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ON DYNAMICS OF THIN PLATES WITH A PERIODIC STRUCTURE

JJ2JJEDRYSIAK (£ODZ)

A new modelling approach to thin elastic Kirchhoff plates with a periodic structure along the
midplane based on that given in [7] is shown. The main feature of this model is that it describes
the length-scale effect on the plate dynamics, which is neglected in the known asymptotic
theories of periodic composite plates. The structural model, which takes into account also the
effect of the rotational inertia, and the comparison between this model and the local models
without the length-scale effect are presented.

1. INTRODUCTION

The formulation of different modelling approaches to composite mechanics
of periodic structures is motivated by the fact that the exact analysis of mi-
croperiodic heterogeneous materials within solid mechanics can be carried out
only for a few special problems. In general, the equations of micromechanics
are too complicated to constitute the basis for investigations of most engineer-
ing problems. That is why different approximate models of periodic heteroge-
neous materials and structures are formulated. These models are often called
the macro-models and investigate the effect of constituents only as averaged
properties of a body within the framework of the macromechanics of composite
materials. Many macromodelling procedures make it possible to detect the mi-
cromechanical behaviour of a composite. We outline below some trends in the
formulation of approximate (asymptotic) theories for periodic structures and in
particular, for plates with a periodic structure.

The known macromodelling methods can be separated into two groups. We
can deal with special and general macromodelling procedures. The first group
consists of methods developed for special types of composite materials, e.g. for
laminated composites, for fibrous composites, for solids with inclusions; however,
the second group consists of general procedures, in which no restrictions are im-
posed on distribution of constituents within the periodicity cell. These methods
have the practical meaning provided that they can be applied to the analysis of
special types of composites.



74 J. JEDRYSIAK

In this paper a new macromodelling procedure is presented, which is related to
the non-stationary processes in periodic plates, where the size of the periodicity
cell plays a crucial role and cannot be neglected. The effect of the microstruc-
ture size on the macrobehaviour of a body is called the length-scale effect. In
order to estimate this effect, we will investigate both — the macromodel with the
length-scale effect and the local macromodel, in which this effect is neglected.

The main efforts in creating the new macromodels in dynamics of composites
are posed on formulation of special methods. We can mention here the effective
stiffness theories for periodically laminated composites introduced in [1].

Among the general methods we can mention those based on the asymptotic
homogenization approach (e.g. [3, 8]). The results of macromodelling are deter-
mined by equations with constant coefficients (called the effective moduli). In
the case of periodic plates, these approximate methods were presented e. g. in
[5, 6] (where a “technical” theory of anisotropic plates was presented), in [4] (in
which periodic plates were investigated, using two small parameters — thickness
of a plate h and the characteristic size of a periodicity unit cell ), in [9] on
thin plates with rapidly varying thickness, in [11] (where periodic plates were
investigated in the framework of theories with microlocal parameters), or in [10]
(where the homogenized stiffnesses were analysed). In the homogenized models
we investigate a certain “substitutional” plate with constant effective stiffnesses
and mass densities. Using asymptotic methods, these averaged moduli have to
be determined for every periodic structure by obtaining solutions to certain vari-
ational problems posed on the periodicity cell. The formulation of macromodels
by using the asymptotic homogenization methods is rather complicated from
the computational point of view. This is why the asymptotic procedures are re-
stricted to the first approximation. Within this approximation, we obtain local
macromodels, which neglect the length-scale effect on the behaviour of a plate.
To formulate the length-scale macromodels in the framework of asymptotic ho-
mogenization, we have to consider the higher steps in the formal asymptotic
procedure, [13].

In many non-stationary processes the length-scale effect on the macrobe-
haviour of composites cannot be neglected. In this case, we have to use the
length-scale models. We are mainly interested in models which are physically
reasonable and simple enough to be applied in the analysis of engineering prob-
lems.

