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WELL- OR ILL-POSED PROBLEM OF PARAMETER IDENTIFICATION -
THE METHOD OF ANALYSIS APPLIED IN A CASSETTE RECORDER
DRIVE MODELING

Z. KOWALSKA (WARSZAWA)

In the paper, the method of error analysis of physical parameter estimates identified by the
least-squares fitting of the dynamical model characteristics to the corresponding experimental
data points, measured (observed) with systematic errors, is discussed. The quantity measures
of global sensitivity of parameter estimate to the observation errors are introduced. The for-
mulas for computing the derivatives of parameter estimates with respect to the observation
errors are derived. The advantages of the method are illustrated by the example of application
of the method in the modeling process of a tape recorder drive at the stage of experiment
design.

1. INTRODUCTION

The method and algorithm of sensitivity analysis of physical parameter esti-
mates to the measurement errors of frequency characteristics were developed on
the basis of a very particular problem, i.e. the problem of modeling the cassette
recorder drive (3], but it can be easily generalized to time-domain dynamical
characteristics, and applied to other linear dynamical systems. The objective of
the modeling was to develop the physical model of the system. By a physical
model we do not mean here any material, laboratory device, but a mathematical
model, the structure of which reflects the structure of the actual system, and its
parameters are of some physical meaning. For a designer of any mechanical or
electro-mechanical system, the physical model is cognitively more valuable than
the functional one, e.g. in the form of a complex, rational function, which from
the control standpoint could be sufficient.

The structure of the mathematical model of the recorder drive, in the form
of a set of ordinary linear differential equations with constant coefficients, was
adopted on the basis of careful analysis of physical phenomena. Some physical
parameters were measured directly, others — indirectly. The estimates of several
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selected parameters were identified by fitting the amplitude-frequency charac-
teristic of the model to the corresponding experimental characteristic by the
least-squares method.

The experimental amplitude-frequency characteristic was recorded by means
of well-known and commonly used Bruel&Kjaer analogue measuring arrangement
for measuring the transfer functions of dynamical systems. In such an arrange-
ment, the output signal passes through the narrow-band filter — being tuned
automatically to the frequency of harmonic excitation — and then its level is av-
eraged and recorded by the analogue level recorder. Due to narrow-band filtering
and level averaging, various disturbances, in particular the random disturbances,
are eliminated to a high degree. This is a great advantage of the frequency anal-
ysis in comparison with transient analysis, and therefore the frequency analysis
is still willingly used, if only harmonic excitation is technically possible.

The only disadvantage of using the experimental frequency characteristic for
parameter identification is the fact that very little is known about the systematic
measurement errors, which dominate over the random ones. In cases when pa-
rameter estimates are calculated from the measured values of a process running
in time, it is often possible to assume that average values of the measurement
errors equal zero and also to estimate the statistical properties of measurement
errors, and this in turn enables a more sophisticated analysis of statistical prop-
erties of parameter estimates [5, 6]. This is probably one of the reasons why a
vast literature on identification of dynamical systems concerns almost exclusively
the methods involving time domain analysis.

The lack of knowledge of mean values of the measurement errors and their
statistical properties is a drawback of the method of identification from the
amplitude-frequency characteristics measured in the way described above. But
this cannot be a reason to give up the method which, in many respects, is better
than other possible methods. Of course, some kind of analysis of parameter
estimates errors is absolutely necessary. In this paper, the quantity measure of
global sensitivity of parameter estimate with respect to measurement errors is
introduced. This measure is analogous to a maximum error commonly used in
the analysis of systematic or global error of indirect measurement. We do not
know any general theory of systematic errors of indirect measurement [7]. The
same concerns the systematic errors in parameter identification. So the proposed
approach to the errors analysis — based on linearisation of implicit relationships
between the parameter estimates and measurements — seems to be one of a
very few options. Many numerical experiments performed with the model of the
recorder drive [3], and other dynamical systems, showed that such an analysis
can be useful and valuable in the modeling process. Other possibilities of error
analysis of estimates will be discussed very briefly in Final Remarks.
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2. GLOBAL SENSITIVITY OF PARAMETER ESTIMATE TO MEASUREMENT
ERRORS; DEFINITIONS AND COMPUTATION FORMULAS

