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ROCKING-SLIDING OF A RIGID BLOCK:
FRICTION INFLUENCE ON FREE MOTION

U. ANDREAUS and P. CASINI (ROMA)

Many technical problems involve contact and impact between bodies. The contact problem
is locally characterized by normal and shear forces; this contact may represent different types
of phenomena such as rolling, sliding, impact and shock, unilateral contact, etc. The aim of
this paper is to study the “contact-impact” problem of a rigid block colliding on a frictional
base, by means of a numerical simulation, and to compare numerical results with analytical
responses known from the literature. Frictional contact is taken into account by means of shear
forces concentrated at a discrete number of points. Attention has been paid to two-dimensional
free motion of the block with three degrees of freedom. Wide ranges of block slenderness and
friction angle have been investigated and numerical results have been synthesized by means of
the energy reduction ratio, which accounts for contact phenomena occurring during impact.

1. INTRODUCTION

Generally speaking, for a system of bodies the fundamental equations of im-
pulsive motion can be written as [1]:

m;Avic = fia + fiv,
(1.1)
I;Aw; = m{ + m;,

where m; is the mass of the single i-th body, I; is the inertia tensor with re-
spect to the body centroid; Av;g, Aw; are centroid and angular velocity rates,
respectively, for the single body after and before the impact

R
Avic = Vig = Ve

— wt

(12) _
o,

f; and m; are the resultant force and moment of the impulses applied to the
single body; the supercripts @ and v denote active and reactive impulses, respec-
tively. During impact active impulses are negligible with respect to reactive ones;
therefore in Eqs. (1.1) we have f* = 0, m¢ = 0. Equations (1.2) do not generally
suffice to solve the impact problem, that is to determine the velocity field after
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impact, because the number of unknowns (reactive impulses and body velocities
after impact) is greater than the number of equations and the problem is inde-
terminate; in fact, for a single body we have four vectorial unknowns £, m?,
Av,q, Aw;, with respect to two vectorial equations. Instantaneous constraints at
impact must be characterized from both the geometrical and mechanical point
of views. Such a characterization may be (i) direct if a model is given for the
contact forces during impact (deformable joint), or (ii) indirect if additional as-
sumptions are provided about the velocity field after impact. In the latter case,
degrees of freedom of the system can be limited [2], or coefficients of restitution
can be quantified [3].

Thus, block-work modelization method can be classified as (i) rigid joint
and (ii) deformable joint models. In the former case, a model of contact forces
should be formulated at the instantaneous constraint; in the latter case, the
rigid constraint assumption prevents to study the motion during impact. An
alternative method is based on a variational approach which allows to determine
the velocity field after impact by minimizing a suitable functional [4, 5, 6]. The
problem of unilateral contact and dry friction in finite freedom dynamics is dealt
with in a very general way by MOREAU {7].

2. HISTORICAL BACKGROUND
2.1. General remarks

A review on the previous research about free motion of a rigid block is given
in the following; a general survey on the subject can be found in ISHIYAMA [8].
Referring to Fig. 1, let us assume that:

W = uBHyg, OG =R=Vb+h?, b= Rsina, a = arctan(b/h),

where W is the deadweight of the block, having unitary depth, p is its density
mass and g is the gravitational acceleration.

2.2. Rigid contact models

Subsequent to the pioneering works of Milne and Perry, both which have ap-
peared in 1881, the behaviour of rigid bodies during earthquake has intrigued a
number of researchers for over a hundred years. These interests have been mainly
motivated by the possibility of estimating the peak acceleration of earthquake
excitation at sites for which no seismographic records are available. Typical ex-
amples are the contributions of researchers to the estimation of seismic intensities
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FiG. 1. Geometric characteristics and initial conditions of a rigid block.

by observing the overturning of structures attached to rigid blocks, like tomb-
stones, columns, statues, elevated tanks.

The most common procedure used to estimate the seismic intensity at the site
is to assume that the peak acceleration a was larger than the breadth/height
ratio of an overturned body multiplied by the gravitational acceleration g, as
represented by West’s formula, firstly quoted by MILNE [9] and then reintroduced
by Ismryama [3, 8]:

b
(2.1) a>g-.
h

But this criterion, Eq. (2.1), shows only the condition which initiates rocking
motion and does not indicate a condition sufficient to overturn a body.