The macromodels of this kind were applied to selected dynamic problems
of periodic structures in papers [14, 15, 17, 2] (on dynamics of periodic plates
based on the Reissner - Hencky assumptions), [12] (on dynamics of periodic wavy
plates), [7] (on dynamics of thin periodic plates based on the Kirchhoff assump-
tions), cf. also the monograph [16]. The problem of modelling the thin elastic
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Kirchhoff plates having the microperiodic structure in planes parallel to the mid-
plane was started in the contribution [7] and continued here.

The results of macromodelling presented in this paper are called the struc-
tural macrodynamics of periodic plates. The word “structural’ is related to the
fact that the obtained equations describe the length-scale effect (the effect of the
size of the periodicity unit cell) on the dynamic plate behaviour. In this paper
we will investigate the linear-elastic plates having the microperiodic structure
and satisfying the assumptions of the Kirchhoff plate theory. The theory pre-
sented here can describe plates, in which the thickness is a periodic function and
whose material and inertia properties are also periodic functions of the Cartesian
coordinates parametrizing the plate midplane.

The structural approach shown in this paper is different from the known
modelling methods of asymptotic homogenization. Using this new approach we
can investigate a certain class of motions of microperiodic plates, but do not
estimate effective moduli of these plates.

The general thesis of this research is that in many dynamic problems for
periodic plates the length-scale effects cannot be neglected. The obtained equa-
tions involve terms which depend on the size of the periodicity cell, and show
the effect of the plate microstructure parameter on the plate behaviour. Here,
three structural models are presented. The first of them is the general structural
model, which takes account also of the effect of the rotational inertia. The other
models are the structural models with some simplifications. Moreover, from the
proposed structural (refined) theory of periodic plates, by scaling down the mi-
crostructure parameter, a certain special effective stiffness theory can be derived.
Models obtained in the framework of this theory will be called the local mod-
els. Comparing these theories the microperiodic aspect of this problem can be
investigated only within the framework of the structural theory.

2. PRELIMINARIES

Throughout the paper subscripts «, 3, ... (z,4,...) run over 1, 2 (over 1, 2, 3)
and indices A, B, ... run over 1, ..., N. Summation convention holds for all the
aforementioned indices.

Let Ozqzo23 be the orthogonal Cartesian coordinate system in the physical
space. Setting x = (21, z2) and 2 = x3, we assume that the region of underformed
plate is defined by £ := {(x,2) : —h(x)/2 < z < h(x)/2, x € IT}, where II is the
region of midplane and h(x) is the plate thickness at a point x € IT, cf. Fig. 1.
We shall denote by A := (0,1;) x (0,13) the periodicity unit cell on 0z1z2 plane,
where [y, l5 are length dimensions sufficiently small compared to Lz, which is the
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F1G. 1. Example of the microperiodic plate.

minimum characteristic length dimension of II. The size of the cell is described by
the microstructure length parameter | (defined by [ := /12 + 12, where | < L,
A =1/Lg and A < 1). We assume that h(x) is a A-periodic function of x and
all material and inertial properties of the plate are also A-periodic functions of

x and even functions of z. For an arbitrary integrable A-periodic function f(-)
we define

()= (ala) ™ [ £ da,
A

where (f) is the averaged (constant) value of f. We also define ¢ as the time
coordinate.

Our considerations will be based on the Kirchhoff plate theory assumptions
and carried out within the framework of the linear elasticity theory. The analysis
of these plates was presented in the paper [7]. Below, we will quote the general
formulations of the theory under consideration.

Let u;, e, si; stand for the displacements, strains and stresses. Denoting
by a;i;jr; components of the elastic moduli tensor and assuming that z = const
are material symmetry planes (asqngy = 0, asszy = 0), we shall define cop,5 =

Gapys — Gap33ays33(assss) ™ .
2.1. The Kirchhoff plate equations

The direct description of linear-elastic thin periodic plates will be governed by:
(i) the strain-displacement equations

