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FABRIC TENSORS IN BONE MECHANICS

S JEMIOLO and J.J TELEGA (WARSZAWA)

Mechanical properties of cancellous and cortical bone have been investigated. The fabric ten-
sors used in the relevant literature have been discussed. Nonlinear elastic and elastic-perfectly
plastic constitutive relationships have been proposed within the framework of small deforma-
tions. To this end the theory of representation of tensor functions has been used. It has been
shown that the fabric tensor plays the role of a parametric tensor. Orthotropic linear elasticity
has been carefully examined from the point of view of interrelations of classical material con-
stants with the proposed material parameters and eigenvalues of the fabric tensor. Hoffman'’s
strength criterion has been extended by incorporating the fabric tensor. Anisotropic properties
of human cancellous and cortical bones have been investigated by using the relations derived.

1. INTRODUCTION

Some materials such as woods, granular materials, bones and plastics exhibit
elastic, plastic and locking behaviour under compressive stresses. The stress-
deformation curves are then strongly influenced by the density of a material,
cf. Figs.10.3 and 11.5 in [12]. Cancellous (spongy or trabecular) bone is quite
porous; often more than half of the bone volume is occupied by pores (8, 11, 12],
cf. also Fig. 1 a. The cellular structure of cancellous bone consists of an intercon-
nected network of rods or plates. A network of rods produces low-density open
cells, while one of the plates gives higher-density, virtually closed cells. There are
some theoretical models for the elastic modulus and strength dependence upon
the structural density of very high porosity open cell or closed cell materials.
These models help to explain the obvious trends in the properties with density
[12]. Cancellous bone structure is anisotropic as well as porous and inhomoge-
neous. In the mechanics of porous materials, it is recognized that porosity is the
primary measure of local material microstructure. There appears to be a gen-
eral agreement that a tensor is the best second rank measure of local material
microstructure in many porous and composite materials. Following the work of
ODA [26], this tensor is generally called the fabric tensor. The definition of the
fabric tensor varies with the type of material and the investigator. For example,
KANATANI [24] expands the distribution density function in spherical harmonics
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and obtains an infinite series of even rank tensors. The first of these tensors is a
second rank tensor.

In Sec. 2 of our contribution we shall discuss structural tensors currently used
in the bone mechanics. Moreover, RYCHLEWSKI and ZHANG’S [31] anisotropy
measure will be applied. Constitutive equations for geometrically linear elastic
materials characterized by a positive definite structural tensor will be intro-
duced in Sec. 3. In particular, linear relationships will be given. In contrast to
the papers [5-10, 13, 39], the structural tensor will be treated as a parametric
tensor, and not as a variable. Such an approach is consistent with the general
theory of anisotropic tensor functions [2, 2123, 41}. In Sec. 4 we shall generalize
HOFFMAN’S [18] strength criterion, well known in the composite mechanics, in a
manner suitable for defining a yield condition for the trabecular bone as well as
constitutive relationships for elastic-perfectly plastic materials within the frame-
work of small deformations. In contrast to Tsai and Wu’s criterion [33 — 36}, which
was used in the papers [3, 4, 6, 8] as a strength criterion for bones, Hoffman’s
criterion requires carrying out only standard strength tests. The last criterion
requires no additional hypotheses concerning the determination of material pa-
rameters by performing multi-axial tests.

We observe that mechanical properties of bones have been studied in many
books and papers, cf. [8, 11, 12] and the references cited therein. The review paper
by KEAVENY and HAYES [25] summarizes the state-of-the art in the trabecular
bone mechanics.

2. THE FABRIC TENSOR

In the present contribution we shall provide a general framework for elastic
and elastic-plastic orthotropic materials, provided that structural anisotropy is
described by a second-order tensor, called the fabric tensor, cf. [4-6, 26].

Let us introduce this tensor. First, however, following WHITEHOUSE [40] we
recall the notion of the mean intercept length L. This author measured L in
cancellous bone as a function of direction on polished plane sections. Then L
is the distance between two bone/marrow interfaces measured along a line. The
value of L is a function of the slope © of the line along which the measurement
is made. WHITEHOUSE [40] showed that when L(©) is plotted in the polar co-
ordinates then the polar diagram produced ellipses. If the test lines are rotated
through several values of © and the corresponding values of L(©) are measured,
the results are found to fit the following equation of an ellipse, cf. Fig. 1b

1

(2.1) f(@j = My cos® @ + Myy sin? @ + 2Mi5 sin O cos O,
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where Mj;1, My and My are constants, provided that the reference line from
which the angle @ is measured is kept constant.

