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Two different models of flow fields are proposed to describe plastic deformations during
the extrusion of multi-metal composites. To construct the presented kinematically admissible
flow fields, some information is adopted from experimental works concerning extrusion of lon-
gitudially oriented metal composites. Formulae for velocities, strain-rate tensor and deviator
of stresses are found.

1. INTRODUCTION

Metallic composite materials are heterogeneous materials consisting of two
or more components bonded internally together; at least the largest component
of that material (by volume) is a metal or an alloy. The type of spatial arrange-
ment of components and their features decide on the flow behaviour of composite
materials.

All these structures are composites of various degrees of complexity. A typ-
ical multimaterial consists of the core, a cylidrical body of one metal, which is
surrounded by a concentric cylindrical sleeves of other metals.

There are numerous papers concerning such deformation in co-extrusion but
relating rather to bimaterial (as the simplest multimetal) extrusion, e.g. [1 -5, 7,
9, 10, 13], and containing analytical and experimental description of plastic low of
different metals. Most of the theoretical ones assume proportional flow, without
taking into account the real behaviour of various metals deformed simultaneously.
To approach the reality it is necessary to introduce true parameters of complex
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deformation. An example of such a procedure was presented in the papers [15 -
18, 20].

The results of papers e.g. [5, 6, 8, 11-14, 17, 18, 20 — 22] lead to determination
of the character of flow and kinematically admissible velocity fields for the upper
bound method, but only the works [17, 18, 20] follow to construct velocity fields
for materials extruded simultaneously taking into account the results of their real
behaviour.

Different mechanical behaviour of various metals and predicted deformation
of components and composite were evaluated in special experimental test [15].

These tests (see Figs. 1 — 7) enable the evaluation of the actual tendency of
different materials to undegro simultaneous plastic deformation (deformation of
the components in comparison with the composite, determination of the limiting

strain).
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F1G. 1. Diagram of the test determining the extrudability of composed material: a) schematic
process, b) composed specimens used in the test before and after simultaneous plastic defor-
mation.

Basing on such information on simultaneous deformation of various materi-
als, analysis of experimental results of co-extrusion and attempts to model the
extrusion of sleeve-core systems [15 — 18], two models of extrusion of multimate-
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F1G. 3. Influence of deformation degree of Al/PA6 composite on deformation result.

£,-0%8
€,=0952

€,=0S0

E£v=037

F1G. 4. Test results of the simultaneous plastic deformation of specimens: a) two materials,
b) three materials, c¢) four materials.

[372]



o

b}

\ | ‘@
oy
G, Copper / Aluminum 68
] [ ]
E 094 Cu I Al 091 @
- = d
www
=
op-_ op..-o
. .
"é- Hard lead o:loy ‘Lﬁad
,§ 0T3 I Pb
3 +
Q. 071 o
5.
2, o
k] L
s (0 e
§ \o1 %r
o 8 i id
o ’ i
05_:-—0 05+
Qi
_ ®—i
' o ® Composite
\O |
04T 0T
" L1 N 1 I Y
0 1 Ty 5 0o 1 ' '
, 9 1 2 39
9 1l

Kind of composite specimen-Ratio of material thickness
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of composites: a) Cu/Al, b) OT3/Pb.
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rial are presented. To construct the respective kinemetically admissible velocity
fields, the following assumptions are made [17, 18]:
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F1G6. 7. Variation in the global and components’ deformation degree ¢, €7, £1; for different cases
of composites: a) Al/OT3/Cu, b) Cu/OT3/Cu/PAS.

~ All materials of the core and the sleeves exhibit their own plastic regions

described by boundaries 4;A;1B;41B;, (1 = 0,...,n+1), respectively (see Fig. 8).
The final degree of deformation is different for the core and all the sleeves:

=2 -2 -2

_R 5 _ B By

(L1)  Xo==2, Nj=—2 12
Ry 7 R -ER

j=1,.n, Xo# X # Agobal-

However, it is similar in each of the material components, so the exiting
velocities of components are “constant” but not the same.



376 G.S. MISHURIS and R.E. SLIWA

R
R; R
E;

~ A

Fic. 8. Multi-metal extrusion under straight flow line hypothesis.

— During co-extrusion of the composite material by means of the flat die, the
dead metal zone always exists. Its form depends on the geometry of extrusion
tools and the properties of materials extruded.

~ All materials are assumed to be incompressible.

— In general, velocities at the entry of the plastic zone have different values
(Voj > 0) for every component of the composite.

— Flow lines in the plastic zone are straight lines (Model 1) or special trigono-
metrical functions (Model 2) for the core and all the sleeves.

