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ON CYLINDRICAL ELASTIC-PLASTIC SHELLS WITH MODERATELY
LARGE ROTATIONS

A. SEAWIANOWSKA (WARSZAWA)

An application of a moderate rotations theory (MRT) to cylindrical elastic-plastic shells
is presented. Geometrical and kinematical relations for cylindrical shells with arbitrary cross-
section are derived. Following the general procedure formulated in [4] we derive also equilibrium
equations for cylindrical shells. Some special cases of loading and cross-section shapes of shells
are discussed in more details. Orthotropic elastic-plastic constitutive relations are assumed and
expressed in terms of a cylindrical reference frame. In a forthcoming paper we are going to apply
these results as a basis for numerical solving of geometrically nonlinear problems for cylindrical
shells.

1. INTRODUCTION

The aim of this paper is a geometrically nonlinear analysis of elastic-plastic
cylindrical shells subject to quasi-static loads. Our approach is based on the
refined theory of shells with moderate rotations, presented in [4].

What concerns the constitutive relations, an orthotropic elastic-plastic ma-
terial with kinematical hardening is assumed. We attempt to get rid of any
infinitesimal assumptions as far as possible. Thus, the shells need not be thin.
Geometrical nonlinearity is also admitted, therefore, one uses the Lagrangian
description and finite deformation measure, i.e., the full Green tensor, involving
terms quadratic in the displacement vector gradient. Later on, some approxima-
tion is assumed, namely, one of small strains but moderate rotations of material
elements. This assumption cancels a part of the Green tensor, nevertheless there
are terms quadratic in derivatives which survive and give rise to kinematical non-
linearity. A dimensional reduction to two independent variables is performed, and
then, on the basis of an appropriate variational procedure, a general nonlinear
rate theory of shells is derived.

In the recent literature on geometrically nonlinear shells, new papers appear
which are more and more general and mathematically advanced, cf., e.g. [5,
8]. The approach to nonlinear shells presented in [8] contains two theoretical
schemes: degenerate solid theory (DS) and stress resultant based theory (SRB).
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Various constitutive models are considered, but, as yet, there is no numerical
realization of this approach. In a series of papers [5], belonging to the class of
SRB-theories, some numerical results are obtained, however, they concern only
elastic shells.

The moderate rotations theory (1986), that has included the first order shear
deformations, provides a natural, general and consistent treatment of the non-
linear shell problems. It is reasonable and convenient both from the analytical
and numerical point of view. This theory may also be classified as one of the
SRB-theories.

In the sequel, this general scheme is applied to cylindrical shells with arbi-
trary shape of the cross-section. An explicit form of moderate rotation equations
is derived; it is thought on as a basis for numerical treatment in a forthcoming
paper. We begin with deriving geometrical and kinematical relations for cylin-
drical shells with moderate rotations. In particular, the nonlinear Green strain
tensor is obtained in an appropriate approximation. Further, following the gen-
eral pattern outlined in [4], we derive the rate equilibrium equations for shells
in a quasi-static state of external loading. The special stress is laid on circular
cylindrical shells. In particular, presented is the geometrically nonlinear theory of
such shells working in the conditions of rotationally symmetric loading. Obtained
are the formulas for the finite Green tensor and the rate equilibrium equations
for elastic-plastic shells. In the special case of thin shells, there is a good corre-
spondence with the results obtained in [2]. Such a comparison of two different
geometrically nonlinear theories of shells is reasonable and instructive, since, as
it was shown in [6], the theory of shells with moderately large deflections [2] is
equivalent to the theory of shells with moderately large rotations (used in the
case when the shell thickness is small, as [2] concerns such shells only).

What concerns the constitutive assumptions for the anisotropic elastic-plastic
material of the shell, we follow [4]. It was necessary to express the corresponding
tensor equations in terms of cylindrical coordinates.

This work will be continued on in a numerical way. Equations derived here
provide the necessary, theoretical basis for that practical step.

2. GEOMETRICAL PRELIMINARIES

Let R(O%,©3%) denote the position vector of a point (0%,63%), a =1,2,in a
shell body, and let n denote the unit vector normal to the undeformed midsurface
M of the shell. Then,

(21) R(6%6% =r(0%) + &%*n = [X(6% 63, Y(0%,6%), Z2(6*6%),

where r(©%) is the position vector of a point on the midsurface M, Fig. 1.
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The parametric description of M is assumed in the form suitable to its cylin-
drical shape:

z = O,
(2.2) y = y(6%),
z = 2(6?%).
A point (81, 62) of a cylindrical midsurface is represented by the vector
(2.3) r =r(6',6?% = (z,y,2).
Vectors tangent to the midsurface are
(2.4) aa=5%r;, a=1,2,

i.e. for the particular coordinate lines we have

_or [0z Oy 0z]_
2= Bet = [391’ 267’ 661] =11,0,0},
_Or [O0xr 8y 0z]_ P
az = 862 - [6627 6921 862] - [07 Y, Z],
where
(25) (y =2

de?’
Now we can determine a vector which is normal to a; and aj:
(2.6) a; xag =e; x (yez + Z'e3)
) ) ’ ! ' (2
= yle; x ey +2'e; x e3 =y'ez —Zea = [0, =2, ],

where e;, e, e are basis versors along the coordinate axes x, y and z.
The length of the vector (2.6) is