MILNE [9] is the first researcher to deal with the following problem: suppose
that the column is tipped to an angle 6y and then allowed to fall towards the
vertical. From the conservation principle of energy he proposed an estimation of
the time of falling from angle 6y to 8 = 0:

/ 4643
. t, — 0
(2.2) gH )

where i is the radius of gyration about the point O of Fig. 1 (dot-dashed curves
in Figs. 11, 12 and 13).
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PERRY [10] analyzed the rocking motion of a block under the following as-
sumptions:

e the block is rigid, has a prismatic form and a planar contact surface;

e the block alternatively rotates about the contact vertices;

o friction is sufficiently high to prevent sliding;

¢ complete separation is not allowed.

Thus, the equation of motion of a rocking block, whose trim is given by the
angle 8, Fig.1, is in the form of:

(2.3) 6 = -9 Zsin(a—0),

m'ZO

where m is the mass of the block, I is the moment of inertia about point O in
Fig. 1. For a slender block Eq. (2.3) becomes

(2.4) §=——2(a—0).

The solution of this differential equation is

(2.5) 6 = a + C1Exp?! + CoExp™?,

/mR
b= _Ig—v
0

C; and C; are the arbitrary constants determined by the initial conditions; when
9 = 6, 6 = 0, from Eq. (2.5) Perry derived the following equation giving the
time ¢’ during which 6 changes from 6y to 0. When pt! is small, from Eq. (2.5)
we have (dotted curves in Figs. 11, 12 and 13)

where

2x

1
1L
(26) t—p a— 6y

-2.

An exact solution of Eq. (2.4) is written in the form of

/_1 a @ 2_
0 e [(—:—9—)# (@) 1]-

Equation (2.7) is the same as Eq. (2.14) derived by Housner (dashed curves in
Figs.11, 12 and 13).

KIMURA and IIDA [11] analyzed the free motion of a rigid block on a rigid
floor under the same assumptions as Perry. They integrated Eq.(2.3) already
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introduced by Perry and obtained the time ¢’ during which 6 changes from 6, to
zero (solid curves in Figs. 11, 12, 13):

de

0
p 1
(28) b= p\/ﬁe/ v/cos(a — ) — cos(a — )

Equation (2.8) does hold also for stocky blocks. With reference to the ratio e
between the values of angular velocity after and before the impact, they find, in
case of rectangular block, that
o= 3Cos2a +1
4 .
HOUSNER [2], under the same assumptions as Perry, analysed the free rocking
motion of a rigid block, Fig. 1.
As to free vibrations, the equation of motion is (as Eq. (2.3) derived by Perry)

(2.10) Ipf = —W Rsin(a — 6);

this equation represents the dynamic equilibrium in the time range between two
consecutive impacts, where the first term is due to inertia force and the second
one is the restoring gravitational moment.

For tall, slender columns (o < 20° following Housner), this equation becomes,
as Eq. (2.4) derived by Perry,

(2.11) 6 — p%0 = —p2a,

where

(2.9)

WR

b= —IE_'

For the initial conditions

(2.12) 0(to) =6y, f(to) = 0.
The solution of the above equation is
(2.13) 6 = a — (a — fp)cosh pt.

A quarter of period, t' = T/4, is the time during which # changes from 6y to
Zero:

1
1%
«
Equation (2.14) (dashed line in Figs. 11, 12 and 13), the same as Eq. (2.7) derived
by PERRY {10], can be compared with Eq. (2.2) by Milne, Egs. (2.6) and (2.7) by
Perry, and with Eq. (2.8) by Kimura and Iida (Figs. 11, 12 and 13).

1
= —arccosh

(2.14) t =

el
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The above period has been derived under the assumption of no energy loss,
but actually the energy dissipates at each impact between the base of the body
to the floor. If we assume the conservation of momentum about O, Fig. 1, we
have the ratio e of the values of angular velocity after and before the impact
(coefficient of restitution of angular velocities), as Eq. (2.9) derived by KIMURA
and IIDA [11]:

h2
- 2(5)
(2.15) e=-—=—"7 .