(2.1) €ij = u(i,j) )
(ii) the stress-strain relations in the form
(2'2) SapB = Cafys€ys »

with the plane stress assumption s33 = 0;
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(iii) the kinematic relations
(2.3) ua(X, 2,t) = —zw o (%, t), us(x,z,t) = w(x,t),

where w(x, t) are the displacements of points of the midplane IT; and by
(iv) the virtual work principle

h/2 h/2
(2.4) // giliéuidzda+// (sapdeap + 2sq30€q3) dz da
T—h/2 —h/2
h/2
=/ pTousg X, 5 + p~dus X, ~5 da+// oduz dz da,
I I-h/2

which has to hold for every virtual displacement du;. These displacements are
defined in the form du, = —20w o(x), dug = dw(x) and du; = 0 on the boundary
OII of the midplane. Functions c,g+s, 0, b, in the general case, are arbitrary
regular A-periodic functions of x.

Because our considerations are based on the above relations, we will assume,
that periodicity cells A(x) (A(x) = x + A, A(x) C II) have the form of thin
plates. Using the known modelling procedures, from Egs. (2.1)+(2.4) we shall
obtain the partial differential equation of the fourth order for w(x, t). This is the
known Kirchhoff plate theory equation involving w(x,t). However, for the mi-
croperiodic plates the equation includes highly oscillating A-periodic coefficients
and that is why it does not constitute a proper analytical tool for a computa-
tional analysis of special problems. On the other hand, different homogenization
macro-modelling approaches (the effective stiffness plate theories), governed by
different equations with constant coefficients, do not describe the length-scale
effect on the dynamic plate behaviour. In order to retain this effect we pro-
pose below the new approach which will be called the refined theory (structural
model) of microperiodic thin plates, cf. [7].

3. MODELLING APPROACH

The foundations of the refined theory describing the dynamic behaviour of
microperiodic composite plates will be based on certain heuristic hypotheses,
which were presented in papers [14, 17]. In order to formulate these hypotheses,
we will recall two auxiliary concepts, introduced in [14, 15, 16] and [7].

The first is the concept of a macrofunction. Function F' defined on IT (which
can also depend on the time coordinate t), related to the microstructural length
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parameter [ and to a certain accuracy parameter ¢, will be called macrofunction
if for every z',2" € II the condition ||z’ — 2"|| < | = |F(z') — F(2")] < €p is
satisfied. If F is a differentiable function and conditions of this form also hold
for all derivatives of F, then F is called a regular macrofunction.

Let f(-) be a A-periodic continuous function and let F(-) stand for a con-
tinuous macrofunction defined on IT. Because we want to investigate certain
micromotions, which are possible in the frame of the unit cell A, the form of the
cell depends on the class of these analysed micromotions. Hence, the cell A can
be assumed as one, two or a few repeated elements of the plate under considera-
tion. Let us approximate the region IT by a sum int |J A(x), x € A4, of mutually
disjoint cells A(x), where A is a lattice of points on IT such that A(x) C IT for
every x € A. Under this assumption we obtain that

/f(x)F(x)da =3 / F)F(x) da + O(N),
I

xeAA(x)
(3.1) / F(x')F(x') da' = / F()F(x)dd' + Oler),
Alx) Ax)

3 / f(x')F(x')da' - /(f)F(x) da + O\) + O(ey).

We will use these formulae in the modelling procedure leading to a refined theory
of the composite plates under consideration.

The second auxiliary concept is the microshape function system. It is a system
of N linear-independent A-periodic functions

" =g*(x), x=(v1,z2) €ER?’ A=12,.,N,

which satisfies the following conditions:

(i) g# are continuous together with their first and second order derivatives;

(i) g*(x) € O(I?), g% (x) € O(1), g%5(x) € O(1) for every x € R?,

(iii) and (ug*) =0, (g%,a) = 0.

