equation is discretised and solved, for each interval of dislocation density, together
with equations describing the kinetics of recrystallisation and grain growth (see
Table 1). The fraction of migrating grain boundary v in Eq. (2.17) is controlled
by the nucleation rate at the beginning of the recrystallisation and by grain
impingement at the final stage. This leads to an assumption that v is qualita-
tively controlled by the term X (1 — X). PIETRZYK et al. [14] and PIETRZYK
and KUZIAK [15] propose equations, which describe mobile fraction of the grain
boundary 7y (see Table 2).

Table 1. Cycles of the simulation performed at each time step of the finite-element solution

no. process variables direction condition Ref. equation
1 harde- Ap,p VA E>0 SANDSTROM and % = gi
ning LAGNEBORG [8, 9]
2 recovery Ap,p P, always SANDSTROM and
LAGNEBORG [8, 9] %? = —2Mr1p°
ESTRIN and Z—p = —kop
MECKING [7] €
3 recry- G, X,p L P> Per SANDSTROM iX
1 %4
stalli- and LAGNEBORG i %mTG,-pi
sation [8, 9]
i p cr
4 grain D &L p>p SANDSTROM dD dX
refine- and LAGNEBORG = -D 7 InN
ment (8, 9]
5 grain D Ly always SANDSTROM and % = ———m};"
growth LAGNEBORG [8, 9]
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All formulae used in the present volume distribution model are given in Tables
1 and 2. The following notation is used in these tables: b — Burgers vector,
D - austenite grain size, d — dislocation cell size, G ~ volume distribution of
dislocation density, I - dislocation mean free path, ¢ — time, X - recrystallized
volume fraction, Z — Zener-Hollomon parameter, € — strain, ¢ — strain rate, vy
~ fraction of subgrain boundary which is migrating, p ~ shear modulus, p -
dislocation density, per — critical dislocation density for nucleation, o, — grain
boundary energy, 7 — energy per unit length of dislocation.

Table 2. Equations in the volume distribution model

variable Ref. equation
. Ky
cell size (free path)  ROBERTS and AHLBLOM l=d= 7
10]
a1
mobile fraction PieETRZYK and Kuziak v = [1 —exp(—X)] (1 - X) <;}E—>
of boundary [15]
D 2
number of new grains SANDSTROM and N =4y (?)
per one old grain LAGNEBORG |8, 9] )
critical dislocation ROBERTS and AHLBLOM Per = &ng
p
density [10]

3. FINITE ELEMENT MODEL

Rigid-plastic finite-element model is used to simulate metal flow and heat
transfer during hot-forming processes. Details of this model are given in [16].
Briefly, the rigid-plastic approach is based on an extremum principle which states
that for a plastically deforming body of volume V', under traction f prescribed
on a part of the surface S and the velocity v prescribed on the remainder of S,
the actual solution minimises the functional:

(3.1) J= /aiéidV - /fTvdS,
1% S

under the constraint éy = é; + €y + €, = 0. Penalty coefficient or Lagrange
multiplier methods can be used to impose the incompressibility condition. It is
convenient to use a Lagrange multiplier A and a stationary value problem is then
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obtained for the FEM analysis. The functional J becomes:

(3.2) J= / (03 + Aéy) dV — / £Tvds,
14

where o; - effective stress, € — effective strain rate, €y — volumetric strain rate,
f - vector of boundary tractions, v - vector of nodal velocities. Discretisation is
performed in a typical finite element manner and the velomty components inside
the element are given by interpolation: v = {v, Vy, z/z} = NTv, where vy, Uy, Uy
— components of velocity, N - matrix of shape functions. The discretisation of
the functional (3.2) follows the normal procedure. The strain rate field inside the
element is related to the nodal velocities:

(3.3) & = {€2,6y, 62, €2y, €yzr Exc ). = By,

where: €;,€y,€;,€2y€y2, €20 — components of the strain rate, B — matrix of deriva-
tives of shape functions. Volumetric straln rate in Eq. (3 2) is calculated as
gy = ¢l 8 , where ¢ is such a vector that ¢”& yields the incompressibility con-
dition. 7 equals {1,1,1,0,0,} for 3D, {1,1,0} for plane strain and {1,1,1,0} for
axisymmetric problems. During discretisation, body with the volume V is divided
into m elements connected by n nodes. The functional for the whole volume is a
sum of the functionals for the elements. Introducing Eq. (3.3) into (3.2) gives:

2 oo .
(3.4) J= / oin/ §vTdeV +avTq - vTE,
|4

where:
K=B'EB q= / BTcdV, f= / NT£dS,
5
E — matrix in the Levy-Mises flow rule o = E¢ [16], o - vector containing stress
components. Differentiation of Eq. (3.4) with respect to the nodal velocities
and to the Lagrange multiplier yields a set of non-linear equations which, after
Newton-Raphson linearization, takes the form:

Av
(3.5) p=K { N } ,
where
7 o
K| oviov 1 , p=< ovl %,
q 0 q’v

Vv — vector of nodal velocities calculated by previous iteration.
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Solution of Eq. (3.5) yields the nodal velocity increments which, in the itera-
tive procedure, allow the determination of the velocity field. The friction model
with velocity-dependent friction forces described by arctan function, suggested
by Li and Kobayashi and given also in [16], is used in the solutions.

The solution is coupled with the thermal model. Temperatures are calculated
accounting for heat conduction in the material, heat generation due to the plastic
work and friction, heat losses due to transfer to the surrounding medium. The
approach is based on the equation:

(3.6) V(kVT) + Q = cpp%.