This coefficient depends only upon the block slenderness and tends to unity
(perfectly elastic impact) as the slenderness H/B increases.

The results given by Housner for the free motion of a rigid block can be
synthesized by the following observations.

The motion of the block can be described as a repetition of the following
cycle, which exhibits four steps:

(i) The block from initial conditions 6 = @ = 0, achieves, rotating about the

vertex O, the rest position # = 0 with angular velocity 91 at time ;.
(11) The block initiates rotating about the vertex O, with angular velocity

02 < 91, arriving at 6y < 6y at time ¢, with (t3 —t1) < ¢;.

(iii) The block rotates about vertex O', with initial angular velocity equal to
zero and initial rotation equal to 6,, going to rest with angular velocity 03 at
time t3, with (t3 — t3) < (tz — t1).

(iv) The block rotates once more about point O, with initial angular velocity
94 < é3, arriving at 0 < 0y at time ¢4, with (¢4 — t3) < (t3 — t2).

On the basis of the previous observations, it can be inferred that the block
motion is damped with a decreasing period T'. In more detail, T is the duration
of the cycle constituted by the above mentioned four steps; T’ can be interpreted
as a pseudo-period, because it decreases from cycle to cycle. Thus the quantity
t', which is the time used by the block to perform step (i) of a single cycle,
can be determined as a quarter of the pseudo-period T', and hence defined the
“quarter-period”.

Furthermore, Housner gives, at the n-th impact, the amplitude and the half-
period T'/2:

(2.16) bn = a{l—\JEszn[ (1—6;—0) l }
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2
(2.17) Tn _ 2Tanh”1 \l Exp*® [1 - (1 — -0-9) ]

2 n o

GIANNINI [12] assumes that one of the two contact points during impact is
located at distance nb from the edge (0 < n < 1); therefore the energy reduction
ratio is

2
4 (%) —243n
(2.18) r= 2
4 (—) +4—-3n
b
which for 7 = 0 coincides with the value given by Housner, whereas for n — 1 it
tends to 1 (perfectly elastic impact).

The work by IsHIYAMA [3] slightly differs from Housner’s approach. He con-
siders possible motion modes of a rigid block, namely rest, slide, rotation, slide
rotation, translation jump, rotation jump. The Author writes down for each mo-
tion mode the dynamic equations including friction as well as the continuity
conditions between them. As far as the impact is concerned, he defines the co-
efficient of restitution in terms of velocities tangential to the contact surface, in
addition to the coefficient of restitution in terms of angular velocities.

L1rSCOMBE [13] extended Housner’s model taking into account for the block
the possibility of bouncing on the base after impact. Let us consider the case
of a rectangular block which, prior to impact, is rotating about edge O, as in
Fig.1. At the instant that edge O’ impacts on the foundation, the block lifts off
the foundation at edge O; but, if bouncing occurs, then edge O’ also lifts off.
Note that while the block is airborne, it is subjected to gravity acceleration only,
therefore its angular velocity remains constant between two impacts. The same
phenomenon has been exhibited in a number of numerical simulations, Fig. 14.
In more detail, Lipscombe takes into account the possibility of bouncing on the
base after impact, by means of a coefficient of restitution € in terms of velocities
orthogonal to the contact surface. He assumes no sliding between the block and
the base. The author gives the following relation e and e:

' 2 _p2 2
(2.19) LA el ik
o 2(h2 + b%)
This model shows that if the slenderness is small enough, bouncing has a negli-
gible influence on the motion.

IYENGAR and ROY [14] investigate the planar rocking of a prismatic rectan-
gular rigid block and consider the full nonlinear system without the assumption
of slenderness and consequent piecewise linear property, under the action of base
acceleration.

2

?
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2.3. Deformable contact models

The basic joint model proposed by CUNDALL [15] captures several of the
features which are representative of the physical response of joints. In the normal
direction, the stress-displacements relation is assumed to be linear; there is also
a limiting tensile strength for the joint. In shear, the response is controlled by a
constant shear stiffness; the shear stress is limited by a combination of cohesive
and frictional strength.