F1G. 1. a. Scanning electron micrographs showing the cellular structure of spongy bone
(a specimen from the femoral head), after {12]. b. Test lines superimposed on a cancellous
bone specimen. The test line are oriented at angle ©, which is varied to obtain the mean

intercept length L(®), after [40].

HARRIGAN and MANN [15] extended Whitehouse’s approach to the three-
dimensional case and showed that L(n), as a function of a direction n, would be
represented by ellipsoids and would therefore be equivalent to a positive definite
second-order tensor M defined by

1
L©)

where n is the unit vector in the direction of the test line.
CowIN [5-10] defined the fabric tensor of cancellous bone to be the inverse
square root of the mean intercept length tensor M:

1

(2.3) H= AL
Obviously, H is well defined because M is a positive definite and symmetric
tensor. The components of M or the mean intercept ellipsoid can be measured by
using the techniques described by HARRIGAN and MAN [15] for a cubic specimen.

GOULET et al. [13] applied the concept of the mean intercept length to inves-
tigate the relationships between the structural parameters for cancellous bone, to
determine their correlation with the mechanical properties and to evaluate which
parameters are important for maintaining the bone strength and integrity.

(22) = Mijninj y
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The fabric tensor H, as defined by (2.3), is an isotropic tensor function of M,
say H(M). It means that
1

T
v

(24) ¥QeO0@3) QHM)QT=HQMQ)=Q
Here O(3) stands for the full orthogonal group:
(25) 0@ ={al QQ"=Q"q=1},

where I is the identity tensor; moreover QT is the transpose of Q.
Let us pass to the determination of the function

-~ 1

2.6 H=HM)= —.

(26 o) =

Recalling that M is the symmetric positive definite tensor, by applying the spec-
tral theorem we may write

(27) M = Mii; ® i1 + Msip ® 1g + M3iz ® i3,

where M; (j = 1,2,3) are eigenvalues of the tensor M, and i; its eigenvectors.
It is assumed that

(2.8) My > My > Ms,
where
1 2 2
(2.9) M; = —?;IM + g\/I%vI — 311z cos {gw(z -1) - cp] , 1=1,2,3
and

213, — 9Ty IIps + 27111y
2(12, — 311))3

(2.10) cos 3¢ =

The basic invariants of M are given by

=M, Iy =~ (tr*M - trM?)
(2.11) . 2
My = detM = ; (tr°M — 3M tr M + 2tr M),

where tr M is the trace of M. In an orthonormal basis {e;} (i =1,2,3) we have:
M = M;je; ® e;, tr M = My; (Mz)ij = (M M)ij = M;x My;, etc.
Note that if

2.12 d =413, — 13,112, + 4131115, — 181,115,111, + 271113, < O,
M MM M
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then M; in (2.9) are different; for d = 0 two of the eigenvalues are equal. In other
words, the tensor M is then two-dimensional. Finally, for

(2.13) I3 = 311,

M is a spherical tensor.
In the case of three different eigenvalues, the eigentensors i; ® i; (no summa-
tion over j) can be determined in a unique manner:

1
(214) L®k=— [M2 = (1 — M;)M + 1Ty M; 1 (mo summation over ),
)

where
(2.15) mj = 2M7 — Iy M + Ty M; .

Consequently, the fabric tensor (2.3) satisfying (2.4) can be represented in the
following form:

(216) H = Hii; ® i; + Hsip R 12 + Hiiz ®1i3,
where
1
2.17 H=——, =123
( ) (3 \/Ml‘ ?

CowiN (8] concluded that mechanical properties of cancellous bone are in-
dependent of the pore size and that the largest and smallest values of the set
{H1, Hy, H3} are associated with the largest and smallest values of Young’s mod-
uli, respectively. The fabric tensor may be normalized by the requirement {8, 39]

(2.18) | trH = Hy + Hy + Hy = 1.

An alternative approach to the fabric tensor has been discussed by ZYSSET and
CURNIER [42].

An elementary microstructural description is contained in a single scalar prop-
erty such as relative density, while material anisotropy requires fabric tensors of
higher even rank [24]. KANATANI'S [24] approach can be applied to a class of
materials with strictly positive morphological properties that are radially sym-
metric. In these situations we can use a scalar-valued orientation distribution
function h(IN) > 0, where N = n ® n is the tensor product of the unit vector n
specifying the orientation. Assuming the function to be square integrable, it can
be expanded in a convergent Fourier series:

(219)  h(N) = g(N)1 + G - F(N) + G:F(N) + ...
= g(N)1+ GiFij(N) + GijuFiju(N) +...,
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where 1, F(N) and [F(N) are even rank tensorial basis functions and g, G and G
the corresponding even rank fabric tensors [24]. In bone mechanics we can use an
approximation based on a scalar and a symmetric, traceless second rank fabric
tensor. Then the first tensorial basis function is

(2.20) F-1ir,
3
while the tensorial coefficients are calculated by
1 15
(2.21) g=— / h(N)dS, G=22 / h(N)F(N) dS,
47 2 8 S

where S is the surface of the unit sphere. For the particular case of an ellipsoidal
distribution function we have

(2.22) h(N) =

We observe that since H is positive definite, therefore its normalization ac-
cording to (2.18) is admissible. It seems, however, that a natural norm for a
second-order tensor is

(2.23) H| = Ver He.

