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STABILITY DERIVATIVES CAST IN THE FRAME OF SUBSONIC
UNSTEADY AERODYNAMICS

M. NOWAK (WARSZAWA)

On the basis of numerical results and theoretical considerations, a general form of the (un-
steady) linear, discretized aerodynamic operator in the Laplace- and in the time-domain, for
two- and three-dimensional subsonic flow is proposed. It corresponds to the classical Theodorsen
solution for an airfoil in incompressible flow. The model of aerodynamic derivatives uses a poly-
nomial approximation to the transfer functions. There are identified terms, which are neglected
in this approach: these are the deficiency function and, in the case of compressible fluid, also
the term responsible for the initial pulse. These results clears the limitations and possible im-
provements of the aerodynamic derivatives model.

1. INTRODUCTION

In Flight Dynamics, the aerodynamic loads are usually determined by means
of aerodynamic (stability) derivatives. The aerodynamic forces are assumed to
be linear functions of generalized coordinates, velocities and their first deriva-
tives (with respect to time). The coefficients in these linear functions are called
“aerodynamic derivatives” and are assumed to be constant, independent of pa-
rameters which describe the motion. They are usually calculated on the basis of
a simple steady, linear aerodynamic model. This approach was first introduced
into the engineering practice in 1904 by BRYAN [1], and since then is used with
great success in the stability analysis of aeroplanes, when the structure may
be regarded as rigid and all changes of the state variables are sufficiently slow.
The characteristic feature of this model is the assumption, that the aerodynamic
forces depend only on instantaneous values of parameters used to describe the
motion of the structure.

In the flutter analysis of aircrafts, it is necessary to use more complex aero-
dynamic models, which take into account the influence of the flow disturbances
(determined by the history of motion of the structure) on aerodynamic forces.
Although the model of stability derivatives may be regarded as a particular case
of the unsteady aerodynamic model, it neglects some factors which may be im-
portant if the aerodynamic forces change very rapidly, and also the asymptotic
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behaviour (for large time after a perturbation) of both aerodynamic models is
also different. The aim of this paper is to determine the relations between these
models and identify the terms which are neglected in the aerodynamic derivatives
model.

F1G. 1. The aeroplane in rectilinear flight.

Let us consider the problem of determination of aerodynamic forces acting on
a flexible aeroplane, undergoing small perturbations from a steady state of flight
at constant velocity U (Fig.1). It is assumed, that the displacements u(r,t) of
the structure, relative to a moving frame of reference z, y, z are small. The n gen-
eralized coordinates qi, g2, ..., ¢ are defined by an expansion of the displacement
vector of any point r of the structure in terms of given modes ®;(r),

n

(1.1) u(r,t) = Z@i(r) qi(t),

1=1

usually chosen from the set of the natural vibrations modes of the free struc-
ture (including the “rigid” modes), which correspond to the lower vibration fre-
quencies. This method of discretization of the structure is commonly used in
aeroelasticity, but it may also be used to describe small displacements of a rigid
structure. In what follows, all lengths are nondimesionalized with a reference
length b (e.g. airfoil semichord), all velocities are nondimensionalized with U as
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the reference speed, and ¢ is the nondimensional time defined by

_ U- Lreal
—
Taking into account only the aerodynamic forces caused by pressure distribution

on the external surface S of the aircraft body, the generalized forces are defined
by the expressions

t

2
(1.9 Qi) = 2 i),

fi(t)z//ti’i(r)-n(r)cp(r,t)dS' for i=1,2, ..,
S

where p is the fluid density, n(r) - outer normal to the body (Fig. 1), and ¢,(r, t)
is the pressure coefficient (pressure nondimensionalized by the dynamic pres-
sure pU?/2).

The generalized aerodynamic forces are related to the generalized coordinates
which describe the motion of the body by means of an aerodynamic operator

(1.3) {f(0)} = A{q()},

where {f(t)} and {q(t)} are vectors with elements f;(¢) and ¢;(t) (i = 1,2,...,n).
The aerodynamic derivatives are defined under the assumption, that this
operator is linear and has the form

(1.4) ()} = [Ao]{a(®)} + [l {a(t)} + [A2] {4 ()},

where the superscribed dot indicates the derivative with respect to time. The
elements of constant matrices [Ag), [A1], [A2] are the aerodynamic (or stability)
derivatives. The last term in (1.4) appears only in the case when the fluid is
incompressible and the apparent mass effect was taken into account.

The motion of a rigid aircraft can be described by a set of six nonlinear
differential equations. In Flight Mechanics [2] this nonlinear system is usually
linearized about a prescribed trajectory. The generalized coordinates and veloc-
ities are in this case usually defined not on the basis of (1.1), but directly. Also
the aerodynamic forces are defined directly, such as lift, drag, sideforce, and mo-
ments about body axes. Numerous reference systems are used. The first is the
earth-fized reference frame z,y, z. The vehicle position (z and y) and altitude (h)
are measured from the origin of this reference system. The vehicle-carried verti-
cal axis system (Fig.2) has its origin at the center of gravity of the aeroplane.
This axis system is obtained by a translation of the earth-fixed axis system to the
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aeroplane center of gravity. The origin of the body azis system xy, yp, 2 is also
the center of gravity. The z} axis is directed toward the nose of the aeroplane,
the yp axis toward the right wing, and the z, toward the bottom of the aeroplane.
As the generalized coordinates are used three coordinates of the center of gravity
z(t), y(t), h(t) and three Euler angles ¢(t), 6(t), 1 (¢) which describe the orien-
tation of body axes with respect to the vehicle-carried axes. The instantaneous
velocity field of the rigid body is determined by the velocity of the center of
gravity V and the angular velocity Q. The generalized velocities are defined by
the column matrix [V, , 8,p,q,7]7, where V = |V|, « is the angle of attack, 3
is the angle of sideslip (Fig.2), and p, ¢, are the roll, pitch, and yaw rates (the
projections of € on the body axes).