PSYCHARIS and JENNINGS [16] proposed a deformable joint model consisting
of an infinite number of independent linearly elastic springs; it is assumed that
springs take no tension; they studied either free and forced motion of a rigid block
on this foundation. No sliding is allowed between the block and the base; therefore
the block exhibits two degrees of freedom: lift-off and rocking; unfortunately,
this assumption may not be valid for stocky blocks. The Authors consider an
equivalent model consisting of two springs at the vertices of the block.

ANGOTTI and TONI [17] study the dynamic behaviour of a rigid block with
three degrees of freedom supported by a no-tension spring foundation. The single
independent spring exhibits a multi-linear behaviour in compression; two-linear
springs simulate lateral resistance of soil.

ANGOTTI, CHIOSTRINI and TONI [18] refined the above mentioned model by
considering viscous damping; they analysed the behaviour of a two-block system,
where the joint between blocks is rigid and a no-tension foundation simulates
soil-structure interaction. The upper block can exhibit only rocking motion and
complete separation is accounted for as an ultimate state.

A distinct element model was proposed by one of the Authors, which was
based on piece-wise linear coupled normal and shear forces at a discrete num-
ber of contact points [19] for cyclic analysis of rigid block-work structures; fur-
thermore, a dynamic analysis of deformable blocks was performed [20] where
joint behaviour was simulated by means of the above mentioned model. Finally
seismic analysis of rigid block on hysteretic foundation was worked out by AN-
DREAUS [21].

ANDREAUS and NISTICO [22] proposed an analytical-numerical model of a
distinct element which is suitable to analyse contact-impact problems between
interacting rigid bodies, Fig. 2. Deformability is limited at joint surfaces and is
taken into account by means of contact forces concentrated at a discrete num-
ber of physical contacts. Refined analytical stress-strain relations in normal and
tangential directions with respect to the contact surfaces are formulated which
allow to account for (i) uplifting and hysteretic damping in normal direction, (ii)
coupling between shear strength and compression force, friction dissipation and
cumulating damage in tangential direction.
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FiG. 2. Hysteretic model of contact forces between blocks [22].
In more detail the contact behaviour in normal direction is defined as follows:

d—d
n = N+ (ng— N)e #D2,

(2.20)

n=20 (d>0),
where n and ng are the contact forces at the current and previous time step,
respectively, 3 is a model parameter used for describing the rate at which the
contact force within a hysteresis loop approaches the corresponding (lower or
upper) envelope curve which has the following form:

D

d b

where d is the contact closure, N is the compressive force, A the initial stiffness,
D the limit overlap. There is also a limiting compressive strength, N, for the
contact if the compressive strength is exceeded, then local failure occurs and
contact is lost. Lower and upper envelope curves are characterized by different
values, A; and A,, of parameter A.
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The shear strength at the single contact due to macro-asperities along the
interfaces is defined as a multi-state variable law
Tznup_eemﬂmwyi,
(2.22) 3]
# = Tan (1 + p2).
where T' = contact shear force, s = relative tangential displacement, i.e. current
slip, sg = slip at the last reversal point, § = relative tangential speed (slip rate),
1 = current value of incremental angle due to macro-asperities, ¢y = current
value of residual angle due to micro-asperities, ¢; + 3 = peak value of friction
angle, § = nondimensional parameter governing the slope of the shear strength
curve.
Angle ¢; depends on normal force, normal force rate, cumulative relative

displacement sc and relative speed |$| as the following law:
(2.23) P1 = po exp —cCrCs,
with o = initial value of incremental angle ¢,
n<0, N<0, n>N, n<o0
n> n= hp = ¢y,

n ha
C’I’L: 3 . - n
-n n<n= h, =cp=,
n

=

t
sC=/wuﬂ 3> 0;
0

15| <5 = hy =c,,

Sc hs

Cs = (5—_‘*) : _ 13|
¢~ Sc |3] > 38 = hs =cs=

s

Sc is the yield value of cumulative slip, such that, if exceeded, shear damage
stops and only residual friction is exhibited by the joint; ni, 5 are yield values of
compression and absolute slip rates respectively such that, if exceeded, load-rate
effect is exhibited by the contact, simulating the influence of impact velocity on
shear response of the joint; ¢ is a nondimensional parameter governing the slope
of the current value of incremental angle due to macro-asperities; ¢, and c, are
nondimensional parameter tuning, respectively, the compression and slip rates.
Moreover, the current value of residual angle @, deteriorates according to the

following law (“aquaplane” effect):

(2.24) 02 =prexp—3l/3, §20,

?

