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FREE VIBRATIONS OF THIN PERIODIC PLATES

JJJJEDRYSIAK (LODZ)

The aim of this contribution is to apply a new modelling approach to the thin linear-elastic
Kirchhoff plates with a periodic structure proposed in 2] to investigate free vibrations. Using
this approach we can describe the length-scale effect on the dynamic plate behaviour. This
approach leading to the structural model is compared with the asymptotic homogenization
approach, which neglects the length-scale .effect and leads to the local model. It is shown under
what conditions the local model is sufficient to analyse free vibrations of microperiodic plates
and why we have to take into account the length-scale effect using the structural model. The
physical correctness of this model is also discussed.

1. INTRODUCTION

The main aim of this paper is to apply general equations formulated in [2] to
determine the effect of the microstructure size on the dynamic plate behaviour
in the case of free vibrations. In the aforementioned paper the new modelling
approach to thin elastic Kirchhoff periodic plates was presented. This approach
leads to what is called the “refined” or “structural” plate theory, which makes
it possible to investigate non-stationary processes in periodic plates, where the
size of the periodicity unit cell plays a crucial role and cannot be neglected. The
effect of the microstructure size on the macrobehaviour of a body is called the
length-scale effect. In order to estimate this effect, we will investigate both the
macromodel with the length-scale effect of the microperiodic plate and the local
macromodel in which this effect is neglected.

The results of micromodelling applied in this paper are called the refined
theory or the structural macrodynamics of periodic plates. The word “structural’
is related to the fact, that the obtained equations take into consideration the
length-scale effect on the plate behaviour. We will investigate linear-elastic plates
with a microperiodic structure and satisfying the assumptions of the Kirchhoff
plate theory. The presented theory can describe plates, the thickness and/or
material and inertia properties of which are periodic functions of coordinates
parametrizing the plate midplane.
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The thesis of this research is that in dynamic problems for periodic plates such
as the free vibrations, the length-scale effects play the important role and cannot
be neglected. In this paper we will analyse the problem of free vibrations for the
cylindrical bending of the plate strip simply supported on the opposite edges
and made of an isotropic homogeneous material, and having periodic thickness.
In the framework of structural models we will obtain equations involving the
terms depending on the size of the periodicity unit cell and investigate the effect
of the plate microstructure parametér on the plate behaviour. Moreover, from
the proposed theory, by scaling down the microstructure parameter, we shall
derive an “effective stiffness” theory, which will be called the local model. Using
both theories to the analysis of free vibrations plate problem we will show the
condition under which the microperiodic aspect of this problem can or cannot be
neglected. In the first case we can use local models to investigate free vibrations,
and in the second case we have to investigate this problem in the framework of
the structural theory.

Our considerations will be based on the micromodelling procedure, which was

presented in [1, 2]. This procedure leads to the governing equations of the refined
theory of thin microperiodic plates, which in [2] was called the structural theory.

2. PRELIMINARIES

Using the governing equations derived in [2] we will investigate free vibrations
of microperiodic plates. To make the analysis more clear let us introduce some
notations, following the paper [2].

By x = (z1,22) we denote the Cartesian coordinates of a point on the plate
midplane IT and by z -~ the Cartesian coordinate in the direction normal to the
midplane. By L we denote the smallest characteristic length dimension of 17,
and by A := (0,11) x (0,l2) — the periodicity cell on this plane. The size of the
cell is described by the microstructure length parameter 1 := (/12 +1%,1 < Lp.
By o0 = o(x,2) and cjjp = cijr1(x, z) we denote mass density and elastic moduli
tensor of the plate material, and by h = h(x) the plate thickness at a point
x € II. We assume that h(-) is a A-periodic function of x and o(-) and c;;xi(-) are
A-periodic functions of x and even functions of z. Moreover, let p denote tractions
on the upper and lower boundaries normal to I7, and b — the constant body force
acting in the zs-axis direction. Throughout the paper subscripts a, b, ... run over
1, 2, and superscripts A4, B, ... run over 1, ..., N. Summation convention holds for
all aforementioned indices.



FREE VIBRATIONS OF THIN PERIODIC PLATES 91

We shall introduce the following notations:

h/2 h/2 h/2
1) W= / odz, jo= / Z20dz, dopys = / zzcamg dz,
' —h/2 —h/2 ~h/2

Dogys = (dapys)s  Digys = (daprsghs), D7 = (daprs955904)-

Denoting by E“4? elements of the matrix inverse to D#? (it can be shown that
the matrix D## is non-singular [2]), we denote by

(2.2) Bagys = Dapys — DQﬁEABD%,

what was called the “effective stiffnesses” tensor of the microperiodic plate in
the framework of local models under consideration [2].

The micromodelling procedure based on the assumptions formulated in [2],
yields the system of equations for macrodeflections W and inhomogeneity cor-
rectors V4. In [2] the following structural models were obtained:

e the general structural model,

e the structural model without rotational inertia terms,

o the model without terms of an order O(I%).

Moreover, neglecting in the governing equations of the structural model terms
involving the microstructure parameter [, we have obtained in [2] the following
models neglecting the length-scale effect:

e the general local model,

o the local model without rotational inertia terms.

The governing equations of the above structural models of thin microperiodic
plates and the equations of local models were presented in the paper (2] (cf.
Egs. (4.2), (4.5), (4.6) and (5.3), (5.4) in [2]) and will be used here.