F1G. 2. Coordinates used in Flight Dynamics.

Aerodynamic derivatives defined in Flight Dynamics are based on a linear
aerodynamic model, and therefore can be used only in the analysis of a perturbed
motion about a given trajectory. From the aerodynamic point of view, they
are equivalent to derivatives (1.4), which correspond to a rectilinear trajectory.
Therefore the following discussion will be restricted to the model (1.4), where
the generalized coordinates and forces are defined in (1.1) and (1.2).

2. THE PHYSICAL BASIS OF A LINEAR UNSTEADY AERODYNAMIC MODEL

The aerodynamic operator relates the aerodynamic forces acting on the body
to the motion of the body. The surface of the body constitutes a moving bound-



STABILITY DERIVATIVES CAST IN THE FRAME 49

ary for the flowfield surrounding the structure. To determine the flowfield, an
appropriate boundary problem for the governing partial differential equations
must be solved, with given initial conditions. It may be assumed, that all dis-
turbances of the flowfield arose by the motion of the body at earlier instants of
time. This may be interpreted as a “memory” of the aerodynamic system, which
is realised physically by free vortex wakes generated in boundary layers on the
body.

The mechanics and modelling of wake generation is shown schematically in
Fig.3. A vibrating airfoil is located in a uniform flow with velocity U. On both
sides of the airfoil beginning from the leading edge, grow the boundary layers
which, after detaching at the trailing edge, form a free vortex wake. At high
Reynolds numbers (typical for aeroplanes are of the order of Re = 107 and
more), the boundary layers and the vortex wake (at least not far from the airfoil)
are relatively thin. In the limit Re — oo, the vortex wake transforms in a free
surface of discontinuous tangential velocity, and the flow outside may be assumed
to be potential. In this simplified model, the viscosity of the fluid plays only a
catalytic role and does not appear explicitly in the equations. The pressure across
the vortex sheet is continuous and from this boundary condition it follows, that
the wake moves with a velocity which is the average of the velocities on both
sides of the sheet. The boundary condition on the airfoil takes the same form as
in an inviscous flow. In addition, the Kutta - Joukowski condition (which states
that the pressure at the trailing edge is continuous) must be satisfied.

The linearization of the aerodynamic model means not only the lineariza-
tion of the governing equations, but also the linearization of boundary con-
ditions in the wake (including the trailing edge, where it transforms into the
Kutta~-Joukowski condition), and on the surface of the body. For thin airfoils
and low Mach numbers, the linearization about the main, uniform flow with
velocity U is possible (Fig.3). It follows, that the wake is rectilinear and is
transported with velocity U. In the context of small perturbations theory, the
boundary conditions on the moving surface h(z,t) are stated on a chord parallel
to the main flow

oh  0Oh
(2.1) w(z,t) = e + e

Contrary to the common conviction, the linear model may be often used with
success also in the transonic range. However, when on the airfoil surface a shock
wave is formed, the linearization should be made about the steady flow over
the body. Although the governing field equations are inherently nonlinear, the
aerodynamic forces and shock motion are linear in the (sufficiently small) changes
of the angle of attack. The range in which this linear behaviour occurs, increases
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F1G. 3. The linearized unsteady aerodynamic model.

with the frequency coefficient [3]. When the shock reaches the trailing edge, the
linear region is again unbounded (when the influence of viscosity is neglected).
The described aerodynamic modelling scheme is not restricted to two-dimen-
sional problems. It enables also the determination of pressure coefficient distri-
bution ¢,(r,t) over a three-dimensional body (Fig.1) in terms of the normal
(to the surface) component of fluid velocity distribution v,(r,7), fixed by the
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body’s history of motion for —oc < 7 < t. The whole process of determination
of aerodynamic forces consists of the following steps:

(2.2) {q(1)} = vn(r,7) = cp(r,t) = {f (1)}, where —oo <7 <t

This scheme describes also the internal structure of the aerodynamic operator A.

3. THE GENERAL FORM OF A LINEAR AERODYNAMIC OPERATOR

The aerodynamic operator A is a correspondence that assigns the generalized
aerodynamic forces expressed by the function {f(t)} to every history of motion
expressed by the generalized coordinates {¢(7)} for —oo < 7 < ¢. It is preferable
to assume, that A is an operator in the space of distributions [4]. It has then a
simple convolution representation

(3.1) {F(0)} =AM, 1))+ {q(D)},

where [A(M,t)] is the unit impulse response matrix distribution (called also the
hereditary matrix [5]), the (7, ) element of which is the generalized response in
the 4-th mode due to the pressure c,(r,t) generated by the motion in the j-th
mode, with ¢;(t) = d(¢). The elements of this matrix depend also on the Mach
number M. The aerodynamic forces can depend only on the history and not on
the future of the motion. It means that the aerodynamic system is causal, and
therefore
[A(M,t)] =0 for t <0.

