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PLASTIC DESIGN OF ELEMENTS OF BOLT AND PIN JOINTS
SUBJECTED TO COMPRESSIVE LOADS

W. ZOWCZAK (KIELCE)

Two types of statically admissible stress fields for plastic design of are proposed. They are
constructed by the method of characteristics (slip-lines), known from the theory of plastic flow.
The structure of the fields is described and examples of possible applications are presented.

1. INTRODUCTION

Fasteners of circular cross-sections such as bolts, pins or rivets are most widely
used for connecting various structural elements in mechanical and civil engineer-
ing. Plastic design of such connections was presented in a number of papers
[1-5, 7-10]. Theoretical solutions were found to be in a good agreement with
experimentally determined optimum dimension ratios. All these solutions were
coufined to the case, when the external loads transmitted by pins or bolts gen-
erate mostly tension within the critical cross-sections of designed elements. In
practical applications, however, such elements as connecting rods or truss mem-
bers loaded by compressive forces are met equally often. For slender elements,
stability determines the minimum dimensions of critical cross-sections. But for
short elements and in the vicinity of bearing surfaces, the possibility of damage
by excessive plastic deformation without the stability loss should be taken into
consideration.

The present paper deals with this case. Plastic design of elements subjected
to compressive loads is proposed and new statically admisible stress fields are
constructed. According to the extremum principles of the mechanics of plastic
flow, a statically admissible stress field (i.e. stress field that satisfies equilibrium
equations and stress boundary conditions and does not violate the yield condi-
tion), determines the upper bound of the load carrying capacity of the structural
element under consideration. If the shape of the element is not prescribed in ad-
vance, statically admissible stress field gives safe estimate of it. This preliminary
design must then be corrected from the point of view of structural integrity,
possibility of buckling, fatigue strength etc., so that the final contour could sat-
isfy all the structural and strength requirements. The principles and methods of
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plastic design of structural elements of complex shape may be found in review
papers and monographs by SzCZEPINSKI and his collaborators (see e.g. [3-5]).

The structural elements presented below are plane, and the stresses perpen-
dicular to the plane of the drawing vanish. The material is assumed to obey the
Tresca yield criterion.

2. THE METHOD OF CHARACTERISTICS (SLIP-LINES)

Two general methods of construction of statically admissible stress fields are
applied for plastic design — the piecewise-homogeneous stress field technique [4]
and the slip-line technique. The latter method gives better (more economical)
estimates of shape and is more convenient to apply in the vicinity of curvi-linear
bearing surfaces. It was proved useful in plastic design of elements of pin joints
loaded by tensile forces [9, 10].

The slip-line technique is the method of solving plane strain boundary-value
problems in the mechanics of plastic flow. It can also be applied to plane stress
problems, provided the principal stresses are of opposite signs, so for the Tresca
yield conditions, there is

(2.1) 01 — 09 = op = 2k,

where oy is the yield stress under uniaxial tension, k — the yield stress under
pure shear. The equilibrium equations together with the yield condition form a
system of partial differential equations of hyperbolic type, therefore it has two
families of real characteristics. They are determined by the equations

dy m .
(2.2) = tg (go + Z)’ X + ¢ = const (a-lines),
(2.3) Z—i = tg ((,0 — —Z), X — ¢ = const  ([-lines),

where the function x is proportional to the sum of the principal stresses

(2.4) X = 2—1—(01 + o3),

Opl
and ¢ is the angle between the z-axis and the direction of o; (larger principal
stress).

Both families of characteristics form together an orthogonal net inclined at
angles /4 to the direction of principal stresses, so they coincide with the lines
of maximum shear stress (slip-lines). The solution of a boundary-value problem
consists in numerical integration of equations of characteristics. The coordinates
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of all the nodes of the net and the corresponding values of x and ¢ are calcu-
lated. These values uniquely determine the state of stress at each node. More
detailed description of the slip-line method can be found in (6] or in textbooks
or monographs concerning the mechanics of plastic flow.

3. STANDARD STRESS FIELD OF TYPE X

Assume that the structural element under consideration is in contact with the
bolt of circular cross-section, which exerts pressure of the maximum permissible
value op), uniformly distributed along the arc AA’ (Fig. 1); the contact surface
is assumed to be smooth.