2.1. Notation

In the sequel we will use the following notation:

m number of parameters to be identified,
vector of parameters to be identified, p = (p1,...,pm)%,
vector of parameter estimates; the sign * over the symbol p or p; is
used, when necessary, in order to distinguish the estimates from the
real values,
f argument of dynamical characteristic, selected as a basis for parameter
identification,
h(f,p) dynamical characteristic adopted as a basis for parameter identifica-
tion, obtained from the mathematical model,
hi(p) dynamical characteristic h(f,p) for f = fi,
n number of observations, i.e. the observed (measured) values of ex-
perimental dynamical characteristic corresponding to the theoretical
characteristic h(f, p),

=il

z vector of observations, z = (21,...,2:)7, 2; > 0,
v vector of observation errors including external noise, measurement er-
rors and also modeling errors, v = (vq,...,v,)7.

We will also use the additional superscript 0 in order to stress that the sym-
bols p°, f)‘}, z°, 20 stand for the concrete values of estimates and observations,
whereas P, pj, z, z; denote the parameter estimates and observations regarded
as variables.

2.2. Definitions

An indirect measurement of a quantity p; consists in measuring directly the
quantities z1, ..., z,, and then calculating the value of p; from the formula given
in an explicit form

(21) Di =’w1;(Z]_,...,Zn)-

The estimate of the systematic or global error of p; is usually computed by the
formula [7]

(2.2) Spi =

where vy, ..., v, denote the estimates of the measurement errors of 23,..., 2n.
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In the particular case, when for every k the the percentage error defined as
100% vk /2 equals d, we can derive from (2.2) the formula for the maximum
percentage error of parameter p; in the form

ow;
Jz

n

(2.3) ep;, =d Z
k=1

One can observe that parameter identification is similar to indirect measure-
ment in the meaning that the values of parameters p;, ..., pn, are calculated from
the measured values zi, ..., 2,. So if the formulas (2.2), (2.3) are appropriate in
the analysis of indirect measurement errors, they could also be useful in the
analysis of parameter identification errors. The important difference between in-
direct measurement and parameter identification is that in the second case, the
relationships p; = w;(z1,...,2,) for i = 1,...,m are not known in an explicit
form, and we are even not certain whether such unique relationships do exist at
all.

So the idea presented here is to find the way of proving that these relation-
ships do exist, to develop the algorithm for computing the values of derivatives
Ow;/0zj, and to apply the formula (2.2), or (2.3) in the modeling process, both
at the stage of the experiment design, and in model validation after completing
the parameter identification.

In the next section, we will show, using the example of a model of tape
recorder drive, how the calculation of the errors e,, for various possible vectors
p of parameters to be identified can help us to avoid the situations in which the
identification problem is ill-posed.

0
Zk

g -
wy

2.3. Deterministic identification case

Let us first consider the case of the so-called deterministic identification,
when estimates of m selected parameters are calculated by solving m algebraic,
generally nonlinear equations in the form

(2.4) (P, fi)—22=0, i=1,...,m.

In the neighbourhood of the solution (29,...,2%,59,...,5%,), the set (2.4) can be

regarded as an implicit form of the differentiable function

(2.5) p=w(z)

if the set (2.4) satisfies the conditions sufficient for the existence of such a
function. The related theorem [1] determines these conditions for the system
of m equations given in the general, following form: Fi(p,z) =0,7=1,...,m.



WELL- OR ILL-POSED PROBLEM OF PARAMETER IDENTIFICATION 193

The theorem says that in the neighbourhood of the point (29,...,29,5%,...,5%),
which holds the system, the differentiable function p = w(z) does exist, if the
functions Fj(p,z) are differentiable and the determinant of the Jacobian matrix,
the 4, j-th element of which is 9F;/0p;, differs from zero.