The existence of the convolution representation (3.1) of the operator A results
from the assumed properties: single-valuedness, linearity, time-invariance and
continuity. The distributional convolution is the generalisation of the integral

convolution
¢

O} = [ 1A0L0]{alt ~ )} dr,
—0o0
but in the aerodynamic model, the elements of this matrix contain delta distri-

butions and their derivatives, and the integral may be divergent.
The aerodynamic derivatives model is a particular case of (3.1), when

. .o

(3:2) [A(M, 8)] = [A]8(2) + [4115(2) + [Aa] 5 (2).

Direct calculation of the elements of [A(M,t)] for arbitrary time may be
difficult and in practice, these functions are usually determined only by means of
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the inversion of Fourier or Laplace transforms. Taking the Laplace transformation
of the convolution (3.1) it follows that

(3.3) {fo} = [A,p)] {aw)},

where p is the Laplace variable, and the circumflex accents (") denote transforms.
The Laplace transform of the hereditary matrix

(34)  [AMp)]| = LIAMY], AWM, 1) = £7 [A(M,p)],

is called the aerodynamic transfer functions matrix. It plays an important role in
the stability analysis of an aircraft. The aerodynamic transfer functions matrix
[A(M,1)] is a Laplace transform of a real distribution and is real whenever p is
real. Hence

~

(3.5) [A,p)] = [A, )],

where the star (*) denotes complex conjugate values.

The aerodynamic transfer functions are holomorphic functions in the p plane
for Re (p) > 0, but they are not ordinary Laplace transforms, because they do not
fulfil the condition O(|p|~¢) for |p| — oo and a > 1. The relations (3.4) are valid
only under the assumption, that £ is a distributional Laplace transformation [4].

If the aerodynamic forces acting on an aeroplane are calculated by means of
stability derivatives (1.4), the transfer functions are polynomials

(3.6) [A(M,p)] = [4] + [Ad)p + [A2]p?.

Aerodynamic transfer functions were introduced in 1956 by ETKIN [2], and he
pointed out their usefulness for calculating dynamic stability derivatives. He
proposed a truncated power series expansion of the functions [A(M,t)] as an
“unsteady” model of aerodynamic derivatives. Unfortunately, at subsonic flight
velocities, the transfer functions possess a branch point in the origin of the (com-
plex) Laplace plane and the accuracy of a polynomial approximation in the
vicinity of the origin may be poor. Better results may be achieved by means of
an approximation by rational functions and this approach is commonly used in
aeroelastic applications.

If the Laplace variable is pure imaginary p = ik, then (3.1) determines the
steady-state frequency response function, which relates the amplitudes of gener-
alized forces to the amplitudes of generalized coordinates in harmonic motion

(37) {Far)} = [A(,4k)] {aGR)},
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where £ is the frequency coefficient (reduced frequency)

fm
U
and
[A(M, k)] = lim [A(M, p)]
;D—')l
is the matrix of harmonic transfer functions.

Many methods for determination of the oscillatory aerodynamic loads for har-
monic small displacements of the structure were developed. The aerodynamic
transfer functions are usually determined by means of an analytic continuation
of the elements of matrix [A(M,ik)] from the imaginary axis into the whole
complex plane. Modern approaches to the approximation are based on the cal-
culation of the values of harmonic transfer functions over a specified range of
the frequency coefficients, and the transfer functions are approximated by ra-
tional functions which fit best the calculated values. It is then possible to cast
the equations of motion of the aeroplane in a linear time-invariant state-space
form, although the size of the state vector increases due to the approximation. In
addition to the state variables introduced initially to describe the motion of the
aeroplane, there appear also augmented state variables that belong to the aerody-
namic model. Currently there are three basic formulations used in approximating
aerodynamic transfer functions by means of rational functions: least-squares [6],
modified matrix-Padé [7] and minimum-state [8]. In the minimum-state formu-
lation, the approximation of aerodynamic transfer functions is taken in the form

[A(M,p)] = ([4o] + [Adlp + [Aa]p?) + [D] ([1]p — [R) ™" [Elp,

and the number of augmented state variables is equal to the range of the (positive
definite) matrix [R]. The calculation of the constant matrices in the formula is
a task of nonlinear programming [9]. After transformation to the time domain,
it follows

{f(0)} = [Ao(M)H{a(®)} + [Ar(M){q()} + [A2(M)){G (1)} + [DI{=(1)},

with a set of additional differential equations for the augmented state variables

{z()} = [E}{q()} + [R]{=(t)} .