Consequently, more convenient to apply is the structural tensor defined by

— 1

(2.24) H IIHIIH
Structural tensors are not necessarily constructed according to (2.3) or (2.21).
A conceptually different approach consists in measuring the pore surfaces in
almost the same way as in continuum damage mechanics, and not just the MIN
(mean intercept length). Obviously, here we do not discuss the counterparts of
the fourth-order tensors describing damage behaviour.

RYCHLEWSKI and ZHANG [31] introduced the following measure of orthotropy
degree of H:

V2 (Hy — Hs)

We note that in [31] a general anisotropy measure has also been introduced for
tensors, tensor functions and tensor functionals. In the specific case of symmet-
ric second-order tensors this measure reduces to (2.25). From (2.25) we conclude
that if H is an isotropic tensor then §(H) = 0. From the results due to TURNER
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et al. [39] it follows that in the case of human proximal tibia, the average eigen-
values of H normalized according to (2.18) are equal to: H; = 0.429, Hy = 0.292,
H3z = 0.278; then we have 6(H) = 0.185. TURNER et al. [39] report the eigen-
values of H between 0.178 and 0.585. By using (2.25) we find 0(H)max = V2/2.
Hence we conclude that the morphological property of the bone investigated is
not so strongly orthotropic. Closer inspection of the average eigenvalues of H
given in [39] reveals that trabecular bone of the human proximal tibia behaves
approzimately as an transversely isotropic material (since Hy =~ H3). From Ta-
ble 1d of [39, pp.556] it also follows that the bone investigated is significantly
inhomogeneous.

A specific form of the fabric tensors M, H or J = gI + G is not required
for our subsequent developments. The only assumption is that M, H and J be
positive definite and symmetric second order tensors. In the next sections, for
the fabric tensor we use the notation H for brevity, remembering that this is not
necessarily the tensor defined by (2.3).

3. ELASTICITY

For small deformations both compact and cancellous bones exhibit elastic
properties, cf. Fig. 2. Below we propose elastic constitutive relationships for the
cancellous bone.

As is well known, elastic models in Green’s sense derived via energy formu-
lation are insensitive to the loading path and the whole deformation process
is reversible. Two equivalent descriptions of the constitutive relationships are
possible, namely

ow ow™*
(3.1) T=— 5 or E= T
where T is the Cauchy stress tensor and E is the small strain tensor. The spe-
cific elastic energy W and the specific complementary energy W* are convex
scalar-valued functions

(3.2) W=W(E), W*'=W*T),
which have to satisfy the following relations:
wW(0)=0, W*0)=0, T- E—trTE—W+W*,
(33) vQeS, W(E) =W (QEQT), )=w*(QTQ7),
PW - *w*

EcEl, E S T T 2>0.
VEEE], B p—r B0 VT €E, T TooT L2
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FI1G. 2. a. A schematic drawing showing the cancellous (trabecular) bone and the compact
(cortical) bone in the head of the human femur. b. Two stress-strain curves for wet compact
bone loaded in the longitudinal and transverse directions, after [12]. c. Compressive
stress-strain curves for several relative densities p; (i = 1,2, 3) of wet cancellous bone,
after [12].

Here S stands for the anisotropy group of the material considered, S C O(3), see
(3.5) below. We recall that for isotropic materials S = O(3). Once W is known,
the complementary potential is calculated as the Fenchel conjugate:

(3.4) W*(T) = sup {T "E-W(E)| Ee€ Ei}.

In this case W may be only piecewise regular and (3.3)3 is no longer valid in the
whole space. The specific energy is differentiable only once for materials with
different properties in tension and compression. Biomaterials like bones are of
such a type. The presence of microscopic damage also influences the macroscopic
response of bones. We hope to study the problem in the future.
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Here
(3.5) S={Qe0(3) QHQT =H]}.

If the eigenvalues of the tensor H are different then a constitutive equation
of the type (3.1) has the form

(3.6) T = oqIl 4+ ooH + asH? + 204E + a5 (EH + HE)
+ ag(EH? + H?E) + 307E?,

where

(3.7) Oy = of dm = dan m,n=1,...,7,

oLy’ oI, oIy’

and, in turn

(3.8) W(E) = f(In(E))
= f (trE, tr EH, tr EH2, tr E2, tr E*H, tr E*H?, trE3) .