(2.7) llar x ag|l = /(¥')* + ()%
So, n — the versor normal to M can be determined as
a; X az 2 y
2.8 n= = , .
2% Tasxas| [ Y CEaCk ﬂwtqu

REMARK. If n is to be an external normal, we should take it with the minus
sign. Coming back to (2.1) we obtain

(2.9) R(6',6?%6% =r(6',6% +6%n

2[91 2193 193 }
RV T M A CE
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Now, we are ready to calculate the first quadratic form of the cylindrical mid-
surface of the shell (of any shape of the cross-section)

(2.10) Qo3 = a4 - ag,

aj; =ap-a; =1, ag = az-ax = (v)? + (2')?, a1z = ag; = 0.

In a matrix form we can write down [a,g] and [a®”] as:

1 0
(2.11) [90s] = [0 (y’)2+(z')2J’
1 0
(212) ] = [o [(y')2+(z'>2]“1]’

and the determinant a is expressed by
(2.13) a = det[asg] = (v)? + ()%
Next, the second fundamental form of the midsurface, b, can be derived

&%r

soepe8 ™

(2.14) bop = 8q 5 N = Cop D=
It is easy to see that

a;1 = [Oa 07 O]a a2 = [07 07 O]a

2.15
(215) a1 = [0, 0, 0], az2 = [0, y", 2"].

So, it yields

b1 =0, b2 =0, by =0,

y// P yl 2

b22=32,2'n=‘—(y,)—+’(—zT-

So we have obtained the second quadratic form of the midsurface

"o d 0 0]
216) fbog) = L2V [

WP2+EZ [0 1]

Making use of the metric tensor we can also determine

(2.17) [6°6] = [a*bag) =

yllzl _ y/z// 0 0
((¥")?+ ()22 |0 1]'



ON CYLINDRICAL ELASTIC-PLASTIC SHELLS 169

Similarly, we get

"yl _ 2" 0 0
(2.18) L B (7 e [0 IJ'

As an example, let us write down all the above forms for circular cylindrical
shells

0
(2.19) [aap] = [; (rw2]’ 0] = [3 (r£‘2]’
(2.20) [bas] ='-[; (20]’ Uﬂﬁ]z'_[g (r£*3]’

0 0
[6%] = — By
0 (ro)
where rg is the radius of the circular cross-section of the midsurface M.
The parametric description of the midsurface is very simple in this case:

(2.21) y=rocos@? o = —rpsin@® =—z, y"'=—rgcosO® = —y,

(2.22) z=r19sin@% 2 =rycos@* =y, 2" = —rpsin@? = —2,

and it follows that
(2.23) W)+ (22 =(r0)?,  y'd —y'2" = —(ro)%.

Let us consider the first and the second quadratic forms of the shell midsurface
for the cross-section of an elliptic shape, described by a parametrization

(2.24) y = acos ©?, z = bsin©?,
where a, b ~ semi-axes of the ellipse; then we get
(2.25) ()2 + (2)? = (a® — b?) sin? ©? + b2, y'7 — 2" = —ab.

So, the first and the second forms of the midsurface for the elliptic cylindrical
shell are

(2.26) [aaﬁ]=[1 O], [aaﬁ]-:[l 0 ]

0 ag 0 (a)™?
where

(2.27) azs = a’sin? ©2 + b? cos? 62,
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and
_ ab 00 ofl ___i_l_. 00
(2.28) [baﬂ]_ @[0 1]’ [b ]_ \/555(0-22)2 [0 1]’
ag__ab 1 [00
(2.29) [6%5] = Va2 (az) [0 1]'

Our geometrically nonlinear analysis of the shells requires the application of
the Christoffel symbols

1
(2.30) By = 50 (@epy + 66,0 — py.5),

As ags does not depend on 6', ajg = const, we obtain I'}; = 0, and similarly
we arrive at the results: I'3 =0, ', =0, I'Z, = 0.
Then the only non-zero component is I'%:

1 W2 +2% 1 2, 2y
2 _ 1 2 _ - , !
(2.31) Iy = 50 G222 = 2T+ 77 2 (ln(y +z )) .

When the coordinate 62 is proportional to s — the length of arc measured along
the midsurface cross-section, then also I'3, = 0, because ' + 2'* = 1.