Generally speaking, every linear combination of microshape functions in an
arbitrary but fixed periodicity cell A(x) (A(x) = x + A, A(x) C II) has to
describe disturbances of the plate deflections w(x’,t), x' € A(x), caused by the
periodic plate microstructure. Hence, the choice of these functions depends on
the problem under consideration (the form of the periodicity cell, for instance -
for a symmetrical cell it is necessary to define a certain symmetrical microshape
function, the class of micromotions, which we want to investigate) and the ac-
curacy of modelling. As a simple example of these functions we can assume N
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functions of the form /2 sin(nmzy/ly) sin(mnzy/la), where n, m are positive inte-
gers. For cells with the complicated form we have to take more functions g2,

The formulation of the refined 2D-theory for the microperiodic thin plates
will be based on Egs. (2.1)+(2.4) and on the following hypotheses (which were
presented in [7]):

¢ MACRO-KINEMATIC HYPOTHESIS (MKH)

This hypothesis is based on the assumption that the midplane plate deflec-
tions can be given by

(3.2) w(x,t) = W(x,t) + g* (x)V*(x,1),

where g# are postulated a priori microshape functions and W, V4 are arbitrary
linear independent macrofunctions. The first term in Eq. (3.2) describes the effect
of the plate macrostructure and the second term describes disturbances in the
plate deflections caused by the microperiodic structure of the plate. The form of
MKH is based on the fact, that an arbitrary function, in this case — a function
describing the effect of the microperiodic structure on plate deflections, can be
presented by the Fourier series. This series can be approximated by the sum of
the first V terms ¢g*(x)V4(x,t), A=1,..., N, N > 1, where N has to be specified
in every problem under consideration. Hence, we do not obtain the functions ¢*
as solutions to certain local problems posed on the periodicity cell, what is made
in the known asymptotic homogenization approaches (cf. [4, 9]). These functions
are certain coefficients of the Fourier series and their form depends on the class
of micromotions, which will be analysed. In most cases every g* can represent
a certain form of free vibrations inside the postulated a priori cell A(x). Hence,
the choice of their form is related to the assumed unit cell A, which can be
defined as one, two or a few repeated elements of the plate under consideration.
Moreover, these micromotions must be referred to the mass centre of the cell,
hence the condition (;g*) = 0 assumed for functions ¢g#. Functions V4 can be
counted as some amplitudes of disturbances caused by the microstructure of the
plate. Macrofunctions W, V4 represent the new unknown kinematic fields of the
refined theory of thin microperiodic plates. They are called macrodeflections and
inhomogeneity correctors, respectively.

e VIRTUAL WORK HypoTHESIS (VWH)

The principle of virtual work (2.4) is assumed to hold for every virtual dis-
placement field satisfying the conditions

(3.3) dw(x) = W (x) + g*(x)dV*(x),

where §W, 6V# are arbitrary regular and linear independent macrofunctions.
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e MACRO-MODELLING HYPOTHESIS (MMH)

In calculations of integrals over IT in the principle of virtual work (2.4)
combined together with Egs. (2.1)+(2.3) and (3.2)=(3.3), terms of order O(\;),
O(er) will be neglected, where F run over W(-,t, W 45(-, 1), W(-, 1), I}f/,a(-,t)7
VA1), Valst), VA(-,1), ... This assumption will be applied to the formulae of
the form (3.1).

We outline now the general line of the modelling procedure in the analysis
of the dynamic plate behaviour. This procedure leading to the refined theory of
the thin microperiodic plates has to be carried out by means of:

(i) combining together the principle of virtual work (2.4) and Egs. (2.1)+(2.3),
(3.2)+(3.3);

(ii) introducing fields averaged over the thickness of the plate;

(iii) averaging the A-periodic functions in the obtained equations.

Using the three modelling hypotheses (MKH, VWH, MMH), from the Kirch-
hoff theory relations (2.1)+(2.4) by applying the divergence theorem as well as
the du Bois - Reymond lemma, we obtain the system of differential equations for
the kinematic fields W, V4, what will be presented in the next section.