The last step in these procedures consists in an analytic continuation of the
transfer functions from the imaginary axis into the whole Laplace-plane. This is
an ill-posed process and the accuracy of results depends on the analytic properties
(singularities) of the approximated transfer functions. There are no poles in
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the right half of the Laplace-plane, since the transient aerodynamic response is
always stable. The analytic continuation into this half-plane is possible without
any restrictions. The behaviour of transfer functions in the left half of the p-plane
is more complicated. UEDA [10] stated in 1987 that at high subsonic velocities,
there exist poles of the transfer functions in the left half of the Laplace-plane.
They determine the limits for the approximation by means of rational functions
and may significantly influence the aerodynamic forces in the time domain.
Another interesting approach to the approximation of transfer functions was
given by STARK [11]. He proposed a simple expression for the lift deficiency
function in the time domain and assumed that this function is independent of
the deflection mode of the wing. The Laplace transform of his deficiency func-
tion possesses a branch point in the origin, which is the only singularity of the
approximate transfer functions in the finite part of the Laplace-plane,

[A(M,p)] ~ [40] + [Alp + [As]p? + ([Ro) + [Ralp) apFin(ap),

where Fy,(p) = L{1+t)™™, a = 5.5 and m = 3. This approach leads to a good
approximation in the incompressible case, but for non-zero Mach numbers the
results are less satisfactory.

4. THE AERODYNAMIC TRANSFER FUNCTIONS

The principal part in the calculation of aerodynamic forces acting on the
body (2.2) is the determination of the relation between the distribution of pres-
sure coefficient ¢, (r,t) on the body, and the normal (to the surface) component
of fluid velocity distribution v,(r,7) (for —oo < 7 < t). In the linear model
described in Sec. 2, the external (to the body and wake) flow is potential. It
makes possible the use of the boundary integral equations method to formulate
a direct relation between the given boundary conditions and the distribution of
velocity potential over the body, without determination of the whole flowfield.
The Kutta - Joukowski condition relate the vorticity in the wake to the velocities
at the trailing edge at earlier instants of time. The last step in the procedure is
the determination of pressure distribution by means of the Cauchy - Lagrange
integral. The (integral) equations are usually derived by the assumption of os-
cillatory motion, when the vorticity distribution in the wake is described by a
simple (sinusoidal) function. All methods derived for the harmonic motion may
be used also to calculate the Laplace transforms, by means of an (exact) analytic
continuation ik — p (in the equations) from the imaginary axis into the whole
Laplace plane.
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Generally, the whole process of the determination of Laplace transforms of
the pressure distribution may be described as the solution of an equation

(4.1) On(r,p) = Kép(r,p),

where the operator K is determined by the method used. A typical example of
(4.1) is the lifting-surface equation.

The solution of (4.1) is a difficult numerical problem. An important exception
is the exact solution for a harmonically oscillating airfoil in an incompressible flow
[12]. DENGLER and LUKE [13] have extended this solution to the whole Laplace
plane by an analytic continuation, but it gave rise in the past to arguments on
validity of the results in the left-hand half-plane of the Laplace variable. This
problem was later resolved by MILNE [14], EDWARDS [15] and others.

For an airfoil with chord 2b (Fig. 2), the Theodorsen solution may be written
in the form

1
(42 Aglwp) = é\/;f \/ifg Wbl + 2p [ A )ale.p) dé
1

1
4 1—z 14+¢& .
+2(C(=ip) - 1) \/1+xl\/1_£w(£,p)d£,

where Aéy(z,p) denotes the transform of the difference of pressure coeflicients
between the upper and lower sides of the airfoil,

o) = Lo Lo B VI VI-E
B = T i
and
(43) O(—ip) = 1)

Ko(p) + Ki1(p)

is the Theodorsen function (Ky(p) and K;(p) are modified Bessel functions).
This function was originally defined for harmonic motion, when p = ik, and the
argument of (4.3) determines the analytic continuation into the whole Laplace
plane.

The first term in the integral in (4.2) determines the steady solution. The
second term (proportional to p) is the result of the apparent mass effect, and
the last term (proportional to C'(—ip) — 1) expresses the influence of the vortex
wake.
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When the generalized coordinates are defined by (1.1), then on the basis of
(4.2), (2.1) and (1.2), the aerodynamic transfer functions matrix for an airfoil in
incompressible flow (M = 0) may be put in the form

(44)  [A0,p)] = [Ao] + [Ad)p + [A2]p® + ([As] + [Adlp) (C(~ip) - 1),

where the elements of the constant matrices [Ag] — [A4] depend only on the
definition of the generalized coordinates (1.1).

The model of aerodynamic derivatives may be derived from (4.4) by the as-
sumption, that the last term (proportional to C(—ip) — 1) is equal to zero. This
term is responsible for the behaviour of the aerodynamic transfer functions in
the vicinity of the origin p = 0.

The Theodorsen function C(—ip) is holomorphic in the complex plane p, cut
along the negative real semi-axis [16],

2
(4.5)  C(—ip)=14p (hﬁ;— + 7> —p? (mg + 7> +0(p3(1np)3) for p— 0.

and

. 1 1 1 1
(4.6) C(_zp)z1_§<1—@+—8—p_2—gé_lﬁ+”'> for |p| — oo.

The approximation of the function C'(—ip) by a polynomial is not convenient
because of the logarithmic branch-point in the origin (4.5). Better results were
obtained by numerous approximations which use rational functions, e.g. by the
approximation of R.T. JONES [17]

C(—ip) =1~ b bop ,
p—ar p—a2

where b; = 0.165, by = 0.335 and a; = —0.0445, as = —0.3. An important
contribution to the problem of approximation of the Theodorsen function is the
result of DESMARAIS [18]. He has established a continued fraction representation,
which may be truncated, to obtain approximations of any desired accuracy, by
means of rational functions with poles on the negative real axis. The poles become
infinitely dense as the order of the approximation is increased. It follows, that
the simulation of the branch point by means of rational functions is possible, but
in practice may be troublesome. The maximum percentage error based on exact
values for the R.T. Jones approximation in harmonic motion (p = ik) is equal
to 8.5 per cent for Re (C) and —13.5 per cent for Im (C).