3. THE GREEN STRAIN TENSOR FOR CYLINDRICAL SHELLS

The displacement vector V(62,83), ([1, 2], [4, 7]), of a point of the shell can
be represented as follows:

(3.1) V = Vog, + Vigs = Vog® + Vag?,
(3.2) V = v®a, + viag = vea® + vsa®,
where

(33) g=R;, i=123; a,=r,, a=12 n=g'=gj=a’=as,

and where (-) ;. denotes partial differentiation with respect to e*.
As usual, we have

(3.4) ga = plray, s — components of a shifter tensor,
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where [u3] for cylindrical shells of an arbitrary cross-section, can be written in
the form

1, 0 0, 0] [1 0
35 3l = ’ - 63H ! = ?
(33) L3} [0, 1] [0, 1] [0, 1—H63]’
with
(36) b — Y7 —y' 2"

=

The finite deformation tensor is given by the familiar formula [1, 2, 4, 7]
1

(3.7) Eij =5 (Vi;j + Vi + Vi Vk:j) .

where (-); denotes the covariant differentiation with respect to the metric of the
undeformed shell space.

Assumptions of the shell theory with small strains and moderate rotations are:
E; =0(0)7), OF<1
(38) ap = O ((9)?), a3 =0),
mij =0 ((’9)2) ,
where the linearized strains 7;; and the linearized rotations {2;; are given by
(3.9) mi= s Wi+ Vi O = 5V = Vi

The paremeter ¥ defines the order of magnitude of the rotations (in radians)
of the normals to the midsurface. Roughly speaking, (#)? is an infinitesimal
quantity but ¥ is not.

From (3.7) and (3.9), [1, 4], one obtain:

1 1
(3.10)  Eap =1op + Eﬂaaﬂw + §(773a-93ﬂ + 1388234) + O ((’9)4) ,

1 1
(311)  Ea3 = 13 + 59,\392 + E(maﬂé\ +n338235) + O ((‘19)4) ,

1
(312)  Es3 =maz+ §9A39:§\ +msfZy +0 ((“9)4) :
To specify these equations for cylindrical shells, we identify curvilinear coordi-

nates @, @2, ©3 with cylindrical ones, z, [, t, respectively. This identification
may be represented in the form of a table:

el | e?|ed
.13 —H—;
z | 1 t
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the coordinate z is chosen along a generating line of a cylindrical shell, Fig. 1,
the coordinate t is measured in the direction normal to the midsurface, and
the coordinate [ runs along the cross-section of the midsurface; for circular (or
elliptic) shells, the second cylindrical coordinate is usually identified with the
angular variable ¢ (¢ = (I/27) - 360°).

- (63: t)

| 7 - midsurface of the shell

]
I
1 X, | - curvilinear midsurface

i coordinates

i tL(x,1); -m2<t<n2
]

]

]

Fi1G. 1. Geometry and the coordinate systems for a shell.

The membrane components of the Green strain tensor for cylindrical shells
are

1
(3.14) Eoz = Mgz + 5(%)2 + Mt {2z + O ((19)4) :

1 1
(315)  Ba = nu+ 5+ 5 (el + nase) + 0 ((9)%),

2 2
1 2 4
(816)  Eu=n,+3(2)° +m+0(®)*),  Eu=Ea.

Next, we should derive formulas for the shear components E,3 in the cylindrical
cordinate system.
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After some calculations we obtain:

1 1
(3.17)  Egt = ot + 2p82,0% + 5772w9zt + 5771x91t022 + et 2t + O ((19)4) )
Eip = Eyy,
1 1 1 29 4
(3.18) By = me + 520000 + 500 ot + 50y 0™ + 00 + O ((?9) ) :
The last cylindrical component of the Green strain tensor is

1 1
(319) Ett = Nt + E(Q;ct)2 + 5(9;,;02(1.22 + nth:):t + T]lt.Qlta22 -+ O ((19)4) .

4. RATE EQUILIBRIUM EQUATIONS OF CYLINDRICAL ELASTIC-PLASTIC SHELLS
IN QUASI-STATIC PROCESSES

We shall consider an equilibrium of shells subjected to loading that increases
monotonically in time from zero. Before irreversible deformations and plastic
hardening appear, the shell will behave as an elastic structure. Next, plastic
strains will occur in the shell, and under quasi-static loading the state of equi-
librium will be steady.

A method of treating such a problem, presented in [4], uses Neal’s [3] varia-
tional principle. It is based on the functional

@) 19) = [ (GO0 + IV EG(V) - 0 V) av
- [*#Veda,
A

with certain subsidiary conditions on the shell boundary
Va=*Va, Vtz*‘./t;
V is here an independent variable subjected to the variation. For quasi-static

processes it is assumed that V = 0. The notations used in (4.1) are defined as
follows:

st - the second Piola-Kirchhoff stress tensor,
oF? — the components of the body force vector,
Eij, Ez] — the components of the first and the second time derivatives of the

Green strain tensor,

= tjinj — the components of the prescribed external stress vector,

£t ~ the components of the first Piola-Kirchhoff stress tensor,

nj — the components of the unit outward vector on A — the boundary
surface of the shell, and V - the shell volume: 9V = A.
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An essential assumption of this theory is the kinematical hypothesis, [4, 2]:
(4.2) Va =8a+tzl)a, a=uz,l, v =8t+tzl)t,
which will reduce the 3-D problem considered to the 2-D one. To perform this
transition, the resultant quantities have to be defined:
h/2
(4.3) LY = / t" st dt,
—h/2