In order to write down the governing equations of the refined macrothe-
ory of microperiodic plates, we shall introduce the following notations for the
A-periodic functions

h/2 h/2 h/2

(3.4) W= / odz, ji= / 0z%0dz, dapys = / 22copys dz.
—h/2 ~h/2 —h/2

After some calculations we obtain

/ [(daprs) W a6 + (daprsg5e)Vas + (W + (ug”)V"
I
— ()W o = (GgBIV 5 = (p + b())| W da = 0,

(3.5) . .
/ [(daprsghs) W + (daprsghs9as)V > + (g W + (ugg")V®

n
+ (GgAIW o + (j005)VZ — blug*)| 6V 4 da = 0

Using the above formulae, the governing equations of the refined theory of
microperiodic plates can be derived. These equations will be presented in the
subsequent section.
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4. GOVERNING EQUATIONS OF THE REFINED THEORY (STRUCTURAL MODELS)

The macromodelling procedure based on the assumptions formulated above
yields a system of equations for macrodeflections W and inhomogeneity correc-
tors V4 representing what are called the structural models.

4.1. The general structural model
Introducing averaged values of A-periodic functions occurring in (3.5) by

(41)  Dogys = (dapys) Déﬁ = <daﬁ7(59,ﬁ,§>7 D*? = <da;8759,®59zﬁ>7

using the condition (ug*) = 0 (from assumptions for functions g*) and after
some manipulations we obtain the following system of equations with constant
coeflicients:

42) DapysWapys + DEgVEs + (W — (YW a0 — (jg2)VE = p+ blw),
D3sWap + D*V® + (ug*g® )V = + (jgA)W o + (jghgB) V" = 0.

We have arrived at the system of N + 1 differential equations with constant
coefficients. Equations (4.2) can be used as a basis for computational analysis
of the thin microperiodic plates. The values of underlined terms in Eqs. (4.2)
depend on the microstructure size (on the microstructure length parameter 1)
and describe the length-scale effect on the plate behaviour. Moreover, the terms
with the A-periodic function j describe the effect of rotational inertia.

Equations (4.2) can be written in the alternative form. To this end, we intro-
duce the following functions depending on x = (z1,z2), x € IT, and the time ¢

Mug = DopysW ys + DgﬁVB,

(4.3)
M* = D*BVE 4 DAW .

In this way, from Eqgs. (4.2) we obtain the following equations:

Magap + (W — (W 0o — (§92)VE, = p+ blu),

.o .o

M* + (ug*g®)V® + (g )W o + (igihgB)V® = 0.

(4.4)

Equations (4.3) are called the constitutive equations and Egs. (4.4) are the equa-
tions of motion.
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4.2. The structural model without rotational inertia terms

Neglecting in Eqgs. (2.3) the rotational inertia terms (involving j), we obtain
the governing equations in the form

(4 5) DaB'yéW,a,BA{J + Dgﬁv,gﬂ + <:U'>W =p+ b(ﬂ)a

D}sW op + DAPV® + (ug*g®)V? = 0.

This is also the system of N + 1 differential equations, with the new basic
unknowns W, V4. The underlined terms describe the length-scale effect on the
dynamic plate behaviour.

4.3. The model without terms of order O(1%)

Neglecting in Egs. (2.3) terms (ug”#g?) € O(I*), we obtain the following sys-
tem of equations:

(“5) DaprsW.aps + DEgVEs + (W — ()W aa — (jg5)VE, = p+b{u),
4.6 —
Déﬂw,aﬁ + DAPVE + (jg::x)w,a + <jg,:‘xg,i>VB = 0.

The underlined terms in the above system describe the length-scale effect on
the dynamic plate behaviour.

Let us observe that in the above equations (4.2), (4.5) and (4.6), the ba-
sic unknowns are the macrodeflections W and inhomogeneity correctors V4,
A=1,...,N.