In compressible flow M # 0 and for more complex structures, the calculation
of &y(r, p) on the basis of 0, (r,p) requires numerical methods. The discretization
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of the equation (4.1) leads to a system of algebraic equations

(4.7) {B(p)} = [R(M,p)] {&(p)},

Nx1 NxN Nx1

where the matrices are finite-dimensional approximations

K= [EMp)],  &Ep)={GE)  ad  60) = {00},

determined by the choice of the used discretization method. An illustrative exam-
ple of the transformation of I in the case of an airfoil is given in the Appendix.

The matrix [K (M, p)] is called the aerodynamic influence coefficients matrix.
It describes the aerodynamic system and, contrary to the transfer matrix, does
not depend on the choice of generalized coordinates (1.1) used to describe the
motion of the structure.

The use of the same discretization to the substantial derivative (2.1) and
to the definition of generalized aerodynamic forces (1.2), leads to the following
expressions

(4.8) {@(p)} = ([D1] + p[D2]) {4(p)}
’ Nx1 Nxn nx1
and
(4.9) {fo)} = 18] {&m)}-
nxl1 nxN Nx1

Finally, the transfer functions may be expressed by the formula
. . -1
(4.10) {Av,p)} = (8] [R(.p)] " (Do) +plD1]),
nxn nXxXN NxN Nxn

where N is the number of aerodynamic elements used by the discretization of
the aerodynamic model, and n denotes the number of generalized coordinates
(used to describe the motion of the structure). Usually N > n.

The “static” aerodynamic derivatives may be obtained by the assumption

{K(M,p)} ~ [K(M,O)] = const,
and the steady approximations to stability derivatives have the form

(411)  [Ao) =[S [R(M,0)] (Do},  [A1] =[S] [K(M,0)][D1],  [45] =0

The matrix [K(M,0)] is in the practice calculated on the basis of any aero-
dynamic method for the steady flow (e.g. the strip, or “vortex-lattice” method).
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The methods described in handbooks of Flight Mechanics are usually equiva-
lent to (4.11). The only exception are the derivatives with respect to the rates

of angle of attack & and slideship 3, which describe the influence of the wake
and can be determined only on the basis of an unsteady flow model. Usually,
this nonstationary effect is included in the aerodynamic derivatives model ap-
proximately, on the basis of steady aerodynamics. This approach is based on a
hypothesis that the deflection angle of the flow near the tailplane is caused by
the lift change on the wing at the moment, when appropriate elements of the
wake shed of the wing. In other words, the deflection of the stream is delayed in
comparison with the steady value by the time, which is needed for the wake to
move the distance between wing and tailplane.

The direct application of unsteady aerodynamics to calculate these derivatives
by approximation of the transfer function with a polynomial (3.6) is also difficult
[19], because the derivatives of [A(M, p)] are singular at p = 0.

The elements of the aerodynamic influence coeflicients matrix [K (M, p)] are
regular, holomorphic functions in the complex p-plane, cut along the negative

real axis. This is not true for the elements of the transfer functions [A(M, p)]
which may have poles in the singular points of this matrix, where

(4.12) det ([K(M, p)]) = 0.

It was stated in [20], that for each Mach number in the range 0 < M < 1,
there exist a large, probably infinite set of latent roots of (4.12). In Fig.4 and
Fig.5 are shown some roots, calculated on the basis of a lifting-surface model
for a rectangular wing with aspect ratio 3, at Mach numbers M = 0.8 and
M = 0.95. The distribution of latent roots vary with the Mach number, and in
high subsonic flow, many roots are close to the imaginary axis. A typical latent
root loci are shown in Fig. 6. The outer ends of the curves correspond to the Mach
number M = 0.5, and the inner ends to M = 0.9. It is possible to formulate a
hypothesis that for M — 1, all roots move to the origin and may significantly
influence the behaviour of transfer functions at high subsonic Mach numbers. On
the other hand, for M — 0, all roots move to infinity and in the incompressible
case (M = 0), there are no roots in the finite part of the Laplace plane. The last
conclusion agrees with the exact solution for an airfoil (4.2).

In the vicinity of the root p = p, the inverse matrix [K (M, p)]™
approximated by

may be

. -1 T
(4.13) [K(M, p)] = —{u—;}—_{%ck}— + regular function of p,
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where {ux} and {v;} are the right and left latent vectors which are solutions of
homogeneous equations

{n}T [K(M,p)] =0 and  [K(M,pe)] {m} =0,

normalised in such a way, that

(4.14) T (RO, =1

The proximity of many poles to the imaginary axis and to the origin at high
subsonic Mach numbers, may significantly disturb not only a polynomial (in
the model of aerodynamic derivatives) approximation in this region, but also an
approximation of the transfer functions by rational functions with poles on the
real axis (in aeroelastic applications).