The object of this study is to define the kinematically admissible velocity
fields in such type of multimetal extrusion, ebaling the plastic flow of a rod
composed of various metals to take place without fracture.

2. MODEL 1. STRAIGHT FLOW LINES IN THE PLASTIC ZONE

The results presented below are some extensions of those shown in [17] for
bimaterial extrusion process on the case of multi-material extrusion.

Let us suppose for a moment that Cartesian coordinates (r, z) of the points
A; and B; (j = 0,...,n) determining the characteristic position of the plastic
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zone in the corresponding material are known:
Aj(Rj,a5), Bj(Rj,b;), j=0,..,n+1,
(2.1) 0=Ry<..<Rj<Rj;1 <..<Ru =R,
0=Ry<..<R;<Rj;; <..<R,,; =R,

where R and R are radii of entry and exit of the tool, respectively.

Let (rg 2 z,(z)) € I'a;44,, and (r (), ,SJ)) € I'p;,;,, be the coordinates of
an arbitrary point of metal at the entry and exit in the core (j = 0) or the
corresponding sleeve (j = 1,...,m). Then, in view of the assumption of this
section, modelling of the trajectory in the plastic zone is given by the straight
line
(2.2) Zj = W l:z((zj)('r‘j - Tl()])) — zl(’f) (T'j - 'r((l]))] , Tj € [7‘(() ), gj)]

where (7}, z;) are the successive positions of the point.
It is assumed that the boundaries of the plastic zone are prescribed by the
following curves determined by their parametric forms:

(0) 0 _
Z = t [ < =g t 3
(2.3) Taga, { “0 f’() R { "0 olt) , telo,1],
O = R0t7 T{E ) = E()ta
in the core, and
- = f;(t),
AjAjtr - —5 —5
D= R+ B0 -8),
(2.4) tel0,1, j=1,..n,
(j) = g; (),
I';Bjs

)= /B2, + B} (1- ),

in the corresponding sleeves. Note that Eq. (2.2) makes sense because from the
definitions (2.3) and (2.5) it follows that

(2.5) vt e [0,1] : 'r(() )(t) < r(e).

Such description makes it possible to determine the functions fivg; (5 =
0,...,n). They must be monotonic functions and satisfy additional conditions
concerning the geometry of the plastic zone (see Fig. 8):

fi(0) = a5, fi(1) = aj41, ¢5(0) =bj, gj+1(1) =bj+1, §=0,..,n

2.6 . .
26) vee[0,1]: gi(t) > £(8), (@) < 2P @)).



378 G.S. MISHURIS and R. E. SLIWA

These restrictions correspond to the geometry of the problem presented in Fig. 8
and, on the other hand, guarantee that flow lines for different values of the
parameter ¢ (the respective straight lines) do not intersect each other.

Now following for paper [17], let us introduce auxiliary curves F)(\f ) in each

material (j = 0,...,n) along which the degree of deformation is constant (equal
to the value of );):

rf® = {e00,200) : [52] =}, Ao €L,

PP - P )
WP - Y )

=N} A e

Then by direct differentiation of (2.7), the following differential equations can be
found:

@8) [ =5[], [Y], = )\L‘;(J—) [9), i=1m

Their solutions are of the forms:

29) W =act, rt)=\JdP+a2 [(1-12), j=1,in, te[0]]

with some unknown constants «; (j =0,...,n).

Let us observe that the intermediate degree of deformation A; of each j-
material does not depends on parameter ¢ and, due to (2.7) and (2.9), can be
calculated in the following manner:

—2 — 2

R R; — R?
2.10 M=—2 A=—=LT =1
(2.10) TR VT aZ e "

In these equations parameters «; should belong to the corresponding intervals:

(211) a] € [E]’R—J]’ ajl)\jZI = Rj’ aj[)\]‘:—)?j = E}’

and can be defined by equations

—RZ'H - R2'+1 y
(212) a; = W(Qjml - EJQ) +Ej‘+1: .7 = 1: ey T
V]
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We do not present here the arguments for choosing such a recurrent dependence
between the parameters o; and ;1. Some motivations to do this are discussed
in paper [15] for j = 1 (the first step only). Nevertheless, one can easily check that
relation (2.11) follows immediately from (2.12). Repeating the Eq. (2.12), one
concludes that all parameters a; (j =1,...,n) depend on the unknown parameter
ag, in fact:

(2.13) a; = aj(ag), ) =rP(t, ap).
Let us note that due to Egs. (2.3), (2.4) and the presented above definition
of the auxiliary curves I’g , one can prove that external boundaries of the plastic

domains for each material are the limit position of the curves F/{j ), Namely:

(2.14) 9 =Ty a,.., 0 =g gy, 5=0,1,.0m.