At the end of this section let us consider a thin plate strip made of a homo-
geneous isotropic material and having the l-periodic thickness along the z;-axis
(the periodicity unit cell is defined in the form A; := (0,l)). The thickness of
the plate h is assumed for z = z; € Ay = (0,1) in the form
(47) hz) = {hl if z€ ((1—X)/2,(14+N)1/2),

he if z€[0,(1— A)1/2 U1+ A)/2,1],

where { is the microstructure parameter, ) is a real number from [0, 1], which de-
fines relation between the length size of the cell part having the thickness h; and
the length size of the cell [, which is the microstructure parameter. For the sake
of simplicity we assume only one microshape function g = g' = {?[cos(27rz/l)-+¢],
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where c is a constant derived from the condition (ug) = 0. After some manipu-
lations we obtain from Eqgs. (4.1) the following relations:

__E 3 \
Dun = gy + (L= sl
) ) 3 5
(4.8) Dy = 3(Tlvﬁjsm(ﬂ')\)(hl —hd),
2 E
i _en = 3 13 ) 5
D = o= gy (b — B + sin(m) cos(nA)] + wha,

where E is the constant Young modulus and v is the constant Poisson ratio. The
above averaged values can be viewed as certain “effective stiffnesses” of the plate
under consideration. This example will be continued in the next paper [18].

5. GOVERNING EQUATIONS OF THE LOCAL MODELS

Local models of dynamics of thin microperiodic plates can be derived from
Egs. (2.1)+(2.4) by the asymptotic homogenization approach in which the plate
microstructure is scaled down. In this way, by setting { N\, 0, we arrive at the
asymptotic approximation of the refined theory in which we neglect the under-
lined terms in Eqs. (4.2). From Egs. (4.2)2 we obtain for V* the system of linear
algebraic equations

D*PVA = —DZsW 5.

It can be shown that the N x N matrix D## is non-singular. To this end we can
use the expression of the strain energy:

h/2

1
6':// écagygeage,y(gdzda.
IT—h/2

Using expressions (2.1), (2.3), (3.2), (3.1), the operator of an averaging and MMH
we can expand the above formula of £ to the form:

1
£~ / (DagrsW.apW s + DagW a5V + DEWagV? + D*"VAV?) da.
n

Because the energy is positive definite, we can confirm that the matrix D48 is
non-singular. Denoting by E*? elements of the inverse matrix of DA2, we can
eliminate inhomogeneity correctors from the governing equations by means of

(5.1) VA= —E*2DEW ;5.
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Let us denote
(52) Baﬂ’yé = Daﬁ’yd - DéﬁEABD'I)?cS’

and define by B,g,s the coefficients, which can be called “effective stiffnesses”
of the microperiodic plate in the framework of local models under consideration.

Using Eq. (3.1) to eliminate functions V4 from Egs. (4.2) and Eq. (5.2), we
arrive at the following equations of local models with or without the rotational
inertia terms.

5.1. The general local model

If we neglect in Egs. (2.3) the underlined terms, then we arrive at

(5.3) BogyiW apys + (W = ()W aa = p + blp),

- where B,g,; are the coefficients defined by Eq.(5.2) and the term with the
function j denotes the effect of the rotational inertia.

5.2. The local model without rotational inertia terms

Neglecting in Egs. (4.2) also the terms with the A-periodic function j, we
obtain the one governing equation in the form

(5'4) Baﬂ'yJW,a,B"yJ + <M>W =p+ b<lu')

Let us observe that for a homogeneous plate with a constant thickness we ob-
tain from Eq. (5.4) the governing equation of the classical Kirchhoff plate theory.

Models of thin microperiodic plates governed by Eq. (5.3) or by Eq. (5.4) will
be called the local models of dynamics. The coefficients (5.2), considered as cer-
tain “effective stiffnesses” in the framework of dynamics local models, are defined
for the class of disturbances described by the postulated a¢ priori microshape
function system. The formulae of the effective stiffnesses can be obtained us-
ing different asymptotic approximations ([2, 3 or 11]). All the effective stiffness
models (local models) neglect the length-scale effect of the size of the unit cell
A on the macrobehaviour of the plate. These models are independent of the
microstructure length /.

For an isotropic homogeneous plate band with the l-periodic thickness, which
was considered at the end of the Sec. 4, we obtain from Eq. (5.2) the relation for
the “effective stiffness” in the form

Bun = Dun — (D)D),
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where D111, Dh, D! are defined by Egs. (4.8). This example will be continued
in the next paper [18].