0
n-th order stress resultants, i,j = z,l,¢ (the quantity L'® is usually denoted by
Q° and called a shear force),

hJ2 hJ2
(4.4) B® = / t" o pug F? dt, B =uzl, Bt = / t"uoF* dt,
~h/2 ~h/2

n-th order body couples,

(4.5) 5(1 — (tnﬂ M% *ttﬁ) lh/2

~n/2’

hf2

o= iL',l, ]’;t — (tn/,l,*ttt) Lh/2 ,

n-th order couples of the surface loads on S* and S~ (where ST and S~ - top
and bottom surfaces),

/2 /2
(4.6) Lo — / ruug P dt, L = / Pt dt,
—h/2 ~h/2

n-th order couples of the boundary loads on B, (where B; — a part of the lateral
boundary surface).
The notation p used in these formulas is defined as follows:

u=1/g9/a, g = det]gi;], i,j = x,l,t,

4.7
a = detfaqg), o, =zl

Let us derive the exact formula for x4 in the case of cylindrical shells:
(48) g =detlgy] =detgag],  [6°] = [(w7)S] [™] [(x 7S],
2
det[g®] = {det[(u™")>]} det[a®],

det[g] = (det[yy))” det[al,
det[u®s) = 1 — Ht,
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a = detlan] = (4)’ + () = (s)%  g=(1-Ht)()?,

(4.9)
= 1- Ht, (see (3.5)).

By virtue of (4.2) one can obtain, [4]

2 n 1 n
Eag = Y (0 Eap(z,)) + O(9Y),  Ear =Y (t)"Eat(z,1) + O(8*),
(4.10) 0 ’

2 4
Ey = Eyu+ 0(19 )

Four rate equilibrium equations obtained in [4] were expressed in terms of the
quantities:

0 1 . .
(411) 598 = [oB _ b 4 (%;AIOJ”) - % («‘;4%‘“) :
0 1 ? 0 : 1 o 1to
(412) S = (1 + Ebt) LPt + (&ALW) + (c,lo,\L'\ﬂ) + §vtL/’t,
1 2 . 1 2
@13 §0 = o0 —igiN 4 (D) gol — [oF _ 2,
414) § =1Ift- -;- (é’pgi*t) + (%}f") + (clp,\IzJ’\ﬂ) ,
}‘tﬂ {0 })\ﬁ . 1 ?/\ﬂ '
4.15)  S¥ = (o L) + (o LM,
? 1 0 .Y
Lt 5 {(?l)a _ &a) Lat} :
1 Bt 0 0., \" 1.\
(417 R = —{ (1 - %bt)) LP 4 (&QL”) + (bﬂ | AL“)

+ (bﬂitt). _ %étiﬁt}’

(4.16) Rt

in which the time derivative

ad()
has been used, and for n = 0,1, a, 3 = z,l, the quantities
(418) &aﬂ = aalﬂ = baﬁ'?’t,
(4.19) Do = Ut + DADA

were defined with the use of the notations: (-); - covariant differentiation, (), -
partial differentiation in the undeformed midsurface.
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The equilibrium equations for elastic-plastic shells under quasi-static loadings
are derived in a general form in [4] from the variational principle §1(v) = 0, with
I(v) taken in the form that is cited here in the Appendix as the formula (%).
They are the Euler equations for this principle.

The first of equilibrium equations of [4] was:

0 0 9 0
(4.20) 505 — b3S™ + B +p* = 0.

Let us write it down in the cylindrical frame (z, 1, t); of course we will obtain two
equations for o = z,l. So, we have

0
(@21) S”” + S’“’ + FA,S” + 1 g 4 B“E + 9% =0,

0 Ol lol . o
Sm:cyz_,_sm J+I-”S:c +Bz+pw=0,

where

1 ! d ds d(+)
l__ - N2 n2 o 3= N
If the cylindrical coordinate [ is proportional to the arc s directed along the shell
cross-section, then I} = 0, and we obtain

0

0 98 aS:cl 0 0
4. Dy _— x =
(4.23) 5t o+ o+ BT 4 =0

(this equation results from the variation of the functional (4.1), or rather its
0

counterpart (*) in the Appendix, with respect to ). Similarly, we obtain the
next equilibrium equation for cylindrical shells:

0
: 85lm asll "y o” otl l
. : — B =0,
(4.24) v, g + 5 +25"/s'S" — HS" + p
where s(I) is the natural parameter, i.e. the length of an arc, and (1/2)H is the
mean curvature of the shell, (3.7). Here also the third term in (4.24) vanishes

when s = s(l) = const - l. (s is proportional to [). The successive equation is

0

0 0 0 0 0
(4.25) 0r:  S% 5+ bapSP 4 IIS™ + B+t =0,
where

ds 2 dS 12 12 004,3 N dS 2 0”
(4.26) by=H (El—) , i Yy +z bopS™ = H (—c—ﬁ) S*.
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Equation (4.25) may be written also in the form:

0 0
0 astt gst 0 0
(4.27) 50y - St &/ gt _ H(s')2,%'” + B4t =0,

From the third equilibrium equation, obtained in [4] as a result of variation of
1

the functional (4.1) (or rather I(v) cited in Appendix as (*)), with respect to v,
we get two equations:

1 Sz xl 1 1
(4.28) 6y ag$ agl +"/s' 5% 4 Rot 4 B! 4 o =0,
1 iz 1
(4.29) 8v, : 3;; + %97 + 25" /5 §H — HS“ + Rty Bl p =0.

From the fourth equilibrium equation of [4] we obtain the last rate equilibrium
equation for cylindrical shells,

1 Sl otl 1 1
(4.30) 80y : agw + % +5"/s'S% + H(s") s“ + R B‘ +pt =0,
where, as we remember,
d() y//z/ _ ylzll
r_ _
() = a and T 2+ )32

5. GEOMETRICALLY NONLINEAR CIRCULAR CYLINDRICAL SHELLS —
RATE EQUILIBRIUM EQUATIONS

Now, let us write down the whole system of the rate equilibrium equations

for geometrically nonlinear circular cylindrical shells of radius rg; they will have
a simple form resulting from:
! n 1
(5.1) s=rg-l, s =g, s =0, H=-——
(the sign — in the expression for H concerns the outside normal to M, which is
often used in the shell theory).

0 0 0
S Sz S””’ +Bw +p* =0,
0

5vl :

(5.2)

iz 1 10y, o %

S ’w+S ’l+;—s +B +p =0,
0
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0 0 0 0 ¢ 0
(5.2) dvy Stz,x + Stl,l — 7‘05“ + Bt +pt =0,
[cont.] 1 . . . 1 .
OV ¢ Swm,m + S:z:l’l + Rt + B® +i)a: =0,
. e b, Lha, bu, bk
80, : S, +8+=8"+R*+ B +p =0,
70
! 1 1 ! 1 ! 1
§or:  S¥ o+ 8% -8+ R+ B +pt =0,

5.1. Circular cylindrical shells — rotationally symmetric deformation

At the end of our analysis of the rate equilibrium problem for elastic-plastic
circular cylindrical shells, we can derive from (5.2) the corresponding equations
for the case of shells under rotationally symmetric conditions of loading and
deformation.

So, we are dealing now with the case

(5.3) v, =0 (0,=0, v

1 l=0)’ le=21150, n=0, 1,

0 1 0
Lf =0y, Lf = ag, LY = a3, a; = constant for ¢ = 1, 2,3 along a circumference of

Y]
the cylindrical shell, and LZ is constant along the shell length as well.
The stress and strain tensors s and E are defined as follows, cf (6.3):

T = [szm’ st st 0, %t O],

(5.4)
ET = I:Eztl:’ E”, Ett, 0, Ewt, 0] .

Using the notations (4.18), (4.19) and making use of (2.19), (2.20), we get:

(5.5) <T.51 = il’t,fca ‘Zl =0, ‘Zf = {bxl’ ‘:ba:a: = 612,33’

n n n n
Ol = P1z =0, oy = —byv,

for n = 0, 1. The above relationships enable us to express the components of the
strain tensor E by means of the formulas:

0 0 1 2

E% = Baz =820+ 5 ($1a) +0(8),

L 1 1 0 1 4
(5.6) Ef = Epp = Uz + V40Vt + O(9°/R),

2 2 1 2

Ez = K., = 5 (lt,z) + 0(194/}"2)’
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1
Ey = —byty + O(9%), Ey = 0y + rovy,

0 0 0 0 1 0 1
(5.7) Bl =d¥Ey = d'By =2+ 0, Elx=Zti2
To TO To
1
2 o
E} = -+ 0(9*/h?),
0
o] 1 0 1
(58) Ex; =0, En =0, Ey =0, Ey =0,

o 0 1 1 1
(5.9)  Eut = B, = 2 (S +00) + 500nz + g0 (Ve — 02) + 009,
1 1 1 1 1
Ezt = Ef,; = Eét,m + 571).%11)2:,:1: - Z"lf’t,z'ga:,z + 0(794/}7'),
0 0 1 2
(5100 Ey = El=1:+ 5 (3:)" +0(9%).

In the literature concerning the geometrical nonlinearity of thin shells [2, 7], one
often assumes that

(5.11) vy =10y, ie.  0z=0.

Let us substitute this assumption to (5.6) - (5.10). For the sake of comparison
with the results obtained by other authors, we can use now physical components
of the strain tensor. Then we get:

0 1 2 1
(612)  BY=tua+ts (%) + 0%, E%=tua+00"/h),
o, 1 |
(5.13) Ei= T—Bt +0(Y, Ei= ﬁﬁt +O(9*/h),
0 0
0 1 2
(5.14)  Ef=3 (5:)" + 08",
xr T
(5.15) E, = E, =0,
0 1 1 1z 1

Of course, in the present problem we have Bl = 0,p'=0,n=0,1.