For an inhomogeneous material W and W* depend explicity on x € {2 since H
depends on z, where {2 denotes the closure of a domain occupied by the body
considered in its undeformed configuration.

We observe that the above physically nonlinear constitutive relationships are
not identical with the equations proposed in the papers [5, 8, 9, 32, 39, 42].
According to our approach, the structural tensor H is not an argument of the
function (3.2) Consequently, the material functions o, appearing in (3.6) do not
depend explicitly on three invariants of H. In Eq. (3.6) the tensor H describes
only the microstructure of the material. Experimental data justify the assump-
tion of small elastic deformations for bones, cf. [25]. Those deformations are of
the order of 1%. The tensor H could be treated as an argument of the function
(3.2) provided that elastic deformations would lead to a significant change of
this tensor. Change of H with time would require application of viscoelastic or
elasto-viscoplastic constitutive relationships completed with an evolution equa-
tion for this tensor. Such an approach would enable us to describe quantitatively
the phenomenon of bone adaptation, which is out of scope of the present con-
tribution. The reader is referred to [7, 8, 11] for more details on adaptation of
bones to the loading. As we already know, bone is an inhomogeneous material.
It means that both the coefficients a,, (m = 1,...,7) and the tensor H depend
on the point in the bone. Consequently, they depend in an explicit manner on,
for instance, the density of bone at this point.
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Linearization of Eq.(3.6) with respect to E leads to the equation with the
following functions ayy,:

a1 ail] a12 ai13 tr E
(3.9) az | = a1z aze a3 trEH2 ,
(8%} ai13 Q23 ass trEH
Q4 = 44, a5 = ass, g = Qg6 , a7 =0,

where a;; = aj; (4,7 = 1,2,3), a4q, ass and agg are coefficients.
A matrix form of Hooke’s law for orthotropic materials is the following:

(3.10) Tex1 = Cox6E6x1
where
[e1 f3 fo 0 0 0]
fa e i 0 0 0
Co — |Asxa O fa f1 e 0 0 0
6= 1 0 Bas| |0 0 0 25 0 0]
3x3 g3
0 0 0 0 29 O
60 0 0 O 0 2
(3.11) i} ] T - =
T En
Ty Es
T33 E33
Tex1 = E¢x1 =
6x1 \/§T12’ 6x1 \/§E12
\/§T23 \/§E23
| V2113 | | V2E;; |

The formulas (3.10) and (3.11) mean that classical Hooke’s law: T = C-E is
written in the normalized basis

Jx, K=1,..6,
where

Ji=e1®e, Jo=ey®ey, J3=e3®e;,

J—l(e®e+e®e) J—l(e®e+e®e)
4—\/52 3+ e3®ey), 5= pler®estes®e),

1
Jo=—=(e1®ex+ex®eq).

V2

The matrix Cgye is obviously the representation of the tensor C in the basis
Jx®J, K,L=1,...6.
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Nine elasticity constants e;, f;, g; (i = 1,2,3) depend on the constants a;;,
44, ass, age and the eigenvalues of H in the following manner:

ei = a11+2a44+2H;(a1a+ass) + HE [ase+2(a13+aee )| +2a93 HP +ass HY |
fi=an + alz(Hj + Hk) -+ Hij[azz + a23(Hj + Hk) + aggHij]
(3.12) + ays(H} + HY),
1 1
9i = aaa + 5ass(Hj + Hy) + §G6G(HJZ + H}),
(i,j, k) = (1, 2,3); (2,3, 1); (3, 1,2).

We observe that the constants a11 and as4 are not associated with the eigenvalues
of H. For H = 0, a1 and ay44 are the so-called Lamé’s constants of an isotropic
material. It can easily be verified that if two of the eigenvalues of H are equal
then the matrix specified by (3.11); contains five independent constants (the
transverse isotropy). Further, if all of the eigenvalues coincide then only two
constants are independent (the isotropy). In case of orthotropy, six different
eigenvalues of the matrix (3.11); define six Kelvin’s moduli, cf. [1, 28—31]. The
remaining three nondimensional constants, the so-called stiffness distributors,
determine the tensorial basis in which the matrix (3.11); is diagonal. Kelvin’s
moduli are obviously the invariants of the stiffness tensor in the Hooke law.
In the paper [31] it has been shown how to define the measure of the degree of
orthotropy of a material provided that the spectral decomposition of the stiffness
tensor is available.

If the principal axes of orthotropy are known, determination of Kelvin’s mod-
uli is easy since they have the following form:

(313) /\1 = Az 3 /\i+3 = 29,- y 1= 1,2, 3.