Finally, the other coordinate z,Ej )(t ap) of the corresponding curve I‘§ 2
can be calculated. To do this, it is suficient to keep in mind the straight line
hypothesis:

1

(2.15) 2t a0) =
rd (@) - D)

009, a0) - (1))

=27 (t) (P (¢, 00) = P )]

REMARK. Parameters t and o define a consistent parametrization of each
plastic domain £2; = 24;4;4,B,418; (1 = 0,...,n) such that Egs. (2.9) and (2.15),
together with (2.3), (2.4), (2.10) and (2.12), determine maps M;:

(2.16) M; :[0,1] x [Ry, Ro] — £2;.

Then the following additional condition should be true for all ¢ € (0,1), ap €
(Ry, Ro) to guarantee the existence of the inverse maps: M7 1 1 £2; = [0,1] x
[RO7 RO]

9 4 9
=;Ts Py ) ()

(2.17) ot ot £0 o 02y ' 8049 0z ‘ Bt' .
0 6 9 dao  grP) "0t gyp0)

dog © Oay
Let ¢() be the angle between the axis OZ and the trajectory of each particle
of the metal defined by relation (2.2), but (15 is the angle between the normal to
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the curve F("" ) and the OZ-axis. Let us note that parameter ¢ is constant along
the traJectory of any particle, but the next parameter oy is constant along the

curves I’(Z ) Hence, the introduced angles ¢{) = ¢(t) and ¢ = ¢n(t,ap) are
defined from the relations:

or? oy P t) - 1)

(218) tg qS(J) = . — = — - , t€10,1],
Oag 3z£3) z,(,])(t) _ Zé])(t) [0,1]

y 0 o —
(2.19) tg gl = - POk t€[0,1], ao € [Ry, Ro).

Using these angles, condition (2.17) can be rewritten in an equivalent form:

(220)  tgol) # —ctge® o g9 — ¢ £ /2, te€(0,1), o€ (Ro,Ro)

Following the paper [20], values of velocities in each component can be found
due to incompressibility of the materials:

cos ¢(j) (t ao)

It o
(2.21) VIt o) = Aj(c)Vo; S oond9 (1) — D (1 00)]

€ [0, 1], oy € [EO,ROL

but directions of the velocities V) are determined by the mentioned angle ¢\
in the corresponding point.
Then the axial and radial components of the velocities are

(2.22) V) =~y sin o), V) = —V ) cos ¢,

where the direction of the velocity vectors has been taken into account.

Now we show that the condition (2.17) and, consequently, the condition (2.20)
is satisfied in the case under consideration.

To this end, let us write coordinate 2 )(t ap) (see Eq. (2.15)) as a function
of variables ¢ and r, (the last one is, in turn a function of ¢ and «p), so that

z,(‘*)(t r(])) = zij)(t,r,gj)(t, o)) = Y )(t ap).
Then condition (2.17) is rewritten in the following form:

027 oy :ﬁaz(”_ o ozt
Jdag 87-9) ot 8,,-9') a,r.gJ)
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From Eq. (2.15) it follows that the left-hand side of the last inequality is identical
with the second term of the right-hand side. Hence, condition (2.20) is in our
case is equivalent to the following one:

029 ot 92 =
(223) ﬁ— : gzj-)' #0 = _3t_ #0, te (0, 1), o € (ﬁo,Ro),

here the relations (2.3) and (2.4) have been taken into account.
After some calculations, the last inequality can be rewritten in the form:

(9 =) {9 + g1} + (r9 - #P) Py
+ tg ¢(j)[zl()j)l,} £ 0.

Finally, it remains to note that the terms in parentheses are always non - negative,
s0 we can obtain the following restriction for functions fi and g; determining
boundaries I'; 4;,, and I'p,p;,, of the corresponding domain (see Egs. (2.3) and
(2.4)):

(2.24)  Vte (0,1]: (1+tg¢(f)[z,gf)]’/[rgj)]')-(1+tg¢<f>[z,§j)]'/[r,§”]')>0.

Let us note that condition (2.24) is essentially simpler than condition (2.17),
however these two conditions are equivalent. For example, if [z,(z] )]' > 0 and
[zlgj )]' > 0 then condition (2.24) is satisfied.