In subsonic flow, the aerodynamic influence coefficients have a logarithmic
branch point. It results from the assumption, that the length of the wake may
grow to infinity. Although this assumption is in contradiction with the experience,
it is necessary in a model to be consistent with the governing equations. On the



60 M. NOWAK

S im(p)

: ° 1.25

- . 1.00

: . . 0.75

. . 0.25

e — 0.00
0.50 0.2 0.00

-0.75 -
Re(p)

Fi1G. 5. Latent roots for an aspect-ratio-three rectangular wing.

basis of (4.13) it is possible to write

; -1 [z BRI L3 I S
(415)  [R(Mp)] " = [K(M,0)] +Zk:f’k ;_p’; + [G(M,p)],

where [K (M, 0)]" is the steady solution, [G(M,p)] has no poles and possesses a

branch-point in the origin. On the basis of the Mittag - Leffler theorem [21], the
second term determines a meromorphic function if the series

(4.16) > {weHor} /i
k

is convergent. All poles appear in conjugate pairs, and a sum of two consecutive
terms in (4.16) is always real. Numerical results have shown, that the contribu-
tion of a pole to the values of transfer functions (4.15) does not decrease with
increasing distance of the origin. It is a result of the normalisation (4.15) of the
latent vectors, because

| e oy ” 1

(&,

P=Pk

S
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Re(p)

Fic. 6. Latent root loci for an aspect-ratio-three rectangular wing.

Also poles which are far from the considered region can significantly influence
the values of transfer functions. This is the reason of difficulties in the approxi-
mation of transfer functions in the compressible case.

If the limit of (4.16) exist also in incompressible flow

. T, 2
(4.17) Aljg();{uk}{vk} /P = —[Ma],
then the formula (4.15) is valid also in this case, and may be written in the form

(4.18) [K.9)] 7 = [£0,0] " + Malp + [G0,p)],

where [M4] is the apparent mass matrix.
The expression (4.17) explains the behaviour of the aerodynamic forces, when
the Mach number tends to the limit M — 0. With decreasing Mach number, all
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poles move to infinity, but with increasing intensities. In the limit, there is only
one pole in infinity.

The formula (4.15) determines completely the behaviour of the transforms
in the whole complex plane of the Laplace variable. It consists of terms which
correspond to the terms in the exact Theodorsen solution (4.2) for an airfoil in
incompressible flow, but can be applied also to arbitrary 3-dimensional struc-
tures, when a discretization is necessary to obtain the numerical results. In the
usual methods used to calculate the aerodynamic derivatives, only the first term
is taken into account. In incompressible flow (M = 0) also the second term may
be used. At high subsonic velocities, when the poles are located in the vicinity
of the origin, the contribution of this term may be significant and it is difficult
to approximate it with a polynomial. Also the approximation of the second term
(with the branch point) is difficult. These are the main limitations in the use of
aerodynamic derivatives.

It was assumed that the series (4.16) is convergent and that the limit (4.17)
exists. The proof of this statements may be difficult, because until now, all in-
formation about the distribution of the latent roots of (4.1) were obtained only
in numerical calculations.

5. THE AERODYNAMIC FORCES IN THE TIME DOMAIN

The solution of the equation (4.7) which describes a (discretized) aerodynamic
model, may be put in the form

sy (6l = [Kap] T @) = [A0)]e (00)
NXx1 NxN Nx1 NxN Nx1

where
A 1r- -1
(52) [EH(M.p)] =~ [K(Mp)]
The inverse Laplace transform £~! applied to (5.1) gives the relation

(5.3) {ep(t)} = [H(M, )]+ {w(t)},

where the indicial functions [H(M,t)] = L£™[H(M,p)] are the responses to a
unit step change in the (discretized) boundary conditions (normal component of
fluid velocity).
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The steady solution follows from the final value theorem [4] for the Laplace
transforms

(654)  [H(M,00)] = lim [H(M, 1)) = limp [H(M,p)] = lim [K(M,p)]

t— 00
= [R0)] .

The asymptotic behaviour (for ¢ — oo) of indicial functions may be deter-
mined by the expansion of the aerodynamic influence coefficients (which is dif-
ferent in the two- and three-dimensional cases)

(5.5) [K(M,p)]‘l B [K(M,o)}—l _ {ggzhllf; ijﬁ for p— 0,
hence

-1 -dim
(5.6)  [H(M,8)] — [H(M,00)] = {gg_z; ;_jim for t— oo,

From the initial value theorem for Laplace transforms it follows that in the
compressible case, a limit should exist

(5.7) lim [K(M, p)]_l = lim [H(M,t)] = [D],

p—o0 t—0+
which may be determined directly on the basis of the piston theory

i v (T, 0+)
M U )

The further evolution of the pressure distribution is not simple. An acoustic
wave propagates from the leading edge downstream with the velocity aco + U
(where ay is the sound velocity). At the same time, from the trailing edge
propagates upstream (in subsonic flow) another wave with velocity ax — U. In
the time interval, until the first wave reaches the trailing edge, and the second
wave — the leading edge, the pressure distribution on the surface changes very
rapidly. For an airfoil (with the chord 2b) there are two characteristic times
t7 = 2M/(1 + M) and ty = 2M /(1 — M). The pressure distribution changes
for ¢t > t (in subsonic flow) are already mild, and in the supersonic flow, the
pressure reaches the steady limit at ¢t = ¢;.