Here A; (i = 1,2,3) are the eigenvalues of the matrix A3 and g; are Kirchhoff’s
moduli. To determine the ordered eigenvalues of this matrix, we apply the for-
mulas (2.9)—(2.11), where M is to be replaced by A3zx3. The ellipticity condition
(3.3)3 reduces then to simple inequalities: Ax > 0, K = 1,...,6. Next, to find
the stiffness distributors, a standard procedure of linear algebra is used. More
precisely, from eigenversors of the matrix Asyxs an orthogonal matrix Rg3yxg is
constructed. The diagonal form of Azxs is then given by

(3.14) : R3X3A3><3Rgx3 = diag[Al, Az, A3].

By using the invariant, cf. [14]

1
(3.15) cos ¢ = ‘2‘(trR3><3 — det R3xs), ¢ € (0,7),
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one can represent the elements of R3x3 in the following form:

(3.16) Rij = (det Rgxg)[rﬂj + (COS ¢)((52] - 1“,'1"]') - (Singb)e@jkrk],
where
€k
3.17 = IR
( ) " 2sin ¢

Here ¢;;, are components of Ricci’s permutation symbol: €123 = €231 = €312 = 1,
€132 = €321 = €213 = —1, the remaining components being equal to zero. Note
that r; are components of the unit vector of the rotation axis by angle ¢ in
the basis J; (¢ = 1,2,3). These are not rotations or rotations with reflexions of
the basis e;. For instance, when spherical coordinates are used, then r; can be
expressed as functions of two angular parameters, say <y and 7:

1
(3.18) I3, = m[Rzz — R32, R31 — Ri3, Ri2 — Ra1]

= [sinycosn, sinysinn, cosn),

where v € (0,7), n € (0,27). Consequently, apart from six Kelvin's moduli
the angles ¢, v and 7 uniquely determine the elastic moduli of an orthotropic
material. The above procedure has been applied to the determination of the
angles ¢, v and 1. We observe that eigenversors are not determined in a unique
manner: if y is an eigenversor associated with an engenvalue A then —y is also
an eigenversor. Spectral decomposition of the matrix Asx3 (and consequently,
of the tensor C) is, however, unique since matrix representations of eigentensors
of the form:

Pg1><)3 = Rngdiag[lvO’O]R&@ )
(3.19) P, = R, ,diag[0, 1,0]R3xs ,
P, = R, ,diag0,0,1]Rsyx3,

X

associated with ordered eigenvalues are uniquely determined. The eigentensors
with matrix representations (3.19) in the basis J; ® J; (¢,5 = 1,2,3) can be
determined directly from the formulae (2.14) and (2.15), provided that M and
its invariants are replaced by A;;J;®J; and its invariants, where A;; are elements
of the matrix Agys.

We observe that stiffness distributors are not necessarily given by the angles
¢, v and n. Three independent nondimensional parameters, which uniquely de-
termine the representation of eigentensors (3.19), are likewise acceptable. For
instance, Euler’s angles are possible candidates for such parameters.
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In case of orthotropic materials, the spectral decomposition of C is given by

(3.20) C=MP+... +AsPs,
where
(3.21) IP’iP,Ef)Jk ®J, Pit3 =Jdir3 ®Jiq3,

i,k,01 =1,2,3 (no summation over 7).

Here P,gf) are elements of the matrix ngi 3 and are defined by (3.19).

As far as practical applications are concerned, an inverse of Eq. (3.10) is nec-
essary (e =C LT, C™1 = M\ 1Py + ... Ag ' P):

(3.22) Eox1 = CggTox1,
where
—pl rs T2 0 0 0 7
rs p2 M 0 0 0
Te T1 P3 0 0 0
1
(3.23) Cils=10 0 0 5% 00
1
0 0 0 0 =s2 O
1
(00 0 0 0 351
and, in turn
dpi = ejey, — f? dr; = fjfx —eifi (no summation over 1),
1
(3.24) s = 7 d = erezes + 2f1fafs — e1fi — eafs — esf3,

(i7j7 k) = (17273); (2?37 1)7 (3’ 172)'

The constants p;, 7, s; (i = 1,2,3) can be determined from standard tests
performed on an orthotropic material.
Obviously, in order to obtain (3.22) we can directly apply (3.1)2, thus arriving
at
(3.25) E =1+ H+ B3H? + 28, T+ Gs(TH+HT)
+ Be(TH? + H2T) + 36, T2,

where

(3.26) B =
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and, in turn
(3.27) W*(T) = g(Jmn(T))
=g (trT, tr TH, tr TH2, tr T2, tr T2H, tr T?H2, tr T3) :