The governing equations of three structural models of thin microperiodic
plates presented in the Sec.4 (Egs. (4.2), (4.5) and (4.6)) and also the equations
of local models from this section (Eq. (5.3) and (5.4)), will be used to investigate
the length-scale and rotational inertia effects in the second part of this paper [18].

6. CONCLUSIONS

The relations of the Kirchhoff plate theory (Egs.(2.1)+(2.4)) lead to well
known differential equation of the fourth order for the deflection function w(x, t),
x = (z1,22) € II, t € (to,ts). However, for microperiodic plates we obtain
the differential equation with highly oscillating A-periodic coefficients (A :=
(0,11) x (0,12) is the periodicity unit cell on the midplane IT). From the compu-
tational point of view, this equation is too complicated to constitute the basis
for investigations of engineering problems. That is why different approximate
models for periodic plates have been proposed. These theories are mostly based
on the asymptotic procedures, which scale the microstructure of the plate down
and neglect the length-scale effect on the dynamic macrobehaviour of the plate.
In order to take this effect into account, we have proposed the new refined theory
of thin microperiodic plates. In our considerations we make use of the Kirchhoff
relations (Egs. (2.1)+(2.4)) and three additional modelling hypotheses (MKH,
VWH, MMH). Formulating these hypotheses we apply the concept of a regu-
lar macrofunction and the system of microshape functions. Finally we obtain a
system of differential equations with constant coefficients for macrodeflections
W (x,t) and inhomogeneity correctors V4(x,t), x = (z1,23), A = 1,..., N. This
approach is typical for the refined (structural) macrodynamics of microperiodic
bodies, which was presented in papers [14, 15, 17 and 16], and is different than the
known modelling procedures based on the theory of asymptotic homogenization.
Below, we will summarize the equations obtained in Secs. 4. and 5.

o The general differential equations of the structural model are Eqs. (4.2). This
is the system of IV +1 differential equations with constant coeflicients, which con-
sists of one partial differential equation of the fourth order for macrodeflections
W, and N ordinary differential equations of the second order for inhomogeneity
correctors V4, A = 1,..., N. The underlined terms describe the length-scale ef-

fect (the effect of the microstructure size length parameter [ = /12 + 12) on the
dynamic plate behaviour. Moreover, in these equations we can see the rotational
inertia terms (the terms with the A-periodic function j).
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e However, the system of N +1 differential equations (4.5) describe the struc-
tural model which neglects the terms with the A-periodic function j. These
equations take into account only the length-scale effect on the dynamic plate
behaviour.

¢ The equations (4.6) are obtained in order to conmsider the effect of the
rotational inertia. In this way we have neglected the terms of the order O(I®)
and higher. These equations constitute the system of N + 1 differential equations
in macrodeflections and inhomogeneity correctors.

e In the framework of the asymptotic approximation approach we have only
one partial differential equation with constant coefficients (5.3) for one unknown
function — macrodeflections W. We obtain this equation by neglecting the ef-
fect of the microstructure size on the dynamic plate behaviour. We neglect in
Egs. (4.2) the terms of the order O(1), O(1?), O(I*), O(I*). Thus from (4.2); we
obtain the system of N linear algebraic equations for inhomogeneity correctors
V4. We can eliminate them by substituting into (4.2); relations of V4. The co-
efficients B,g+5, which are found in the equation (5.3), are called the “effective
stiffnesses” and we calculate them from Eq. (5.2).

e However, the equation (5.4) is the special form of the local model. This
equation does not contain the term with the function j, which describes the effect
of the rotational inertia on the dynamic plate behaviour. It has been neglected
in it the underlined terms of Eqs. (4.2).

Hence, we can observe that the local models do not describe the length-scale
effect on the dynamic behaviour of plates under consideration. To investigate
this effect for thin plates with a periodic structure, we have to use the structural
models (determined by Egs. (4.2) or (4.5) or also (4.6)), which take into consid-
eration the effect of the microstructure length parameter [. A detailed discussion
of these models will be given in a subsequent paper, [18].
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