In our case the equation F;(p,z) = 0 has the form (2.4), and the element g;;
of the Jacobian matrix equals dh;/Jp;. In order to get the vector of the partial
derivatives dw(z)/0z; we will use the general rules for differentiating the implicit
functions, i.e., we will differentiate the system (2.4) with respect to z;. As the
result we obtain a new system of m equations. Systems of equations obtained
by differentiating equations (2.4) with respect to z;, for j = 1,...,n differ from
each other only by their right-hand sides. In a matrix form all these systems can
be written as one equation

(2.6) GU=L
The developed form of (2.6) is

[(Ohy  Ohy M [0  Op1 | Oh1]
dp1 Op; Opm oz oz j 0zm

Ohj  Ohj  Ohj || Obi OB Obi
8p1 Bp,- apm 0z 1 0z i 8zm

O O O || B O O
[ Ip Opi Opm J | 0z 0%; Ozm

where I denotes the identity matrix. From Eq. (2.7) one can easily conclude that
the columns of matrix G should not be linearly dependent, otherwise the Jaco-
bian matrix G would be singular and the unique solution would not exist. In
other words, the particular parameter is identifiable if it influences the observa-
tions not only significantly but also in a different way than others.

2.4. The least-squares identification case

Now let us consider the case of parameter identification by the least-squares
method. Generally the reasoning is the same, and it leads to the matrix equation

(2.8) GU=M
as well, only the formulas for calculating the elements g;; (1 = 1,...,m, j =
1,...,m)and my; (i =1,...,m, j =1,...,n) of the matrix G and M, respec-

tively, are more complicated.
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In the case of identification of dynamical model parameters by the least-
squares method, the estimates of m parameters pi,...,py, are calculated from
n observed data points: (fi, 2x), K =1,...,n, and the number of observations n
is usually much greater than m. The values of parameters which minimize the
weighted sum of squared residuals (computed minus the observed values) in the
form

n

(2.9) K(p) = Y (h(f,P) — 2)?r%

k=1

are accepted as the estimates of parameters. In the formula (2.9), rx denotes the
weighting coefficient of the k-th observation.

The condition necessary for existence of a minimum at the point p? =
(13,...,p%) is that the partial derivatives OK/Op;, i = 1,...,m are at this
point equal to zero. This condition yields the system of m equations, the i-th
equation of which has the form

n

(2.10) Z(hk(p) - zk)rké}};(—'p) =(, t=1,...,m.
k=1 Pi

Now we can apply again, this time to the set of equations (2.10), the theorem
on the existence of differentiable implicit function w(z) in the neighbourhood
of the point (29,...,29,59,...,p%) which holds the system. In this case, the
element g;; (i =1,...,m, j = 1,...,m) of the Jacobian matrix G, which cannot
be singular, is determined by the formula

6hk Bhk n 0%hy,
(2.11) Z o lczl(hk 25)Tk Boidp;

The elements of the matrices U and M in the matrix equation (2.8) are

opi . .
(2.12) uij:a—zi’ i=1,....m, j=1,...,n,
Oh;
2.13 =M i=1,...om, j=1,....n
(2.13) mij ap; Tj L m, J
The formulas (2.6)-(2.13) were derived assuming only that the function h(f, p)
is differentiable (once or twice) with respect to p; (i = 1,...,m) for all dis-
crete arguments f; (j = 1,...,n). The function A(f,p) is not necessarily the

amplitude-frequency characteristic, it can be the transient response in terms of
time as well.
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2.5. The sensitivity functions of dynamical characteristics to the model
parameters

In order to determine the derivatives 0p;/0z;, the derivatives Ohy/0p;,
92hy/0p;iOp; have to be computed first. For both mentioned types of dynam-
ical characteristics, it is easy to compute the values of their sensitivity to the
model parameters, i.e. the values of the derivatives Ohy/dp;, 8*hi/ Op;Op; with-
out using unreliable, approximate numerical methods based on the notion of
divided differences. We neglect here the formulas for computing the derivatives,
which are quite easy to derive [3] by using the following basic hints.