Linearization of Eq. (3.25) under T leads to the equation with the following
functions G,:

B b11 b1a b3 tr T
— | by by b trTH |,
(3.28) B2 12 b2 ba3 g
B3 b1z bos b33 trTH

Ba = bag, Bs = bss , Be = bes , Br =0,

where b;; = bj; (1,7 = 1,2,3), bas, bss and bgg are coefficients. The constitutive
relationship (3.25) combined with (3.28) is more convenient for experimental
verification since tests are usually carried out for a given loading. Relations
between the coefficients (3.28) and the classical orthotropic constants p;, r; and
s; are analogous to (3.12). In the procedure just outlined we do not explicitly
exploit the fact that (3.25) is inverse to (3.6). The coefficients p;, r; and s; have
a clear mechanical interpretation. We observe that a search for a simple relation,
for instance between Young’s moduli and the eigenvalues of H is not justified,
cf. [37]. In fact, Eqgs. (3.12), (3.24), (3.29) - (3.31) imply the relation between the
classical coefficients of an orthotropic material and the tensor H.
Following Hayes’ paper [16], the following relations can be established:

(i) generalized Young’s moduli for an arbitrary direction n

(3.29) = p1ni + pans + pang + 2(r1 + 2s3)n3n3 + 2(ry + 2s2)ninj

1
E(n)
+ 2(’!‘3 + 281)n%n§ y
where n is an arbitrary versor with the components n;;
(i1) generalized Poisson’s ratios for an arbitrary plane (for a pair of orthogonal
directions n, m)
v(m,n) _ v(n,m)
E(m) ~  E(m)
+ ri(m3ng + mind) + ra(ming +mind) + rs(ming + min?)

(3.30) - = pimin} + pymin3 + psmin;

+ 4s1myimeoning + 4somimaning + 4sgmaomsnans ,

where m is a versor with the components m;;
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(iii) generalized Kirchhoff moduli for an arbitrary plane (for a pair of orthog-
onal directions n, m)

1 1
B3 g = G = 4t + pandd + pardd

+ 21"17712771371;27’1,3 + 27‘2m1m3n1n3 + 2r3m1m2n1n2

+ s1(ngmg + mans)? + sa(nims + ming)? + s3(nimg + mlng)z].

In Table 1 are presented averaged experimental data of the so-called technical
elastic constants, which were obtained by an ultrasonic method, cf. [38].

Table 1. Technical constants (ultrasonic technique, after [38]).

Technical constants | human femoral | human cancellous bone

(average) cortical bone (proximal tibia)
E, 11.7 (1.6) [GPa] 237 (63) [MPa)
E; 13.2 (1.8) [GPa] 309 (93) [MPa]
Es 19.8 (2.4) [GPa) 823 (337) [MPa]
G2 4.53 (0.37) [GPa] 73 (38) [MPa]
Gis 5.61 (0.4) [GPa] 112 (48) [MPa]
Gas 6.23 (0.48) [GPa] 134 (49) [MPa]
V12 0.375 (0.095) 0.169 (0.304)
V21 0.416 (0.118) 0.209 (0.209)
V23 0.237 (0.083) 0.063 (0.217)
V32 0.346 (0.096) 0.245 (0.626)
113 0.374 (0.108) 0.423 (0.356)
V31 0.234 (0.088) 0.145 (0.123)

Average technical constants for 60 specimens of human femoral cortical bone, where the
1-direction is radial, the 2-direction is circumferential and the 3-direction is longitudinal. Av-
erage technical constants for 9 specimens of human cancellous bone from the proximal tibia,
where the 1-direction is anterior-posterior, the 2-direction is medial-lateral and the 3-direction
is longitudinal. The numbers in parentheses are the standard deviations.

From Egs. (3.29) —(3.31) the off-axis technical elastic constants in a plane
of an orthotropic, linearly elastic material can be represented as a function of
off-axis angle by the following equations, cf. Figs. 3-5

1 1 1 2 1

(‘P) = E: cos* p+ (ZJE_ —1%2—) sin’ <pcos2 (,0+E—2 sin* g,

1 2 2 41/12 1 ) .. 92 2 1 . 4 4
3.32 =2 ( 4+ — 4+ —=—— ) sin® p cos” p+ —(sin” p+cos” ),
(3.32) G(y) E, E; E1 G peos e G12( 4 2

1 1 1 .
v(p) = E(p) [Elf (sin? p+cos* ) — (E1+E_G_12> sin?  cos? <p],

where ¢ is referred to the 1-direction.
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1 .
[GPa]

F1G. 3. The off-axis Young’s moduli as a function of off-axis angle Eq. (3.32):; 1-plane 1-2,
2-plane 1-3, 3-plane 2-3; a) human femoral cortical bone, b) human cancellous bone from
the proximal tibia.

a) b)

FiG. 4. The off-axis shear moduli Eq.(3.32),; 1-plane 1-2, 2-plane 1-3, 3-plane 2-3;
a) human femoral cortical bone, b) human cancellous bone from the proximal tibia.