This distribution defines the Cauchy boundary value problem — its solution
uniquely determines the stresses within the whole area below AA’ , bounded by
the outer characteristics AE and A’E’. The stress field is axially-symmetrical
in respect to the centre O of the circle, the principal directions being the direc-
tions of the polar coordinate system. The principal stresses are expressed by the
formulae

(3.1) o = oplnl,
0

T
(3.2) Oy = 0op) (ln— - 1),

o
where g is the distance from the given point to the point O, and r is the radius
of the bolt. The characteristics are logarithmic spirals inclined at angles /4 to
the radial direction. Their equations in polar coordinates g, v, are

(3.3) o =ce (o-line),
0 = ce’ (B-line),

where ¢ is a constant, assuming different values for different characteristics.

The stress field in the region ACED is the solution of the inverse Cauchy
problem, based on the known stress distribution along the slip-line ACE and
on the condition, that the boundary AD (a priori unknown) is stress-free. The
curve AD is a trajectory of principal stress 02, which on the stress-free contour
is equal to the yield stress, so it must satisfy the relations

dy T
(3.5) = tg (cp + 5), x = 0.5.

The numerical procedure of solving the inverse Cauchy problem and determining
the free boundary is described in [5].
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The point D is situated at the intersection of the free contour and the slip-line
BCD, starting at the point B in the middle of AA’. This slip-line belongs to the
a-family. It follows from (2.2)2, that

(3.6) Xp T @5 =Xpt¥p-
The direction of the larger principal stress (o7 = 0) at B is horizontal, so we
have ¢, = 0. The second principal stress assumes the value o3 = —oy1, therefore,

according to (2.4), x, = —0.5. It follows from (3.5), that also x, = —0.5. So, in



PLASTIC DESIGN OF ELEMENTS OF BOLT AND PIN JOINTS 31

order to satisfy the relation (3.6), there must be ¢, = 0. Thus, the tangent to
the stress-free contour at D (direction of o9) is vertical. This point was chosen as
the begining of discontinuity line DEF. The state of stress in the region below is
assumed to be uniaxial compression s in vertical direction. On the basis of this
assumption and the known stress distribution within the slip-line net, we can
determine the course of discontinuity line. Two equilibrium conditions enable
us to calculate at each consecutive point, the local direction of the curve and
the unknown value of s. The numerical procedure necessary to perform these
calculations was used in several other problems of plastic design [8—10). The
discontinuity line intersects the symmetry axis at the point F. The values of s
change from —oyp; at the point D to opi(In(e, /r) — 1) at the point F (according
to the formula (3.2)).

The whole stress field is symmetrical with respect to the axis OL, so the
discontinuity line D'E'F is symmetrical to DEF. The line MFM' perpen-
dicular to OL is assumed as another axis of symmetry. Thus, the stress field
FD"A"B"A" D" is identical with FDABA'D'. The stress distribution along
A"B"A" is the same as along ABA', ie. the uniformly distributed pressure
equal to the yield stress —oy.

In order to transmit these stresses to the compressed strip A” A" KK', ad-
ditional stress field is required. The region A”B"A" G is assumed to be under
biaxial uniform compression equal to the yield stress. Other possible cases of
support require other configurations of the region of biaxial compression.

The total load transmitted by the presented stress field is equal

(3.7 F = opg2a = op1g2rsine

where r is the radius of the bolt, g — thickness of the designed element, 2a — width
of the compressed strip A" A" KK'. The ratio a/r = sine is the characteristic
parameter of the field. The solution presented in Fig. 1 was constructed for the
particular value of this parameter, namely a/r = 0.5.

Table 1.

alr c/r h/r €

0 1 1 0

0.1 1.034 1.102 0.100
0.2 1.069 1.208 0.201
0.3 1.106 1.319 0.305
0.4 1.145 1.436 0.412
0.5 1.188 1.561 0.524
0.6 1.235 1.696 0.643
0.7 1.290 1.846 0.775
0.8 1.356 2.020 0.927
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For practical purposes, it is convenient to approximate the designed contour
as shown in Fig. 2. The data necessary to draw this approximation for 0 <
a/r < 0.8 are summarized in Table 1 (the limit case a/r = 0 may be useful for
interpolation). In analogy to the notation introduced in [5] and applied in [10],
the present stress field will be denoted as the standard stress field of type X.

4. PLASTIC DESIGN OF A BOLT CONNECTION

The stress field presented above may be used for plastic design of various
elements of bolt and rivet connections. A simple example of such element is
shown in Fig. 3.

The external load is applied by means of three bolts, each of them exerting
the force of the magnitude

(4.1) F = opig92a.