To get the sensitivity functions 0x(t, p)/0p; of the state variables transients
x(t, p) of the linear dynamical system in the form

(2.14) x(t) = A(p)x + B(p) u(?),

where u(t) denotes an external excitation, e.g. the step function at a chosen,
single input, both sides of the state equation (2.14) should be differentiated
with respect to p;. The solutions of the new set of differential equation for zero

initial conditions: M =0, —(—1— (M> = 0 are the sensitivity functions
Op; dt Op;
dzi(t, p)/dp; of the transients z;(t, p) to the parameters; | = 1,...,m, where m
denotes the number of state variables.
To get the sensitivity functions 0X (s, p)/0p; of the transfer functions X(s, p)
between the chosen, single input u;(t) and the state variables x(¢, p), one must

first differentiate the system of algebraic equations
(2.15) sX=AX+BU

resulting from the Laplace transformation of the system (2.14) at zero initial
conditions and for the Laplace transform of u;(t) equal to 1(s).

91X(s,p)|

The second important hint for computing the sensitivity functions Bp;
(]

of the amplitude-frequency characteristic is the relationship

(2.16) Re (M ) _ 9ln}X]|
p° 8lnpi

Odlnp;
To obtain the second derivatives of dynamical characteristics to the parameter,
the corresponding equations should be differentiated twice.

_ 9X]|
P° - 8pi

2
po IXOI .
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DESIGN OF THE EXPERIMENT FOR IDENTIFICATION OF THE CASSETTE
RECORDER DRIVE

3.1. Mathematical model of the recorder drive

Modeling of the cassette-recorder drive is not a subject of the paper. We use
here the model only to illustrate how the formulas presented in the first section
can be applied in the modeling process at the stage of experiment design in order
to formulate the identification problem properly.

The recorder drive consists of a magneto-electrical motor which drives a flying
wheel through a viscous-elastic belt. The capstan, driving a magnetic tape, is
fixed on the axis of the flying wheel.

The structure of the mathematical model - intended to describe the small
oscillations disturbing the steady-state motion — has been determined on the
basis of a careful analysis of physical phenomena and has the following form:

dwl
By —L =
1 7 Ris+my,
B,™2 - Bi— Rys +ms,
dt
(3:1) ds dw dw
= - &2 it
-CE = K(E2R2w2 EiRyjw)+C <E2R2 T E1R; gt ) ,
Ri+ Ewy = u,
where
wy angular velocity of the flying wheel (and the capstan),
wy angular velocity of the motor rotor,

longitudinal axial force in the free sections of the driving belt,

electrical current in the rotor coil,

feeding voltage,

exciting moment about the flying wheel axis,

exciting moment about the rotor axis,

moment of inertia of the flying wheel,

moment of inertia of the motor rotor,

radius of the driven pulley,

radius of the driving pulley,

parameter representing stiffness of the viscous-elastic link between the
flying wheel and the rotor,

parameter representing damping in the viscous-elastic link between the
flying wheel and the rotor,
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R resistance of the coil of the rotor,
E electro-mechanical constant of the rotor,
E, coefficient (close to 1) depending on the average value of relative elongation
of the active section of the driving belt,
E; coefficient (close to 1) depending on the average value of relative elongation
of the passive section of the driving belt.

All the variables in the model (3.1) are actually the varying components of the
corresponding variables, the average values of which are by some scores greater
than the amplitudes of oscillations.

3.2. The selection of amplitude-frequency characteristic for identification
purposes

In general, the problem of experiment design for parameter identification can
be stated-as follows: which data points of measurable dynamical characteristics
should be taken as the basis for parameter identification to reach the highest, or
at least satisfactory accuracy of the parameter estimates.

In the case of the recorder drive, the only amplitude-frequency characteristic
which was relatively easy to measure — without introducing additional masses
into the system, what would change its original dynamics — was the characteristic
of the transfer function

(s)
(5.2 H) = T
where §2;(s), U(s) denote Laplace transforms of wy(t) and u(t), respectively.