¢ = initial value of residual angle s, § = suitable reference value of slip rate.
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Parameters g, ¢r, 3¢, N, §, § are to be identified on experimental basis. For
more details, concerning the experimental identification of the above mentioned
parameters, the reader may refer to the fundamental and extended works by
BARTON and CHOUBEY (23], BANDIS, LUMSDEN and BARTON [24], BARTON,
BANDIS and BAKHTAR {25]; and to BANDIS, LUMSDEN and BAKHTAR [26] as far
as the size effect is concerned.

2.4. Variational approach models

SiNnopoLI [4] studies the dynamics and the impact of a rigid block in order to
evaluate the influence of friction and to analyse the motion after impact either
for zero and infinite friction. The unique velocity field after impact has been
determined by means of a refined version of the Gauss minimum constriction
principle [27] due to Robin. For zero friction, the coefficient of restitution in
terms of angular velocities depends on slenderness according to

2 2

o+ H? - 2B? H
—_ e = | —m44—————— —_ 2
r=ns im0 B0V
(2.25) °
- 2 <Ve
r=0 B = V2

For infinite friction, the same results as those given by Housner are obtained

(2.26) _& _[am-p ) H, V2
' "Tie T |2BE+EY)| B 2

3. COMPARISON BETWEEN ANALYTICAL AND NUMERICAL RESULTS
3.1. General results

On the basis of the model proposed by ANDREAUS and NISTICO [22], several
sample applications have been worked out as far as free mot'ion of rigid blocks
in two dimensions is concerned; initial conditions 6 = 6y, 6 = 0 have been
assumed. No size effect has been revealed in all cases dealt with. Rectangular
blocks have been considered having different slenderness, breadth B = 0.12m,
height H = 0.24 = 1.20 m, thickness 0.06 m, and mass density 2700 Kg/m®.
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3.2. Finite friction influence on free motion

Influence of friction on the dynamic behaviour of block-work structures is
undoubtedly a very interesting subject, but in Authors’ opinion it is still an
open problem. Influence of friction on free response in terms of energy reduction
ratio r has been evaluated after the first impact.

Figure 3 presents the coefficient of restitution r versus the initial value of the
residual friction angle ., according to the model proposed by ANDREAUS and
NisTICO [22]; the slenderness range is A = H/B = 2.0 + 10.0 and the initial
condition is §p/a = 0.5. It is worth noting that the curves in Fig.3 exhibit
a minimum. Characteristic friction angle at which minimum occurs is denoted
by the symbol ¢,. If kinetic energy of the block before the first impact K~ is
presented versus friction angle ¢,, a minimum can be observed which increases
as slenderness decreases, Fig. 4. The friction angle at which minimum is attained
is called “critical” and denoted by the symbol ¢; the kinetic energy has been
normalized with respect to the energy at infinite friction.

1.00

Al=10
0.80
\1 ‘I' s 1l | _2.:_:_2:_9
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A /
040 4
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{
~
N \
>
I
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0.20 gt
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F1G. 3. Separation curves between different modes of motion in terms of friction.

For very high friction (¢, > ¢¥) the coefficient of restitution attains a yield
limit which coincides with that derived by KIMURA and IpA [11}, Eq. (2.9), as
well as with that derived by HOUSNER [2], Eq. (2.15). In Fig. 3 light and heavy
solid lines are minima and maxima loci, respectively. In more detail, light solid
line represents the locus of characteristic friction angles ¢, and heavy solid line
represents the locus of yield angles ¢¥ (rocking).
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Dependence of the kinetic energy before first impact on friction.

The motion of the block exhibited subsequent impacts till rest; the following
observations can be made in all cases dealt with, Fig. 5.