The pressure distribution on a profile (cross-section of the wing) is at the
discretization usually approximated by a truncated series of functions which
possess appropriate singularities on the leading and trailing edges. The pressure
distribution in the piston theory (5.8) follows the boundary condition and has

(5.8) cp(r,07) =
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no singularities. Therefore it is not possible to cast the piston theory in the
discretization scheme exactly, and the exact result should be projected on the
finite-dimensional space used at the discretization to approximate the pressure
distribution [20].

In the incompressible flow (M = 0) the limit (5.6) does not exist, but

69 Jim (3 [KOR) ) = im (50,01 1,0) = M

P t—0t

In the subsonic range, the poles of the function (4.15) are responsible for the
starting pulse, which in the time domain is described by the expression

o) UALD for M =0,

P Uk1Vk

T ) s g
A k

Finally, the indicial functions matrix in (5.3) has the following structure

[M4]é(t)+[Cp(0,1)] for M =0,

(510)  [H(M,1)]=[K(M,0)]+ Z{_“%{kﬂ};T_ePkMF[CD(M,t)] for M +0,

where
(5.11) Co(,) = £7 (- [601.7) )

is the deficiency function, which determines the difference between the indicial
function [H(M,t)] and its steady limit [H(M,c0)]. On the basis of (5.6) its
asymptotic behaviour is given by

O(t™') 2-dim

. for ¢t — o0.
O(™2) 3-dim

[Cp(M,1)] = {

This asymptotic behaviour of the deficiency functions is responsible for the

logarithmic branch point in [G(M, p)] and consequently, also in the aerodynamic

transfer functions [A(M, p)]. STARK [11] proposed a very simple method to ap-
proximate the deficiency function

[Cp(M,1)] Z[Bk <a+t>k,

where the constants ki, k2, a and [By] should be chosen. For an airfoil in in-
compressible flow the choice k1 = ko = 1, a = 4, corresponds to the Garrick
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approximation of the Wagner function [17]. For a rectangular wing, very good
results were obtained (but only for M = 0), with the parameters k; = ky = 3,
a = 5.5. In the aerodynamic derivatives model, the deficiency function is com-
pletely neglected, and all disturbances decay exponentially.

The second term in (5.10) determines the initial pulse after a stepwise change
of the boundary conditions. For M = 0 it is concentrated at ¢ = 0 and it is easy
to take it into account in the calculations. For M > 0 it is distributed in time
and in the aerodynamic derivatives model, as well as in the STARK model [11],
it is neglected. The approximation of the starting pulse is the main difficulty in
numerical calculations in the case of compressible fluid flow.

The indicial functions (5.10) may be compared with the known, exact results
for an airfoil. The inverse Laplace transform £! applied to the Theodorsen
solution (5.1) gives the relation

(512)  Acy(z,t) = —\/1”"’ \/1+’5w“d5+ /Ax{ (&, 1) de

T—¢ -
% (6 - 14) (\/;i/\/ifgw@,od&),
4
where
(5.13) o) = e (CE2)

is the Wagner function [17].
For a step change in the angle of attack: w(z,t) = —ali(t), w(z,t) = —ad(t)
and

514y 2o VN W, gy 1E
« 1+x

The three terms in (5.14) correspond to the appropriate terms in (5.10). The time
dependence of the deficiency function is in this case expressed by a multiplier
(¢(t) — 1).

LoMAX et al. [22] derived exact formulas to calculate the pressure distribution
on an airfoil in the first stage after a step change in the angle of attack a. In
Fig. 7, the results at several times, ¢, for a representative subsonic Mach number
M = 0.8 are reproduced. For ¢ = 0%, the result is given by the piston theory.

The pressure distributions may be integrated along the chord (2b) to obtain
the total force on the airfoil. In Fig.8 are shown representative results for the

11—z
o (@(t) — D).
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F1G. 7. Chordwise lifting pressure distributions on an airfoil. After LoMAX [23].
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F1G. 8. Time history of lift curve slope. After LomaX [23].
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time history of lift curve slope, defined by

L

— —2—————-———-—’
%(Qb)a

CL,

where L is the lift on the airfoil.

6. CONCLUSIONS

The aerodynamic transfer functions are holomorphic functions in the com-
plex plane cut along the negative real semi-axis and have (in the case of subsonic
flow) a branch-point at the origin and a set of poles in the left half-plane. The
branch-point (caused by the infinite length of the wake) is responsible for the
asymptotic behaviour of aerodynamic forces for large time. The poles are re-
sponsible for the initial pulse after a step change of upwash distribution on the
surface of the body. With decreasing Mach number, all poles tend to infinity
and for incompressible flow, there is only one pole at infinity (responsible for the
apparent mass effect).

The aerodynamic model of stability derivatives uses a polynomial approxima-
tion to the transfer functions, and it neglects the influence of the vortex wake on
aerodynamic forces. In the compressible case, the lack of poles makes impossible
a correct prediction of the forces for a discontinuous change of the boundary
conditions (e.g. after a step change of control surface deflection or in a sharp
gust). This conclusion remains true also when the stability derivatives have been
calculated on the basis of an unsteady model (but with a polynomial approxima-
tion to the transfer functions). The use of the Bryan’s model must be limited to
the cases, when it may be assumed, that the aerodynamic influence coefficients
are almost constant.