Let us now present the formulae for all velocity discontinuities. Thus, along
the bimaterial interfaces we obtain:

(225)  AVip, ; (a0) = [V(0,00) - VU (1, a0)]

_ 1 ( VojAj (o) 3 Vo—1)Aj-1(a0) )
c0sdj \1+ tgg; tgdy (0,c0) 1+ teg; tegds V(1L ap))

¢i =690 =Y V), j=1,.,n

but along the dead zone boundary A,+1Bp+1 the following relation holds true:

B Vo(n+1)An(a0)
(a0) = ) .
CcoS ¢n[1 + tg¢n tg‘ﬁN (1a Ck())]

Now let us calculate the velocity discontinuities at the entry of the plastic
zone (n = 0,...,n):

(2.26) AV r,

n+1Bnt1
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;208 89)(t) cos 6% (¢, Bo)
Y cos[p)(t) — 69 (¢, Fo)]

(227)  AVyp, . =-

in @ (¢
2.28 AV, -V sin ¢/ (t) cos ¢N
o N

N /-\
D:JI

(=]
S

‘ sin p()(t)
Y cos [40(1) - 6P (6, )]

At the exit boundary of the plastic zone, the respective equations hold:

5 cos ¢9)(¢) cos ¢ (¢, B) _

2.29 AVZ BB j
(2.29) IT's;5,,, " cos[gU) (t) - 69 (¢, Ry)]

v, sin ¢\ (¢ ( ) s1n¢ ) (t,ﬂo)
? cos[gl) — ¢ (t, Ro))’

_ . sin 9 (¢) cos ¢N (¢, RO)
B0 A =V 00 s B B
- sin ¢\ (¢)
" cos [40)(t) - 9 (¢, Bo)]

In Egs. (2.29) and (2.30), the obvious relation is used:

(2.31) Vi = AVa,.

3. MODEL 2. SMOOTH FLOW LINES

In this section, the other equation describing the flow lines in plastic zone is
considered (see Fig. 9).

Namely, the following equation for the flow line, proposed first in the paper
[18] for bimaterial extrusion, is applied instead of (2.2):
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(”) ri— )

z(gj ) [2 ]
arccos

- Z

6
o —_— 7" : .
(3.1) zj =2 - 0 _ 0 ’ } o Ti€ [TISJ)*’”‘?)] ’

a b

where (r;, 2;) are as usual the successive positions of the points in plastic domain.

r A

-

el

A

F1G. 9. Multimetal extrusion with smooth flow lines.

Equations (2.1) - (2.14) remain to be true for this velocity field without any
changes. Equation (2.15) describing the second coordinate of the auxiliary curves

ry ), follows immediately from Eq. (3.1) in the form:
)‘J

: _ @ 4y _ )
(3.2) z,(,J)(t, ag) = 200(¢t) — M arccos

29 (t, a0) = P (1) - (1)
@) - rP (1)

te€l0,1], ape€ [EO,R()].

Let ¢U) and ¢$€;) be the angles determined above. Then Eq. (2.19) still holds
true, but the angle ¢U) = ¢U)(¢, o) is defined by the other equation than (2.18):

/(1) - 191, 00) (1P (t, a0) — P (1))
z((l]') (t) — zlgj)(t)

(3.3)  tgoV) =

)

tel0,1], ap€ [_f'_i(),_Ro].
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From this equation it is easily seen that
34 ¢V, =00 R) =0, ¢V, =60t Ro) =0,
i=0,..,n

Equations (2.21), (2.22), (2.25) — (2.31) still hold true if in the corresponding
formulae, the angles ¢{/)(t) are replaced by ¢\ (t,ap), and, consequently, the
angle ¢; by ¢;(a0) = $9)(0,a0) = $U~1(1, ap).

The additional condition should be considered in the general form (2.17) or,
what is equivalent, in form (2.20). Moreover, repeating the same line of reasoning
as above, we arrive at condition (2.20), where function 24 ) is defined by Eq.
(3.2) if function r )(t, ap) is considered to be constant. Then the corresponding
condition is rewritten in the form:

@ _ .4
; 1 ; i 2ry —rg’ — 1
29 -~ () - 127T) a'rccosl ROBNE) b ]

- T
(35) G _ ) () b
J J J
(@Y ) B =3 | T T
(&7 - 00) G\ oo 70 el
a b a

Ty € [réj),r‘(lj)].

To simplify the last condition, it is sufficient to investigate the derivative of the
left-hand side of the inequality with respect to variable r, only. It is equal to the
following expression

(36) - (I - [z"’]')—mi_r—)(zgﬂ—zé"’) (97 - 197),

with the accuracy up to a positive multiplier. Hence, the left-hand side of (3.5)
can have only one extremal point in the interval [r,()] ),r,(f )]. Then the general
condition (3.5) for functions f; and g; (see (2.4) and (2.6) is easily verified nu-
merically.