(i) For zero friction the block centroid exhibits no slide, according to the
conservation principle of momentum; therefore the vertex which has coincided
with the first contact point (point O, Fig.1) exhibits a slide equal to As

b[(1 — Cosfy) + ASinbql; for a very wide range of slenderness (from 0.5 to oo)

0, <0,
b 1) L} - i) 1
VoA AL
Y ] \ — t= o Y [} } t= o
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F1G. 5. Influence of friction on residual horizontal displacement.
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As is a very flat function of ), inasmuch as we have & = ArcTan A\~! and a fixed
ratio 6p/c has been taken as initial condition. The direction of slide As is such
to satisfy the above mentioned conservation principle.

(ii) For friction range 0 < p<} the vertex which has coincided with the first
contact point exhibits, during the first quarter period, a slide whose direction is
the same as the slide for zero friction at item (i); afterwards the vertex coinciding
with the second contact point (point O' in Fig. 1) exhibits a slide in the opposite
direction and of smaller magnitude with respect to that exhibited by point O;
therefore, the vertex O exhibits a slide in the same direction with respect to that
for zero friction at item (i) and of decreasing magnitude.

(iii) At critical friction angle ¢}, the vertex which has coincided with the first
contact point exhibits, during the first quarter period, a slide whose direction is
the same as the slide for zero friction at item (i); afterwards the vertex coinciding
with the second contact point (point O’ in Fig. 1) exhibits a slide in the opposite
direction with respect to that exhibited by point O and of equal magnitude;
therefore, the vertex O, at the end of motion, goes back to the initial position.

(iv) For friction range ¢} < ¢, < ¥, the vertex which has coincided with the
first contact point exhibits, during the first quarter period, a slide in the same
direction with respect to that one at item (i); afterwards the vertex coinciding
with the second contact point (point O’ in Fig. 1) exhibits a slide in the opposite
direction and of larger magnitude with respect to that exhibited by point O;
therefore, the vertex O, at the end of motion, exhibits a slide in the opposite
direction with respect to that for zero friction at item (i) and of magnitude which
attains a maximum and then tends to zero, Figs.6, 7.

(v) For friction range ¢¥ < ¢, < 0o, the vertices O and O’ exhibit negligible
slides and, in the case of slender blocks, assumptions made by PERRY [10] and
HOUSNER [2] are fulfilled.

For slender blocks (A > 5) slide of items (i) and (iv) is combined with rocking,
Fig. 8. It is worth noting that the critical friction angle ¢} depends on the ratio
6o/0; in more detail, ¢} corresponds to the first zero points of the curves in
Fig.7, and ¢} decreases as the ratio 6y/« increases, Fig. 7.

Moreover, when 6/ = 1, the yield value ¥ of the friction angle depends only
upon the block slenderness according to Tan (¢¥) = A~1; thus, slide is negligible
for Tan (¢;) > A~1. This is in agreement with the results of Omori [1881] quoted
by IsHIYAMA [8]: he compared the inertia force to overturn (incipient rocking)
the body given by West’s formula, Eq. (2.1), with the friction force and concluded
that the body will slide instead of overturn if A~! is greater than the friction
coefficient p = Tan (p,);

Furthermore, the coeflicient of restitution r has been reported versus slen-
derness A for a friction range ¢, = 0+ 14° and oo, Fig. 9. The two limit curves
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F1G. 6. Influence of friction on residual horizontal displacement: different slenderness
ratios at fg/a = 1/2.
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F1G. 7. Influence of friction on residual horizontal displacement: different 6o/ ratios
at A =5.0.

refer to zero friction [4], Eq. (2.25) (light solid line) and infinite friction (heavy
solid line), Eq. (2.9) [11] or Eq. (2.15) [2]. It is worth noting that for intermediate
friction angles we have curves located between the two limit curves; these curves
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F1G. 9. Separation curves between different modes of motion in terms of slenderness.

tend to the heavy solid line for increasing friction angle; the curves corresponding
to low values of friction angle intersect the light solid line; this is because the
coefficient of restitution attains a minimum at the characteristic friction angle
@r, and it is greater than zero. Moreover, the limit curves do not depend upon

the ratio 0y/c, according with Egs. (2.25) and (2.15).
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Fi1G. 10. Time-history of the rotation.