Let us assume the validity of the assumption (5.11) in equilibrium equations of
axisymmetrically loaded circular shells. Then, (starting from (5.2)), these equa-
tions can be written down successively as follows:

The first of them is

M 0 ' 0 0
(5.17) LT, + (%wL”t) +B®4+p® =0.
X

L]

The second of the equations (5.2) in this case is fulfilled identically.
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In the next equation we have to take into account that

n Tll n TLl
(5.18) L= oL, + oML} = 1/(ro)%L, .
Then, we obtain
? o \" 0 1 0 0
(5.19) roL™ a + 1o (3t,xL’£> — Lj+ 1/roLf + Bt + j! =0,

T
that is a known equation, see [2, 6}, for geometrically nonlinear circular cylindrical
shells; the second term in the above equation indicates its non-linearity.

1
Further, putting L{, = 0, we obtain from the fourth of equations (5.2):

Lo 0 A\ :
(5.20) iz, i+ (3m,mL”> + (éi“) —0.

For simplicity we have assumed here
1

B=0, p=0.

The fifth of equations (5.2) for axisymmetrically loaded circular cylindrical shells
is satisfied identically. To conclude, let us derive the last of equations for the
considered problem. We should start from the equation

1 ! 1
(5.21) §% ¢ —ro8" + R* = 0.
1 1
Due to the relation L = 1/(rg)2L}, we obtain
1 ) H 1 0 : !
(5.22) To (5,5,IL”) —roL® — 370 ((11)95 - '8tm) Lﬂ) - Lj =0,
T
that is the last equilibrium equation we had to obtain in this case of the shell
problem.

Passing to the more particular case of a zero shear strain E,; and a constant

0 0
axial force L% along the shell (when p* = B® = 0) we obtain

91: 0 Ozt ’
(5.23) L%, — (vl =0,
»Z
0 o ¢ % o
(5.24) roL” & + 1o ({’;t,xL;) — LI+ B +pt =0,
¥
1 0
(5.25) L%, — [® =0,

which is in agreement with the results obtained in [2] (for the case of moderate
deflections), where geometrical nonlinearity has been introduced in the thin shell
theory in a different way, which, however, turns out to be equivalent to the
method used in [4] (cf. a proof of this fact given in [6]).



ON CYLINDRICAL ELASTIC-PLASTIC SHELLS 181

6. CONSTITUTIVE RELATIONS FOR ELASTIC-PLASTIC MATERIAL

Let us take into consideration an orthotropic elastic-plastic material for which
the additivity assumption (in rates) is true:

e 4 EP

(6.1) Ei; =.El] e

where Ef] is an elastic part and Efj a plastic part of the strain rate Eij.

A. Elastic behaviour of the material

We assume now that in the elastic phase of deformation of the shells, their
material is guided by a linear law

(6.2) 3% = Hebed e,

where s is the Piola-Kirchhoff stress tensor.

It must be stressed that the constitutive relations for both (elastic and plastic)
phases, are given in [4] in a Cartesian frame. So, for our further application it will
be necessary to transform them to the cylindrical system. Indices (a, b, c,d) are
there the Cartesian ones. For an orthotropic material described in the Cartesian
reference frame (what is often used in experiments) with axes coinciding with
the axes of orthotropy, the symmetric matrix of elasticity H®<? consists of 9
nonzero scalar parameters,

Tk [l 1122 1133 0 0 0 ] 11
o2 | 2222 g283 0 0 ES,
433 H3333 0 0 7%

(63) | ., = 2323 :
: H 0 0 2E5;
413 H1313 2 Eelz3
2 - H212 | 2E,132

Just for simplicity, let us assume that there is a plane of material isotropy which
is parallel to the shell mid-surface. Then 5 parameters determine the H matrix:

— 2 3333 1122 1313 __ py2323
I _ 222 , o33 , H , H =H ,

1

(6.4) 1133 _ y2233 212 _ - (Hun _ H1122)
K 2 :
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In the matrix equation (6.3) and further on, the indices (1,2, 3) — Cartesian ones
~ concern the axes (z,y, z), respectively. In order to refer the parameters of H
to the cylindrical frame we have to transform them according to the formula

: ikl bed i 7 k1
(6.5) HY™ = H*a} o] o oy,

where ol are components of the Jacobi matrix for the transition from the Carte-
sian to the cylindrical frame. For the simplest case, i.e. for a circular cylindrical
shells, we can perform this transformation as follows.

First we shall determine the inverse matrix [o}]~! as we start with the known
change of coordinates for t: rg — h/2 <t < rg+ h/2,

(6.6) z=uxz(z,1,1), y =y(z,1,t) = tcos(l), z = z(z,1,t) = tsin(l).