The equation (3.6) is used in modelling of the non-stationary processes like
forging. Such processes as rolling develop stationary temperature fields in the
co-ordinate system connected with the tool and are simulated by the general
convection-diffusion equation:

(3.7) V(kVT) + Q = c,pv! VT,

where k - conductivity, p — density, ¢, — specific heat, T - temperature, ) — heat
generated due to plastic work, ¢ — time. Solution of Eq. (3.7) for steady state
problems with convection with the relevant boundary conditions yields a set of
linear equations

Ht = p,

with t being the vector of nodal temperatures and matrices H and p given by

Hij _ / [k <3Nz 3Nj ON; 3Nz) _ mc’)Nj 6Nj

Jxr Ox dy Oy O Vyi—(?y—] v

+ / aN;N;dS,

i = /N,-QdV+/N,~(q+TO)ds,
|4 S

where g — heat generated due to friction, a - heat transfer coefficient, Ty — ambient
temperature or tool temperature, N — shape functions.

The non-steady state solution of Eq. (3.6) using Galerkin approach gives a
set of equations:

Ht=p
where
o 3 ) 3
H= <2H + ZEC> , P= (—H + EC> to — 3p, Cij = ‘!NicppdeV,

to — vector of nodal temperatures at the beginning of time interval At.
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The finite-element model described above is connected with the internal vari-
able approach, which is used as a constitutive law in this model. Exactly, the
yield stress connecting stress components with the strain rate components in
the Levy-Mises flow rule is calculated from Eq. (2.7), accounting for the current
distribution of dislocation densities in each element in the finite-element mesh.
On the other hand, current local values of strain rates, temperatures and strain
increments predicted by the finite element model in one time increment are used
in the internal variable approach for calculations of the changes of dislocation
density distribution.

4. RESULTS AND ANALYSIS

Developed thermal-mechanical-microstructural model has been successfully
applied to the modelling of hot forming of steels [17] in constant temperatures
and strain rates. Experiments [18] confirmed proper model’s performance in the
transient state, as well. Figure 2 shows typical results of simulation of compres-
sion test for carbon-manganese steels with the strain rate changing rapidly at the
strain of 0.18 [18]. It is seen in this figure that the transient behaviour is negli-
gible in the case of increasing strain rate. Response of the system reaches a level
determined by the equation of state for the new conditions almost immediately.
In the case of a decreasing strain rate, the delay of the response is larger and
this response reaches the level below that determined by the equation of state
for the new conditions. Figure 3 shows the results of measurements [19] and
calculations of compression stress during the test performed in the temperature
decreasing continuously from 1150 °C to 950 °C. Recapitulating the results of
all measurements and calculations [18, 19], it can be concluded that the model
predicts properly the yield stress during transient hot deformation of steels.

Modelling of transient hot deformation of aluminium alloys presents more
difficulties. The experimental results for transient compression tests published in
the scientific literature [20, 21] show differences in the behaviour of high purity
(HP) and commercial purity (CP) alloys containing 1% of magnesium. Modelling
of the yield stress for these alloys is based on Eq. (2.8) with additional terms
accounting for the influence of the dislocation slip o and for the influence of
subgrain boundaries:

a2MT,U
5 ?
where § — distance between subgrain boundaries, a;, as - constants.

Since the third term in Eq. (4.1) is small, explanation of the transient be-
haviour of aluminium alloys is connected with the two remaining terms. Relation

(4.1) o =0f+ a1 Mrapb/p+
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between the strain rate and the development of the dislocation substructure is
given by the Orowan’s equation:

(4.2) é="

where v — average rate of dislocations.

In the case of change of the strain rate, the dislocation density does not
change right away. With some delay it tends to the new value proportional
to 0. Authors of [20] suggest that compensatory influence of dislocation o
is responsible for lack of transient state in some cases. Rate of dislocations
connected with climb v is proportional to o3, what means that decrease of stress
gives instantaneous decrease in v. On the other hand, recovery increases this
rate and yields an increase of the rate of deformation. In alloys with higher Mg
contents, proportionality v ~ ¢ takes place, what means that rate v changes
immediately and remains constant, yielding a decrease of the rate of deformation
in time.

The analysis presented above shows that the constants in the internal vari-
able model given by Eq. (4.1) cannot be determined from the tests carried out
under constant conditions. Therefore, the experimental results for variable strain
rates presented in [21] were used in this paper to test the model. The resulting
comparison of the measured [20] and calculated compression stress during the
test with the constant strain rate and the strain rate changing continuously from
25 s7! to 2.5 s~} are shown in Fig. 4. It is seen in this figure that the model
describes transient behaviour of aluminium alloy quite well.
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Fi1G. 4. Results of calculations and measurements of compression stress for aluminium alloy
sample deformed with the strain rate changing continuously from 25 s™! to 2.5 s™".
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5. CONCLUSIONS

It is shown in the paper that modelling of the transient behaviour of metals
during hot deformation cannot be based on conventional models with the external
variables used as independent variables. Good results of modelling have been
obtained when an internal variable representing the energy accumulated in the
dislocation substructure is used. In general, the metals exhibit two kinds of
transient behaviour. When an interaction between dislocations is a dominant
factor contributing to the stress, the metal shows delay of the response during
transient deformation. On the other hand, in some cases when a compensatory
influence of dislocation slip (o is prevailing), the lack of transient state may be
observed.
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