The bolt 1 is positioned on the axis of symmetry; the bolts 2 and & are situated
below. The spacing of bolts is determined by the requirement that the material
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between them must carry the force F' exerted by the bolt 1. The width of the
compressed strip AA'B’B must be 2a, so the distance between the centers of
bolts 2 and & equals 2(r + a). The minimum distance d between the center of
the bolt I and the horizontal line joining the centers of the bolts 2 and & results
from the condition that the stress field of type X must be situated between
these three bolts. The minimum takes place when the bolts 2 and 3 are tangent
to the external contour of the field of type X. For the case shown in Fig. 3, i.e.
a/r = 0.5, there is d/r = 2.48. This is the upper (safe) estimate of this distance;
a smaller value of d may cause that the designed element will not carry the
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prescribed load without considerable plastic deformation that will change either
the dimensions or the flow of forces within the element.

The external loads are transmitted by means of stress fields of type X to
the compressed strips UDIH, AA'B'B and U'D'I'H’, respectively. The stresses
—0opl, uniformly distributed along BB’, are then transmitted to the sections IF
and I'F’ by means of the stress field BDIFF'I'D'B’. This stress field, shown in
some detail in Fig. 3, is piecewise-homogeneous. It is presented in monograph [5]
as the basic stress field of type E and will not be described here.

The strip UDIH transmits the stresses —oyp, into the segment HI, so along
the whole segment HF there are uniformly distributed stresses equal to the
yield load. The same state of stress is distributed along the symmetrical segment
H'F'. These stresses are now transmitted to the segment MM’ by means of the
stress field MKHFF' H'K'M', also of type F (this field is turned upside-down
in relation to BDIFF'I'D'B'). Thus the whole load exerted by the three bolts
is transmitted to the compressed strip MM'N'N.

The upper contour of the element is designed in view of its integrity rather
than strength. The arcs RS, PP’ and R'S’ are assumed to have the radius r.
The outer radius rg may result from the condition of minimum width of the
material around the holes, or simply be taken as equal to the radius of the head
of the bolt or rivet. The arcs are connected by straight lines PR and P'R'. At
the point S the contour follows another arc ST, which is tangent to the arc RS,
the segment K F and the stress field X. The arc S'T" is symmetrical to ST.

5. STANDARD STRESS FIELD OF TYPE V

The standard stress field of type X was constructed under the assumption,
that the tractions exerted by the bolt are equal to the yield stress. The field
of type X may thus be used to design connections in which such stresses are
admissible — as it is in most permanent joints. In many cases, however, the
admissible bearing tractions are much lower. This applies especially to movable
connection, when the pin can rotate in relation to the designed element. The
smaller bearing tractions result in smaller friction and reduce wear. The stress
field for the case, when the pressure on the bearing surface is lower than the
yield stress, will be described in the present section.

Figure 4 shows analogous solution for the plane bearing surface. It was orig-
inally proposed by WINZER and CARRIER [6] and is denoted in [5] as the basic
stress field of type D. The whole stress field is composed of four homogeneous
subfields, each of them being in the limit state. The pressure ¢ > —oy distributed
along the line AA’ is transmitted into the region AA’B. The principal stress in
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vertical direction in this region is p = ¢ + op1. The discontinuity line AB forms
an angle w with the loaded surface AA’. The value of w may be calculated from
the relation

(5.1) q = —op1(1 — cos 2w).
The other principal stress is related to w by the formula
(5.2) P = Op] COS 2w.

The free contour AC and the line AB also form the angle w. The region
ABC undergoes uniaxial compression of the limit value —op). The same state of
stress exists in the region A’BC’ — symmetrical to ABC. The discontinuity line
BC is perpendicular to AC. The region BC'C’ is in the state of biaxial isotropic
compresion equal to the yield stress —op,). The same stress is applied along the
other loaded surface C'C". The condition of general equilibrium requires that

(5.3) q/op = a/b.

In Fig.5 we have a similar stress field; the bearing surface AA’ in this case
however, is not plane but cylindrical with the centre of curvature at the point O.
The regions AA'C, ABC and BB’'C are thus not homogeneously stressed and the
discontinuity lines AC and BC' are curvi-linear rather than straight segments.

In the region AA'B an axially-symmetrical stress field in respect to the centre
O is assumed. The principal directions are the directions of the polar coordinate
system, and the principal stresses are expressed by the formulae

(5.4) 0p = q+opln § ,
(5.5) Oy = —0, + 0pl,

where p is the radius vector; for o = r, there is o, = q.
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The stress field in the region ABC' is constructed with the use of the slip-line
method. It is assumed, that the stress field in the vicinity of the point A is
identical to that at the corner A in Fig. 4. Figure 6 shows it in more detail. The
state of stress in the region AFK is described by the formulae (5.1) and (5.2),
and the region AK L undergoes uniaxial compression of the value —0pl.