Therefore the problem to solve at the stage of experiment design — what in
the case of the system under consideration meant literally an arrangement of an
experimental stand — was as follows: which physical parameters of the model can
be identified with satisfactory accuracy from the measurable characteristic, and
which should be measured in different ways.

Figure 1 shows the amplitude-frequency characteristic of the transfer function
H(s) calculated from the model (3.1) for the values of parameters determined
with precision possible at this stage. In particular, moments of inertia were cal-
culated from geometric dimensions, in case of By — not very accurately due to
irregular shape of the rotor. The values of electrical parameters were taken from
the motor manufacturer specifications. The stiffness K and the damping coefli-
cient C were calculated from the measured dynamic stiffness of the driving belt;
the influence of structural damping between the pulleys and the belt, and the
influence of flexibility of the belt sections being in touch with the pulleys on the
values of parameters K and C was at this stage neglected.
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modulus [H(s)| (dB)

1 5 10 15 20 25 30
frequency f (Hz)

Fi1G. 1. Amplitude-frequency characteristic of the transfer function H(s) between the input
voltage u(t) and the output angular velocity w(t).

As mentioned above, in order to reach good accuracy of the parameter esti-
mates, the parameters must influence the measured characteristics significantly.
In Fig.2 and 3, the plots of relative sensitivity of amplitude-frequency charac-
teristic of the transfer function (3.2) to relative changes of the parameters are
presented. Strictly speaking, these are the plots of the real part of the Bode
sensitivity [2] denoted as S and defined as follows:

OlnH
alnpi

_|om
p° B apz

.
poHO'

(3.3) Spl =

400
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200
100
0
-100
-200

-300 I 1 1 I i
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relative sensitivity (%)

frequency f (Hz)

FIG. 2. Relative sensitivity functions of the a — f characteristic |H (27 f)| to the parameters:
1-B,2-B1,3-K.
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F1G. 3. Relative sensitivity functions of the a — f characteristic |H (27 f)} to the parameters:
1-C,2-E,3-R.

It was already established (see formula (2.16)) that the real part of Sg is the

relative sensitivity of the modulus |H| to relative changes of the parameters.
From Figs. 2, 3 one can see that the chosen six parameters: By, B, K, C, R,

E influence significantly the amplitude-frequency characteristic |H (27 f)|. The

o|H| p? , :

al | T%q are quite large and there exists no
Di

obvious linear relationship between the sensitivity functions for different parame-

ters. This may suggest that all these parameters can be identified simultaneously

from the characteristic |H (2 f)|.

absolute values of the expression:

3.3. Identification accuracy versus the number m of parameters to be
identified at the same time

The analysis of data given in the Table 1 leads to various conclusions. In the
Table 1 are given the errors ep, calculated for 5 different vectors of parameters to
be identified at the same time. Every row in the table corresponds to a particular
case of the parameter vector p of a dimension m = 2,...,6. In all cases the
identification criterion was in the form

. 30
(34)  K(p) =S (h(fisp) —#)2/2F,  fi=12,...,30 (Hz).

i=1

Higher frequencies were not taken into account because the noise-to-output signal
ratio increased very rapidly with the frequency and became too high for the input
of a reasonable amplitude, within the range of linearity of the system.
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Table 1. Values of the error estimates e,, for the assumed observations accuracy
d = 1%, for five different vectors p of parameters to be identified at the same time.

parameters
dimensinm | By | B, | Kk [ ¢ [ E|R
6 matrix G is singular
5 95 120 36 140 6.0
4 . 12 6.7 12 5.6
3 2.8 1.8 3.3
2 0.5 2.8

In the case of 6-dimensional vector p = (By, B2, K,C, E, R)T the matrix G
is singular. There is no such a point in the 6-dimensional space of parameters,
in which the functional (3.4) has a unique minimum. It is easy to observe the
rule: the greater is the dimension m of the parameter vector, the greater become
the identification errors. One can explain this as follows: for a greater number of
parameters, the possibility of a minimum to be sharp is smaller.