Referring to a block of slenderness A = 5.0 and with initial conditions 6 = o/2,

éo = 0, Fig. 10 reports the time-history of the rotation. The time-history has been
evaluated for the following values of the friction angle: ¢, = 0° (dashed line), 1°
(dot-dashed lines), 6° (dotted lines) 35° (solid lines); in this case it is found that
oy =23°, ¥ 211°.

3.3. Free motion at infinite friction

A comparison has been performed between the numerical solution of the exact
equation, Eq. (2.3), derived by KIMURA and IiDA {11}, and the analytical solu-
tions of the approximate equation, Eq.(2.4), derived by MILNE [9] and PERRY
[10]. Figures 11, 12 and 13 report the quarter period 7'/4 versus the ratio 6y/c
for different block slendernesses. Milne’s approximation underestimates the quar-
ter period for high (Fig. 11) and overestimates it for low (Fig. 13) slendernesses,
whereas Milne’s approximation is sufficiently accurate for slenderness A ~ 1 and
for 6y/a < 0.3, Fig.12. From high slendernesses up to A = 1, the numerical so-
lution of the exact equation, Eq. (2.3) and the analytical solution, Egs. (2.13) or
(2.7), of the approximate equation practically coincide. For slendernesses greater
than 1 and for low values of 6y/c, the analytical solution of the approximate
equation underestimates 7'/4. In Figs. 11, 12 and 13 the analytical solutions pre-
sented in the literature have been compared with the numerical results found
by the authors by means of the numerical procedure proposed in [22] (squared
dots).
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Numerical results
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F1G. 12. Influence of initial condition on quarter period: A = 1.

At the end, for some values of slenderness (A = 5, 3.6, 2.9, 2) and for friction
angles larger than the yield value ¥, the time-histories of rotations exactly
coincide with Housner’s solution, Egs. (2.16) and (2.17).

For low slendernesses (A < v/2/2), the phenomenon of bouncing has been
observed: the angular velocity exhibits rapidly damped oscillations during the
impact of a vertex on the basis, Fig. 14, as already observed by L1PSCOMBE [13].
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F1G. 14. Magnification of bouncing effect during impact in terms of spin.

The parameters of the model in Fig.2 have been identified by means of the
procedure outlined in [22]; for example, values used for the block of slenderness 5
are: N =1.x10M6KN, B, =8 =5, n=§=§=00,5¢c = 1m; D =2.x107% m,
Ay = 1. x 10+*KN/m, 4, = 3703. KN/m; § = 0.12 x 107, ¢p = 0.°, ¢ = 1,,
¢, =¢s = 5.
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4. CONCLUSIONS

Free motion of a rigid rectangular block on a frictional foundation has been
studied under initial conditions of a given rotation angle about a vertex and zero
angular velocity, by means of a numerical simulation.

Wide ranges of block slenderness and friction angle have been explored in
order to investigate the dynamic behaviour of the system under examination
before and after impact. In more detail, the so-called “pseudo-period” versus
motion amplitude, and the coefficient of restitution versus block slenderness and
versus friction angle have been considered. A very good agreement between the
numerical and theoretical results has been shown in the case where an analytical
solution is available, i.e. for zero and infinite friction.

As far as intermediate values of friction angle are concerned, numerical simu-
lation has allowed to reveal the dependence of the energy reduction upon block
slenderness and friction angle; moreover, the existence of a characteristic value
@y of the friction angle has been detected for each slenderness, which minimizes
the coefficient of restitution versus friction angle. Furthermore, the existence of
a critical value ¢} of the friction angle, for a given block slenderness, has been
detected, such that magnitude of residual slide (at rest) of the first contact point
1s zero. It is worth noting that kinetic energy of the block before impact attains
a minimum at the critical value ¢} of the friction angle.

Finally, for free motion sliding is negligible during rocking depending on the
relative amount of friction angle ¢, of the contact and slenderness A of the
block. Experimental analysis of the rocking rigid block with A = 2 and different
values of friction coefficient has been conducted in [28] under horizontal harmonic
excitation characterized by various frequencies and amplitudes. It was noted
that the rocking onset depends on friction, but that when rocking occurs, the
trajectory does not depend on the friction.
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