Similar relationships hold true for the 1-3 plane and 2-3 plane. From Table 1
and Figs.3, 4 and 5 it follows that the human femoral cortical bone may be
treated approximately as a transversely isotropic material. On the other hand,
such an approximation would not be justified for the cancellous bone. Comparing
the standard deviations we conclude that the cancellous bone is considerably
more inhomogeneous than the cortical bone. In our opinion the tests performed
by TURNER et al. [39] should additionally be completed by the determination of
eigenvectors of H. The direction of orthotropy would then be determined more
precisely. We note that the data provided in Table 1 have been obtained under
the assumption that the directions of orthotropy of all samples are the same.



FABRIC TENSORS IN BONE MECHANICS

a)

F1G. 5. The off-axis Poisson’s ratios Eq. (3.32)3; 1-plane 1-2, 2-plane 1-3, 3-plane 2-3;
a) human femoral cortical bone, b) human cancellous bone from the proximal tibia.

b) 0.4

|
!
i
;
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Table 2 contains Kelvin’s moduli and parameters determining stiffness dis-
tributors for the analyzed cortical and cancellous bones, and it confirms our

earlier assertions.

Table 2. Kelvin’s moduli and parameters determining stiffness distributors for

the analyzed cortical and cancellous bones.

human femoral
cortical bone

human cancellous bone
(proximal tibia)

A1
A2
A3
A4
As
A6

¢

v

n
det R3x 3

46.239 [GPa)
13.-15 [GPa]
8.828 [GPa]
1122 [GPa)
@ [GPa)
9.06 [GPa)

1190.75 [MPa]

324.80 [MPa]

210.43 [MPa)
224 [MPa]
268 [MPa]
146 [MPa]

0.3997

0.416m
1.484~n
-1

In case of transverse isotropy, one has four independent Kelvin’s moduli and

only one angular parameter defining the stiffness distributor, cf. [1, 28 -30].

Closer inspection of Tables 1 and 2, account being taken of the standard
deviations given in round brackets in Table 1, leads to conclusion that the cortical
bone may be regarded as a transversely isotropic material since the appropriately
underlined values of Kelvin’s moduli are practically identical while the angles ¢

and v only insignificantly differ from 7 /2.
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The spectral decomposition of stiffness tensors of cortical and cancellous bones
are obtained by applying the appropriate formulae derived earlier and the data
provided in Table 2.

4. ELASTIC-PERFECTLY PLASTIC MODEL

Let us denote by Ee, Ep the elastic and plastic part of the strain rate tensor.
As usual, we assume that

(1) E-E +E

and construct the constitutive relationships for elastic perfectly-plastic materials.

The elastic behaviour is described by Eﬁxl = CG‘QGTWL General form of the
yield function is assumed in the form

(4.2) G(T) = F(Ju(T)) = F(tr T, tr TH, tr TH?, tr T2, tr T?H,
tr T?H?, tr T?)
while the yield condition is given by

(4.3) G(T)—1=0.
The associated flow rule assumes the form
. oG
. = A— A>0.
(4.4) E,=X 5T’ >0

Since the cancellous bone reveals different plastic behaviour in tension and com-
pression (cf. [7, 12, 22]), therefore we propose to assume HOFFMAN’S criterion
[18], cf. also [4, 20, 33—35]. Written in an invariant form, this criterion is ex-
pressed by [19]

(4.5) Cl(Kg - K3)2 + 02(K3 - K1)2 -+ C3(K1 - K3)2 + 2¢4Kg + 2¢5 K5
+ 2¢6 K4+ 7K1+ cgKo +c9K3 — 1 =0,

where
1( 1 + 1 1 )
== - ,
VT2 \YeYe | YiYe YaVa
. _1( L S >
27 2 \VisYs | YaYa YeYe)
1 1 1 1
46 C _‘—< + - >a
(4.6) 2= 3\ Vit T VaVa  Vava
1 1 1
264=—, 2C5=—, 206=——,
kgS k%3 k%2
Yo —Yn Yo Yy Y3 -V
o= 8=~ v T Vv

YaYa ’
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Here Y, Y} and k;; are the yield limit in compression and tension in the di-
rections of orthotropy and the yield limit in shear in the principal planes of
orthotropy, respectively. The invariants K, (p = 1, ...,6) are given by

K1 = {r MlT, Kg =tr MzT, K3 = tr M3T,
1
Ki=3 [(tr M;3T)? — (tr M T)? — (tr MoT)? — tr M; T2

+ tr M T2 + tr M2T2],

1
47 Ks=g [(tr M,T)? — (tr M1T)? — (tr M3 T)2 — tr Mo T?
+tr M T2 + tr M3T2],
1
Ko =3 [(5r My T)? — (br Mo T)? — (6r My T)? — tr M, T2

4+ tr MoT? 4+ tr M3T2] .