Some simple necessary (not sufficient!) conditions can be also obtained. To
do this, the values of the left-hand side of inequality (3.5) should be calculated
at three characteristic points: 7, = T,EJ ), Ty = (r((lj ) + rgj ))/ 2 and r, = ry ), which
have to be of the same sign for all ¢ € (0,1):

) >0 (<0), (P97 -17) >0 (<o),

(3.7) . . , )
(129 + 1297) - 2 (#9) ~ (7)) o >0 (<O
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Some of these conditions can be sufficient conditions, too. For example, if the
following inequality

vee D (B0 - 1) (P9 - 1Y) <o,

is satisfied in the expression (3.6), then the derivative has no zero point in the in-

terval r, € [r,gj ), r) ] and the left-hand side of condition (3.5) is strictly monotonic

(see (2.5) and (2.6). Then only one of the conditions (3.7) should be considered
and this condition in the corresponding end points of interval r, € [7' ST Sf )] is
equivalent to the general condition (2.20).

In conclusion let us note that in the case of curvilinear flow line, there are no
velocity discontinuities along boundaries Iy jAj+ and I'p; . .41+ Lhis fact can be
easily checked by substituting relations (3.4) into Egs. (2 27) (2.30).

4. DISCUSSIONS AND CONCLUSIONS

Using the models of velocity fields presented above it is possible to calculate
the strain-rate tensor and then, by the Saint-Venant — Levy - Mises hypotheses,
to find deviatoric part of the stress tensor. The numerical algorithm necessary
to evaluate components of the strain-rate tensor at an arbitrary point in each
material can be taken from the paper [18].

On the other hand, application of the proposed model to the upper bound
method makes it possible to define an optimal design of multi-metal extrusion.
Let us note that, in fact, only geometrical parameters determined for the initial
or final stage of the process can be chosen in an arbitrary way.

In the first case, the geometrical parameters: R;, R, 11, and velocities Vj,
( =0,...,n) are assumed to be known as well as all mechanical parameters: Y
- yield stress of each material, and m; - friction parameter determining fI‘lCthn
between materials j — 1 and j. Then the corresponding problem is to define all
the expected geometrical parameters at the exit of the plastic zone: R; (j =
0,...,n) under restrictions (2.2), (2.20) and some additional restrlctlons which
deal with internal parameters of the process (strain hardening, fracture). In fact,
the extrusion problem for n+1 materials (a core and 7 sleeves) is an optimization
problem with at least N > 3n + 4 optimization parameters. Thus, if the simplest
case is considered (straight lines I'y. ;A4 and I'p, . B;4, and there is no internal
mechanical parameter), then N = 3n + 4. Let us note that in this case all
functions f;(t) and g;(¢) are monotonic and satisfy conditions (2.4) - (2.7). In
such the case, as optimization parameters we have: aj (j = 0,...,m+1); b;
(3 =0,..,n, byy1 = 0); R; ( = 0,...,n). What is important to note is that
velocities Vy; (5 = 0,..,n) are not the optimization parameters, because they
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are easily calculated from relations (2.31) once the parameters mentioned above
have been defined. However,in the author’s opinion, such minimal optimization
(N = 3n + 4) cannot be considered as an appropriate one. This is because,
from the experimental results one can see that lines Ia;4;,, and I'g;p;,, are
not straight lines, in general. The other reason is that derivatives of functions
fi(t) and g;(t) are always constant in this case. As a simple inconsistency of
this approach we can note that the curve I'y, 4,,, can not be tangent to the tool
boundary An41C as well as the curve I'g, g, ., can not be perpendicular to tool
boundary CBp4; at all. However, exactly such a geometry is often observed in
experiments [15, 16, 19].

The other problem for multi-material extrusion which can be considered is the
inversed problem when all entry parameters of the problem should be calculated
in order to obtain some necessary final product.

Finally, let us note that the condition (2.20) should be checked only at the
first step of the optimization procedure. In fact, if values of the optimization
parameters are near the point where condition (2.20) is not satisfied, the corre-
sponding velocities and, consequently, strain rate tensor components take large
values due to condition (2.20) and Eq. (2.21). As a result, the next step point
will be far away from the dangerous point.

Both the models presented here are based on assumptions taking into account
real character of the plastic flow of various metals under extrusion. Differentiation
of the flow of these materials are confirmed under presented test conditions (see
Figs. 2 - 7). Considering advantages and disadvantages of the presented models,
it may be stated that the Model I is simpler than the Model II, but in the first
model the displacement discontinuity appears at the entry and the exit of the
plastic zone. Nevertheless, both of them may be used to determine the multi-
material flow under such mode of plastic deformation.
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