So, [al]7! = [o¢] and we have:

ox Jdl Ot 1 0 0
dy 0Oy Oy .
6.7 N=1=2L == =Z|=1]0 —tsin(l) cos(l
©.7) )= |2 % O sin(t) cos(l)
0z 0z 0z 0 tcos(l) sin(l)
Loz ol ot
Next, we can determine the matrix [o}] = [af]7!, for i = z,y,2; a = x, 1, ¢.
1 0 0 ol o o}
(6.8) [@i] = |0 —t~lsin(l) tlcos(l) | = |a? o} of
0  cos(l) sin(1) o ol of
It is obvious that
(6.9) ad=a?=a}=a}=0.

Taking into account (6.4), from (6.5) we obtain
(6.10) Hik — Hnu(aia{a’fall + a%a;agag) + H3?’33a§aga’§al3 o
+ HY'22 (ol of obab + oz’ga%a’fall) + lema’loéa'faé
+ H'3 (ol o] obol + abadakal + a’zqgalgaé + agaf?;a’;alz)
+ H¥3(0hojakal + aiaabal).
Note again that the indices (1,2, 3) play the role of the Cartesian indices (z,y, 2).
At present we can determine all H¥* (for (i, j, k,1) equal to (z,l,t) each).

(6.11) HEErr H1111 (a%)4 = Hllll,
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( ) Hllll Hllll( ) H3333( ) (2H1133 H1313)( %)2(a§2
( ) Htttt Hllll( ) +H3333( ) (2H1133+H1313)( 3y2
(614) Hxxll =H1122(a2) ( 1) +H1133(a1) ( 3) _Hllzz’
(6.15)
(6.16)

v
/\
Q
S &
[V

Hoott = U2 (03)2(o1)2 4+ H13(a1)2(ad)? = Htee,
HIt = fU11(63)2(52)2 4 F3333(g2)2 (a2)? + H¥1302020dad

+ HY ((03)?(0d)? + (0§)%(ad)?) = H™,
(6.17) HI = L (63)2(62)2 4 3333 (02)2(ad)?

+ HB313(02)2(d)? + 20183 20d0lad

(6.18) Ho = g1212(5112(03)2 4 g1313(01)2(ad)2,
(619)  H = H2(al)?(@d)? + H' (o 2(03)".
Let us return to (6.8) from which we have
(6.20) al =1, ;x% —t~tsin(l), o} =t"1cos(l),
aj = cos(l), o} = sin(l).

Now, we assume that ¢ = const = rg, and from (6.12) - (6.19) we obtain
(6.21) HEmee o i
(622)  H™ = (ro)~* (B sin® (1) + H?¥ cost(l)
+ (2H™ 4+ H13)5in?(1) cos?(1)) ,
(6.23) HP = g1 co5t (1) + H3333 5in(1)
+ (2H133 1 H1313)5in (1) cos?(l),
(6.24)  H™" = (ro)™2 (H"2sin’(1) + H'* cos?(1)) = H"2,
(6.25) HoM = U2 0002(1) + HUB gin?(l) = H52,
(2.26) gl (ro)~ -2 (s1n2(l)cos (l)(Hlm + 3333 _H1313)
+ H"3(sin*(1) + cos4(l))) = H,
(6.27) H = (rg)=2 (sin2(l) cos?(I)(FT11 4 F3333 _ 91133
‘ + HP¥sint (1)),
(6.28)  H®@t = H'212c08%(1) + H313 5in(1),
(629)  H! = (ro)™2 (H'™2sin*(1) + H'*" cos®(1))

In this way we have got the H*/¥ matrix which describes the elastic properties
of the shell material in the cylindrical frame, where each of the indices (4, j, k, [)
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refers to cylindrical coordinates (z,l,¢). It has the form (note that H'* is not
equal to H®%t):

FH:m:mz H:ca:ll H:cwtt 0 0 0
Hllll Hlltt 0 0 0
. Httt 0 0 0
kl __
(6.30) Hiik = gt g .
Ha:tz:t 0
Hzlml

B. Plastic behaviour of the material

Following [4] we will make use of Hill’s yield condition which describes the
behaviour of an orthotropic plastic material with kinematical hardening

(6.31) F = Agpea(Ps® — p)(Ps® — g9y = Z(¥r)?,

i b

where Ps% is a deviator of the P-K stress tensor, (3% defines kinematic harden-
ing of the material, and Yp is a reference yield stress obtained in uniaxial tension
(in a principal direction). All the above quantities are specified in [4]. As in the
elastic part, we assume here that the material is initially isotropic in the plane

(1,2), where 1, 2 are the Cartesian axes. It is characterized by

2 2
A = Az = P Assss = §(YR/Y3)2,
(6.32) 9 9 1
Angz = Agesz = —§(YR/Y3)2, Anoe = -3 (1 - ’2‘(YR/Y3)2)
with YR = Y1 = Yg. Let us assume that A2323 = A1313 = A1212 =0.
The rate constitutive equations, in the Cartesian frame of reference are