The tensors M; = i; ® i; (no summation over j) are the eigentensors of H, cf.
(2.14). By using the following relation

tr T tr M;T®
(48) tr HT® == h3x3 tI‘MgTa y o= 1,2,
tr H2T® tr M3 T
where
1 1 1
(4.9) h3x3 = | Hi H> Hs|,
H{ H} H}
the criterion (4.5) can be written in the form (4.3).
If
(4.10) det(h3x3) = (H2 — H1)(H3 — H1)(Hs — H2) #0,

or the eigenvalues of H are different then, by using the inverse matrix
H,H? — H3H? HZ - H? Hs;—-H,
H3H? - HHH? H? - H} H;-H;|,
H\H? - H,H?} H} - H? Hy—H

_1 _
(4.11) Byxs = det(h3zx3)

we establish (4.5) as claimed.
For Y,; = Y;; the criterion (4.5) reduces to HILL'S criterion [17], which has
also been applied in the bone mechanics, cf. [3, 27].
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The canonical form of Hoffman’s criterion has been derived in [20], where an
alternative interpretation of the coefficients ¢; has also been provided. Moreover,
on the basis of available data for the compact bone, the applicability of the
criterion has been verified.

By using Eq. (4.5) and the transformation formula of tensor components under
orthogonal transformations, one can readily derive the formulae for the determi-
nation of a sample strength in case of compression and tension, in the direction
defined by an angle ¢, in each of the principal orthotropy planes. Particularly,
in the case of the orthotropy plane 1-2 this formula is given by

(412) Utp — ;%’E_____ VA‘P ,
24,

where

A, = (By)* +44,, B, = C7 + (Cs — C7)sin’ ¢,
(4.13) A, = Cy+ C3 + (—4C3 — 2C2 + 2Cs) sin® ¢
+ (4C5 + C + C2 — 2Cs) sin Q.

Here the sign + (—) refers to tension (compression).

b)
X G, [MPa] G, 4MPa] 5 1 15 0

1407 120, ST
|

120 -~ -140
|
| 1180 |

80 - .
; -200

60 ! |
1 - p i

; B T -2207
0.5 1 1.5 |

FIG. 6. Strength limit of the human femoral cortical bone in: a) tension, b) compression. The
angle ¢ is taken with respect to the long axis of the bone. ® — the experimental data (jointly
with error range), after Reilly’s thesis (1974), reproduced after [5].

Figure 6 depicts the relation (4.12) for a human cortical bone. As we al-
ready kuow, this bone may be treated as a transversely isotropic material. The
constants Cy, Cs, Cs, C7 and Cg have been determined by exploiting the experi-
mental data presented in the paper [4]. Table 3 summarizes the data necessary
for the calculation, which uses Eqgs. (4.12) and (4.13), for this type of bone.
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Table 3. Data for the determination of the strength in tension and compression
in case of the human femoral cortical bone.

[MPa] Y =132 Y, = 187 Y, = 58 Y, =132 k=67
[MPa™2] [C; =1.104-107* | C2 = C3 Cr=223-107%|Cs = Co 2Cs = 2Cs
=2.026-10"° =967-107%|=2.228-10"*

5. FINAL REMARKS

The present paper confirms the usefulness of the concept of fabric tensor
in bone mechanics. The available experimental data reveal that bones are aniso-
tropic, in general orthotropic, materials. Their properties depend on the location,
i.e. they are inhomogeneous materials. Our consideration have deliberately been
confined to elastic and elastic-perfectly plastic modelling of bones. In fact, bone
is a porous material with a very complicated hierarchical structure. For instance,
one can treat the bone as consisting of piezoelectric skeleton filled with a con-
ductive biofluid (Telega and Wojnar, in preparation). It seems, however, that a
specific bone model assumed depends on the problem investigated. We believe
that in contact problems of orthopaedic biomechanics, the anisotropic models
studied in this paper can provide reliable information on stress distribution in
joints after arthroplasty. More precisely, to model the stress distribution in a hu-
man joint after arthroplasty, one has to take into account the properties of the
bone in the vicinity of a prosthesis. The problem is still discussed in the relevant
literature.
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