The same rule was observed when checking the idea to include one or more
parameters of the functional model of systematic observation errors into the
vector p of parameters to be identified. The idea seemed to be promising at
the beginning because it is easy to improve in this way the goodness-of-fit of
the model characteristics to the experimental data. But this fact is misleading
because the errors e, increase significantly with increasing the dimension m.

3.4. Numerical experiments

Numerical experiments — performed not only on the model of the recorder
drive but also on the simple harmonic oscillator and the classical model of the
vehicle suspension consisting of two masses connected by springs and dampers -
has shown that the errors ey, are quite good estimates of the semi-real errors. The
results of some of the experiments are given in the Table 2. In the experiments the
observations errors v; were simulated, and then the parameter estimates p° were
calculated by minimizing the sum (3.4) for observations: z; = A(f;, p°) + v;. In
the Table 2, the semi-real errors, defined as §,, = 100%]|p9 — p?|/p?, are compared
with the estimates af the errors calculated by the formula (2.3). One can conclude
that the errors e,, are quite useful as the estimates of real errors. Generally the
maximum errors are greater than the semi-real ones, but not excessively greater;
in the given examples, no more than several times. So by calculating the errors
ep; one can learn at least the orders of real errors, and to know the order is much
better than to know nothing at all.
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Table 2. Results of numerical experiments, performed to compare the estimates
ep; of errors of the parameter estimates p; with the semi-real errors §,, calculated
for simulated (and hence known exactly) observations errors v;.

type of errors of parameter estimates
No simulated observations estimates %
errors B, K C
1 zj = h; +0.0lh;, j=1,...,30 Op; 0.419 1.47 3.07
ep; 2.7 1.8 3.3
2 2j =h; +0.05h;, j=1,...,30 dp, 13.1 7.18 15.4
ep; 14 8.8 16
3 zij=h; +0.1h;, j=1,...,30 dp; 22.1 14.5 31.2
ep; 27 18 33
4 zj = h; +0.05h;, j=1,...,30 dp; . 0.541 10.3
€p; . 2.5 14
5 zj=h; +0.1h;, 7=1,...,30 dp; . 1.08 19.2
€p; . 5.0 28

At the stage of the experiment design, when design means literally an ar-
rangement of experimental stand, the observation vector z° and parameter es-
timates p° are not known yet, so the errors ep; can be only computed for
approximate values of parameters p° and of the vector of observations z°* =
(h1(P®), - .., ha(p®))T. As the algorithm for calculating e,, is very effective, it is
even possible to calculate the errors for several points in the predicted, bounded
volume in the parameter space, and compare the results. In most cases there
exists some kind of continuity with respect to parameters, so the introductory
analysis for p® = p® and observations vector z° = z° is reliable and useful.

In the case of the recorder drive, the approximate values of parameters, before
identification, did not differ much from those calculated by minimizing the iden-
tification criterion, so the qualitative conclusions drawn from the introductory
analysis of identification accuracy and from the final analysis, after completing
the identification process, were the same.

4. FINAL REMARKS
Let us sum up the results derived and presented in the paper.

We have introduced here the quantity measure e, of global sensitivity of the
parameter estimate p; to the errors of all observations z;, j = 1,...,n. In order
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to emphasize the analogy to the notion of the maximum measurement error used
in the analysis of indirect measurements, and also for brevity, we have called e,
the maximum percentage error.

We have presented all the information needed to write very effective com-
puter programs for computing the errors e,,, in particular - for determining the
derivatives of parameter estimates with respect to the observations (or observa-
tion errors), namely the derivatives 9p;/0z;, in the case of both deterministic
and least-squares identification from the measured frequency- or time-domain
dynamical characteristics. The fact that the method of computing the deriva-
tives is an accurate one — in the sense that only round-off errors may exist, the
truncation errors are not involved — is very important. In this case approximate

-ethods — based on the notion of divided differences — would be very ineffective,
and what is more important, very inaccurate even for functions much easier to
compute and given in an explicit form. Approximate differentiation which may
seem to be very easy, is actually very risky, and should be avoided when possible,
even in case of functions much easier to compute and given in explicit forms [7).
The method of calculating the derivatives is an original contribution of the au-
thor. Of course, we cannot exclude the possibility that a similar method has been
published by somebody else, but the method is not described in the textbooks
or well-known basic books on identification.