(6.33) 59 = KR,

where K is a matrix which should be determined first by an inversion K1 that
is given below:

(6.34) (K™ Yabea = (H ) apea +2 (Aabll(Dsu — BM) + Agpaa (P - g7)

+ Agpsa(Ps® — ﬂss)) ded -
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The quantities g, and p are

(6.35) g =1/p (Aabll(Dsl — B™) + Aabzz(Ps? = %) + Aupss(Ps® — ﬁ33)),
(6.36) p= 2C(Aab11 Aas11(11)? + Agpoz Aap22(22)% + Aapss Aapas (33)2
+ 2 (Aasrt Aw2(22) (11) + Ausnr Aass (33) (1) + Ausza Awsas(22)(33))).

where the notation (ee) := (Ps — 3°) has been used to simplify the last ex-
pression. In the above and other formulas, ¢ (see [4]) is a constant. Note that the
summation convention concerns the indices (a,b). Therefore

(6.37) p= 2c<(11)2 ((A1111)? + (An122)? + (A1133)?)
+ (33)" (2(A1135)* + (Asas)?)
+(22)° ((141111)2 + (Anz2)? + (A1133)2)
+2(22) (11) (241224111 + (A11ss)?)

2(33) (11) (.) + )

Consequently, the indices (a, b, ¢, d) are referred here to the Cartesian frame. So
1t is necessary to transform the components Ag.q to the cylindrical frame using
the inverse of (6.5). This enables us to express the constitutive equations in terms
of cylindrical coordinates

(6.38) §9 = KUk R,

(with the cylindrical indices i, 5, k, ). It is seen that the explicit expression for
p, even in the case of very simple, transversal orthotropy of the material, is very
complicated and only the computer-aided procedures may be effective here, both
on the symbolic and computational level.

Obviously, the matrix K should be interpreted as follows: it reduces to matrix
H in the elastic stage of deformation and during an unloading process in the
plastic phase.

7. CONCLUDING REMARKS

The approach to geometrically nonlinear shells, known as (MRT), proposed
for elastic-plastic problems in a general form in [4], has been applied here to
the cylindrical shells. At first, geometrical relationships, simpler than those in
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the general case, have been derived. Next, while analysing the geometrical and
equilibrium equations, their particular forms for the special cases of deformation
and loading were presented. So, it was possible to compare these equations with
the known results, obtained earlier for nonlinear plastic shells, {2]. At the end,
the orthotropic constitutive relations (see [4]) have been transformed from the
original Cartesian form to the cylindrical coordinates. This step is necessary for
obtaining the explicit, effective form of the equilibrium equations.

All these results will be useful in the numerical problem for elastic-plastic,
geometrically nonlinear, cylindrical shells. It will be the next stage of this paper.
The nonlinear rate variational problem will be solved numerically with the use
of an iterative treatment (as it is suggested in [4]). The variational functional
for quasi-static processes (4.1) (see also Appendix) which needs to be precised
for every real problem, will be used directly in the incremental process. The
equilibrium equations with appropriate boundary conditions should be fulfilled
on every step of the iteration procedure.

It is important that the shell theory with which this paper is concerned,
admits both the geometrical nonlinearity and more realistic description of the
shell material (anisotropic elastic-plastic with kinematical hardening).

APPENDIX

As it was mentioned before, (MRT) deals with 2-D shell problems. This means
that instead of the functional (4.1), its 2-D form has been used in this theory.
That is obtained, naturally, by substituting to (4.1) the resultant quantities
(4.3)-(4.6) and using of the assumption (4.2). The resulting expressions read:

2 n n 1 n =n 0o o
(*) I(v) = / {1 [Z L**Eqp+2 Z L®Eq + LttEtt]
M 2 n=0 n=0
]_ 2 n -n. 1 n ?. 0 .0.
+3 [Z L*E.5+2) L**Ea + L“Ett]
n=>0 n=0

1 n n n n n n
-> [(B“ +i7°‘> b + (Bt +i)t) &t} } dM
n=0
1 n n n n n n
- / Z { [*Laﬂuauﬂi)v + *L"‘ﬂtauﬁ'[)t + *Ltﬁugi)t] } ds, for «o,8 =2zl
C n=0

The kinematical boundary conditions on ¢, (which is a part of { = M) are

n n n n n n n n

" " o o T Y
Vy =V Vg = Uy, V=0 g = UL vt = V¢,
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where ¥; and v, are the velocity components in the directions of the tangent
vector t and the unit outward normal vector v of ¢, Fig. 1, (t = t%a,, v = v®a,.

Of course during transformation of the functional (4.1) into its 2-D counter-
part, some geometrical relationships have been taken into account, [4]:

dV = pdtdM, dS = pdM, ne dB = voudtds,

where dB — the area element of the lateral boundary surface, dS - the area
element at the top and bottom surfaces, t — the third cylindrical coordinate and
s — runs along ¢.
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