The line KL forms an angle of /4 with the stress-free contour AL and
with the direction of principal stress —op). This is therefore the slip-line (of the
a-family). The stress field between the curve n and the a priori unknown dis-
continuity line KM P is defined by (5.1) and (5.2). On the basis of the known
(uniform) distribution of stresses along KL and the condition of equilibrium,
that must be satisfied along the segment KM of the discontinuity line, the in-
verse Cauchy boundary value problem is solved. The solution gives us the run
of the discontinuity line KM and of the slip-line LM (belonging to the -family)
together with the whole slip-line net, which determines the stress distribution
within the region KLM.

The slip-line net and the stress distribution in the region LMN is found as
the solution of another inverse Cauchy boundary problem, based on the known
form of the slip-line LM and the condition, that the boundary LN is stress-free.
The sequence of solving the inverse Cauchy problems of these two types is then
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A

repeated until the discontinuity line AB intersects the axis of symmetry and the
stress-free contour AC reaches the edge CD of the compressed strip CC'D'D.
The width 2a of this strip is determined by the global equilibrium condition
(similar to (5.3))
(5.6) 2= 2 gine.

T opl

The finite dimensions of the region AF K L require the existence of an auxiliary
stress system located between the arc m representing the bearing surface and n
- the boundary of the axially-symmetrical stress field defined by the formulae
(5.4) and (575). The structure of this auxiliary field is shown in Fig.7. For the
sake of clarity, this figure has been drawn disregarding the real proportions.

The field is composed of several regions separated by the lines of stress discon-
tinuity. These discontinuities are of statically admissible type, i.e. when crossing
a discontinuity line, the normal and shear stresses acting on the plane of discon-
tinuity line are continuous but the normal stresses parallel to discontinuity can
have different values on both sides of it.

The polygon FKIRTSJH is composed of triangular elements of two differ-
ent kinds. The elements are isosceles triangles, congruent within each of both
families, the directions of compressive principal stresses being perpedicular to
the bases of the triangles. Each element is in the limit state. The neighbouring
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elements are separated by the lines of stress discontinuity. These lines form an-
gles n with the corresponding principal directions (sec e.g. [5]). The directions of
the compressive principal stresses in the neighbourig elements form angles §. It
is easy to see that the relation holds

(5.7) 2n+d=m/2.

The triangles HIK, IJR and RST (the second half of it is on the other side of
the axis of symmetry) of the first family are subject to the same state of stress as
is the region AF K, so the principal stresses follow the formulae (5.1) and (5.2).
The principal stresses within the triangles FHK, HJI and JSR are given by
the following expressions:

(5.8) 8 =p — Op] COS 21),
and

(5.9) t = q — op1cos 2.
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The region TW K IR, determined by the arc WK and the line KI, RT, and
RT, is subject to biaxial isotropic compression under stresses q. The same state
of stress exists in the region AGF. The region FVSJH, bounded by the arc
FV and the segments F'H, HJ and JS, undergoes biaxial isotropic compression
under stresses ¢. The state of stress in the region GUV F is axially symmetrical,
with the centre at the point O. The circumferential stresses are constant and
equal ¢, while the radial stresses change from the value ¢ at the arc FV to

(5.10) { = T_F+q(f.£_1)’
.

T

at the arc GU (r, is the radius vector of the point F' in relation to O).

The stress field of Fig. 5 may be considered as the limit case, when the dimen-
sions of the region AFK L (e.g. the length d of the slip-line K L) are vanishingly
small in comparison to the radius r. We have then r, — r, § — 0, n — 7/4,
tr =t = q, d = 0, and the arcs m and n (Fig.6) coincide. In numerical
calculations the dimensions of the region AFK L must be small but finite; the
computation of the stress field in Fig. 5 has been performed for d = 0.000 057.

The point B of intersection of the discontinuity line AB and the symmetry
axis (Fig.5) is the begining of another discontinuity line BC. On the right-hand
side of this line, in the region BCC’, the principal directions are assumed to be
constant. It is moreover assumed that the principal stress in vertical direction is
equal —op1. Two equilibrium equations that must be satisfied along the discon-
tinuity line enable us to calculate at each point of it the unknown local direction
of the line and the local value of s, the principal stress in horizontal direction.