There is an aspect of parameter identification accuracy analysis which should
be mentioned here. It was not said explicitly, but the whole reasoning presented
in the paper is based on the assumption that the dynamical structure of the
model is the same as the structure of the real system or rather, on more realistic
assumption, that differences in the structures can be neglected or included into
the observations errors. If the differences are significant, such an analysis is un-
reliable. Of course, the method of analysis presented here is not a panacea, but
it helps to avoid situations, when the identification problem is ill-posed despite
the full consistency of the model and the object structure.

The other question worth to consider: one may ask whether it is necessary
to use the least-squares method rather than the deterministic method in cases
when random disturbances are filtered out due to the introductory analogue
signal processing. On the other hand, everybody who deals with modeling of
real objects knows well that modeling is a very complex process and very often
it is necessary to use different methods and compare the results to validate a
model. The accuracy of deterministic identification depends very much on the
choice of arguments f; of the data points (f;,2;). If the number of available
data points is much larger than the number of parameters to be identified, it
seems very useful to take all the points into account by using the least-squares
method. Thus we get the parameter estimates and also examine the flexibility
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of the model, i.e. the possibility of fitting the model to the data over the whole
range of frequency. Moreover, there are many sources of systematic errors of
experimental data, so it is reasonable to expect that their influence on the final
results of parameter identification will be, at least in part, cancelled due to the
least-squares minimization.

To conclude, let us consider what are the other possibilities of answering the
question, whether the identification problem is well- or ill-posed. In the latter
case, the parameter estimates are very sensitive to the measurement errors.

In the computer era, one possible approach to the problem, how the measure-
ment errors contribute to the resulting errors of parameter estimates, consists
in performing numerical experiments in which different possible measurement
errors are simulated. Numerical experiments described in the previous section
are an example of such an approach. When random errors are simulated, the
techniques used in such investigations are often referred to as the Monte Carlo
methods [4]. In case of systematic errors, one could even imagine, theoretically,
the following procedure: 1 — adopt the volume in n-dimensional space of mea-
surement errors, 2 — search in this volume, by numerical optimization, for the
point (v}, ...,v9) at which the largest resulting error of the parameter exists. Of
course, in practice such numerical optimization would be computationally very
difficult and time-consuming. In comparison with that, the approach proposed
in the paper is very convenient, and seems to be sufficient.

Another approach to the problem is using singular value decomposition (SVD)
as a tool of analysis. At the final step of recursive computations of parameter
estimates, the identification problem usually reduces to the problem of solving
a set of linear algebraic equations. Such a case takes place, for example, when
the identification criterion is being minimized by the Gauss-Newton method.
SVD is a useful tool to decide whether a matrix is well- or ill-conditioned. If the
relevant matrix is ill-conditioned, then small changes on the right-hand side of
equations, caused by small changes in measurements, result in large changes in
estimates, so the estimates cannot be accurate. Different possibilities of using
SVD in the solution and analysis of inverse problems, in particular — the nonlin-
ear least-squares fitting, have been explored for the last several years by several
researchers. However, many practitioners still neglect any kind of accuracy anal-
ysis and they are satisfied if they get a good fitting of the model characteristics
to the experimental data, but quality of a fit cannot be a measure of accuracy
of the parameter estimates, so “they get what they deserve [4]”.

The present author believes that the method for error analysis, presented in
the paper, can be used optionally or simultaneously with the analysis involving
SVD. The errors ey, may be also regarded as the indices of conditioning of the
identification problem. The advantage of these indices over another indices — e.g.
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the frequently used ratio of minimum to maximum of the absolute values of the
eigenvalues of a matrix - is that they have also some additional meaning, familiar
to everybody who has dealt with indirect measurements.
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