Finite-dimensional representations of the aerodynamic operator are derived
in the Laplace domain (4.15) and in the time domain (5.10), which enable a clear
look inside its structure in the case of subsonic flow. They are convenient to make
a qualitative estimate of the accuracy of diverse methods of approximation to
the unsteady aerodynamic forces. However, it should be mentioned that although
these representations seem to be consistent with all known properties of unsteady
aerodynamic forces, they were derived mainly on the basis of numerical results
for a lifting surface, and until now, they can’t be treated as an exact model. The
convergence of the series (4.16) and the existence of the limit (4.17) need a proof,
and it seems to be a very difficult task.
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APPENDIX. DISCRETIZATION OF THE INTEGRAL EQUATION RELATING
THE UNKNOWN PRESSURE DISTRIBUTION TO THE KNOWN UPWASH
ON AN AIRFOIL IN SUBSONIC FLOW

As an example of the general procedure, a discretization process for the aero-
dynamic operator of an airfoil in subsonic flow will be described. This procedure
is, at the same time, also the main part of the lifting-lines method to solve the
lifting-surface equation [24]. The integral equation expressing the boundary-value
problem of an oscillating airfoil in subsonic flow was first given by Possio in 1938.
After generalisation to the Laplace domain, the Possio equation may be written
in the form

1
(A1) B(e.p) = [ K(M,2,€p)Ady(,p) de
-1
where the lengths are referred to the airfoil semichord b, U is the main velocity,
w(z,p) is the Laplace transform of the upwash (normal velocity, positive up,
related to U), and Aé,(z,p) is the transform of the pressure coefficient difference

between the upper and lower side of the airfoil. The kernel function may be
expressed in the form [15]

a7 x—¢

oo (2B =)] - (552) - | 4 () )
0

where 8 = /1 — M2
The approximate solution of the Possio equation is usually sought in the form
of a truncated series

(A2)  K(M,z¢p) = Lep(z—é){ep(m—i)/ﬂ"’ [Mli__ﬂKl (%A;{h; _ §|>

(A3) 26,(6,9) = 1| o5 S anPes(6),
14+¢ —

where Py_1({) are Jacobi polynomials defined by the recurrence formula

(A4) P-1(8) = 2Py () + Piya(§) =0
for k=1,2,.. and P =1, P () =26+1.

These polynomials fulfil the orthogonality condition

e 0 for i#j
(A.5) / ,/m1°i(£)1%(£)<zlé={7r for e
-1
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After substitution of (A.3) in (A.1), the coefficients a;, may be calculated from
a system of algebraic equations obtained by the collocation method. Another
useful method to solve the Possio equation is the Galerkin scheme. The equation
(A.1) is multiplied by the functions

1+z
11—z

Qr-1()

in turn for k = 1,2,...,n, and then integrated along the chord in the interval
—1 < z < 1. Functions Qi(z) = Py(—z) are polynomials orthogonal on the
interval —1 <z <1 with the weighting function /1 + z/v/1—z. As a result, a
set of algebraic equations is obtained

(4.6) (o)} = [HM,p)l{a(p)},
where
1
(A7) e = [\ T Q)Y p) de
-1
and

1 1
(a8 (HMp)= [ \/ — ] \/ e KM, DHQUHPO) de e
21 21

The chordwise integrals can be calculated numerically according to the m-node
Gauss - Jacobi quadrature

1
1-¢ _ s
_/1 T el de = 3 wneles)

where
2k 27
(A.9) & = cos <2m n 1) and wg = (1 — fk)zm 1
The same scheme may be applied to the integrals
1 1
1+z 1-— 4
[ e@ s = [ 15 50(-0de = 3 wnpla),
A l1-2z \ 14+¢ =1

where

(A.10) zp = =&, = — cos(2wk/(2m + 1)).
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The additional assumption m = N leads to the lifting-lines method. The
equations may then be written in the form

(A.11) {v(p)} = [PIW]IK (M, p)]W]P" {a(p)},

where [P] and [K (M, p)] are square matrices of order N with the elements
(A12) [P]l] = Pj—l(gi)a [K(Mvp)]m = K(va'i’gjvp)a where Ty = “‘fi'
The matrix [W] is a diagonal matrix composed of Gauss - Jacobi quadrature

weights (A.9), and the orthogonality condition may be expressed also in the
matrix form

(A.13) [PIWIPY" = 1],

Introducing new vectors to describe the upwash distribution
(A 19 (@)} = (PIW) ™ folp)} = —(PI7(o(0)},
and the pressure distribution

(A.15) {&(p)} = WP {a(p)},

the equations (A.9) may be simplified to the form

(A.16) {@(p)} = [K(M,p)] {&(p)} -

This system of algebraic equations corresponds to the system (4.7) considered
in the paper. For an arbitrary upwash distribution @(z,p), the vector {@(p)}
may by calculated from the expressions (A.7) and (A.14). When the function 1s
a polynomial in z of degree less than 2N — 1, then the elements of the vector are
equal

{@(p)}y = dlok,p), k=12, N,
where zj are defined in (A.10). In the case of piecewise linear functions, the
integrals (A.7) may be calculated exactly [24].

The solution of the system (A.16) determines the pressure distribution (A.3).

because

-1

(A7 (ap)) = (WIPT) ™ (o) = HPHE(p)

It is possible to correct the solution and to take into account the logarithmic
singularities in the pressure distribution at upwash discontinuities [24]. The pro-
jection of the piston theory results on the finite-dimensional space used at the
discretization (A.3) was described in [20].
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