The discontinuity line BC' intersects the stress-free contour AC at the point
C. The point of intersection must be located at the distance a from the axis
of symmetry (see (5.6)). This condition may be used to check the accuracy of
numerical procedures. The line CC’ is another discontinuity line. The material
below is subject to uniaxial compression equal to the yield stress.

In analogy to the earlier notation, the stress field just described will be de-
noted as the standard stress field of type V. The fields of this kind are defined by
two characteristic parameters a/r and —gq/op. It is difficult to find a simple and
possibly universal aproximation of external contours of the fields of type V by
means of straight segments and circular arcs only. It is much more convenient to
use for this purpose the Archimedean spiral, defined in polar coordinates (g, )
by the formula

(5.11) o= (mp+r,

where p is radius in relation to the point O, ¢ — angle measured from the axis
OA, and m is a parameter dependent on ¢/op (Fig.8). The values of m for
several values of ¢/op are given in Table 2.
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Table 2.
—q/op m
0.125 0.583
0.175 0.725
0.250 0.928
0.350 1.196
0.500 1.734

6. PLASTIC DESIGN OF CONNECTING RODS

The stress fields of type V' may be useful in plastic design of various elements
of pin connections. An example of such design is shown in Fig. 9. The connecting
rod transmits the compressive load F' between the pair of pins. The load is
applied in the form of uniformly distributed tractions q along the arc AA” (0 >
q > —op1). It is then transmitted by a pair of stress fields of type V whose axes
of symmetry are inclined at angles /6 to the vertical axis of symmetry of the
whole element. The section CC' is subject to the compressive stresses equal to
the yield limit —op,). The stress field in the region CDEGHC is the standard
stress field of type C} its structure is described in detail in [5]. The compressive
load in section C'C' is balanced by the compressive stresses in the strip EIJG
and tensile stresses in the strip GK LH. In both strips the stresses reach the yield
limit. The region KLK' is subject to bi-axial uniform compression, also equal
to the yield stress. The horizontal line J.J' is the second axis of symmetry of the
element. The external contour of the designed element in the neighbourhood of
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the pin is determined by the radius 5. As it is seen in the example shown in
Fig.3, this shape does not result from the strength considerations but from the
requirement of structural integrity of the whole connection.

The structural element in Fig.9 is plane. In some cases however, three-di-
mensional arrangements of the plane sub-fields may be used. Figure 10 shows
another example of plastic design of a connecting rod. The external load uni-
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formly distributed along AA’ is transmitted to the section CC’ by means of the
single stress field of type V. The stress field in the region CGHH'G'C' is shown
in detail in Fig. 11. This stress field is piecewise homogeneous and may be treated
as a generalization of the standard stress field of type E, described in [5]. The
material in the region CC"J is subject to biaxial uniform compression equal to
the yield limit —op). The regions CGJ and GH I are under uniaxial compression,
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also equal to the yield stress. The principal stresses within the region GIJ are
determined by the formulae

(6.1) 81 = Opl €Os 27,

(6.2) 89 = opi(cos 2y — 1),

and the principal stresses within 71'J are given by the expressions

(6.3) p1 = opl2cos 2y,
(6.4) P2 = opl(2cos 2y —1).

The angle v must satisfy the inequality 7/6 < v < m/4. For the limiting value
v = m/6 we have pa = 0; this corresponds to the standard stress field of type E
described in {5]. For v > /6 the stress p» becomes negative, but does not reach
the yield limit

(65) —opl < p2 < 0.

More information on construction of piecewise-homogeneous stress fields may be
found in [5].

The stresses —op along C'C’ are in equilibrium with tractions distributed
along HH'. The stresses along HI and H'I' are equal —op, and they are trans-
mitted downwards by means of two columns of rectangular cross-sections and
dimensions ¢ x w (Fig. 10), where g is the thickness of the element of Fig. 11. The
stresses on 1" attain the value ps. They are equilibrated by the stress field of
the type proposed by Winzer and Carrier (Fig.4). The plane of this stress field
is however rotated by 90° with respect to the plane of the field of Fig. 11. It is
shown in the cross-section in Fig. 10 (according to notation of [5] marked by the
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letter D). So finally, the loads q distributed along II' are also transmitted to the
column of rectangular cross-section but of the dimensions h x u (Fig. 10), where

(6.6)

hlg = —q/op.

Thus the connecting rod has in its middle part an I-shaped cross-section, which
1s advantageous from the point of view of its stability.
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