3. GOVERNING EQUATIONS

In this section we will specify the governing equations of structural and local
models which were derived in the paper [2] for the plate strip simply supported
on the opposite edges, made of an isotropic homogeneous material and having
the [-periodic thickness h(z) in the z-axis direction, z = =z, cf. Fig. 1. In this
case all material properties are constant values; by ¢, E, v we denote the mass
density, Young’s modulus and Poisson’s ratio, respectively. We will investigate
the cylindrical bending of the plate. Hence, the unit cell is assumed in the form
A; = (0,1). The microstructure parameter !, which defines the size of the unit
cell, satisfies the condition [ < L, where L is the minimum characteristic length
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F1G. 1. Example of the plate with the I-periodic thickness.

dimension of the midplane I1. Moreover, we assume that z = [/2 is a symmetry
plane of the unit cell. Formula for deflections w(z,t) of the midplane IT, which
was given in [2], has the form

w(z,t) = W(z,t) + g*(z)V*(z,1),

where W, V4 are called macrodeflections and inhomogeneity correctors, respec-
tively, and ¢g* are microshape functions, A =1, ..., N. For the sake of simplicity
and for a symmetrical form of the unit cell, we introduce one microshape function

(3.1) g(z) = *[cos(2nx/l) + q, g(z) = ¢X(z),

where the constant ¢ is defined by the condition (ug) = 0. Following the line
of this approximation we introduce only one inhomogeneity corrector V(z,t) =
V(z,t). It follows that the basic kinematic unknowns are W = W(z,t) and
V = V(z,t) defined for every = € I, t € (t,ts), and deflections of the midplane
can be written in the form

w(z,t) = W(z,t) + g(z)V(z,t).

In this way we restrict the function describing disturbances in the plate deflec-
tions caused by the microperiodic structure of the plate to the first term of a
certain Fourier series.

Let us introduce the following notations

3
B= 2"

12(1 - v?)
(3.3) D = D', Dy =Dy, Dun = (B),

(3.2)

where D1111, D11, D%l are defined by (2-1)4,5,6~

For the case under consideration the general equations, which were derived
in [2] for structural and local models (cf. Egs. (4.2), (4.5), (4.6) and (5.3), (5.4)
in [2]), will be written down. The underlined terms in the equations given below
depend on the size of the microstructure.



FREE VIBRATIONS OF THIN PERIODIC PLATES 93

3.1. The general structural model

Using the notations for the coefficients introduced above, Egs. (4.2) of [2] can
be written in the form

(3.4) (BYWai11 + D11V + ()W — (j>W,11 - (j9,1>i/',1 = p+ by,

DuWai + DV + (ugg)V + (j91)W 1 + (jg19.1)V = 0,

where terms with j describe the effect of the rotational inertia on the dynamic
plate behaviour.

3.2. The structural model without rotational inertia terms

Equations (4.5) of [2] for a special case of a cylindrical bending of the mi-
croperiodic plate are

(BYWaiin + DV + (M)W = p+b{u),

D11W’11 + DV + (,ugg)V = 0.

(3.5)

3.3. The model without terms of order O(I%)

Equations (4.6) of [2] in a case of a cylindrical bending of the microperiodic
plate are

(36) (BYW 1111 + D11V + (W)W — (j>W,11 - <j9,1>1./.,1 = p+b(u),
DWW+ DV + (jg,1>W,1 + (J'Q,lg,l)‘7 =0,

where the terms involving j describe the effect of the plate rotational inertia.

3.4. The general local model

Equation (5.3) of [2] for a cylindrical bending of the plate has the form

(3.7) BiiuWain + (W — (j>W,11 =p + b(u),

where Byjy1 is the coefficient (the “effective stiffness”) defined by Eq. (2.2). In
this case for the isotropic homogeneous plate having the I-periodic thickness, we
arrive at

(3.8) Bun = (B) — D™'Dy Dy,
where D1y, D are defined by (3.3).
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3.5. The local model without rotational inertia terms

Equation (5.4) of [2] for a case of a cylindrical bending of the plate has the
form

(3.9) Bunu W + (W)W = p+ bl),

where Bii1: is the coefficient defined by (3.8).

4. APPLICATIONS: FREE VIBRATIONS

Let us show under what condition the length-scale effect can or cannot be
neglected. To this end we will compare the results of the structural macromod-
elling and these of the local macromodelling. To this end we shall investigate free
cylindrical vibrations of the plate strip simply supported on the opposite edges
(v = 0 and z; = L) made of an isotropic homogeneous material and having the
l-periodic thickness, Fig. 1, in the z;-axis direction. The thickness h of the plate
is assumed for z € A; = (0,1) in the form (Fig. 2)

b iz e (1= N)1/2,(1+N)1/2),
(4.1) he) = { hy if z€[0,(1—N)I/2 U1+ N)/2],

where [ is the microstructure parameter, A is a real number from [0, 1], which
defines the relation between the length size of the cell part having the thickness
hi and the length size of the cell /, which is the microstructure parameter (Fig. 2).
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F1G. 2. The unit cell A; and the microshape function g.

Moreover, we will assume that the concentrated mass M is applied at the
center of the unit cell A; = (0,1). The averaged density per unit area of the
midplane is denoted by m = pH, where H is the I-periodic function.

In order to investigate free vibrations we will assume that tractions p on the
upper and lower boundaries of the plate and the body force b are equal to zero.
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Moreover, assuming the microshape function in the form (3.1), satisfying the
condition (ug) = 0, we can show that (jg1) = 0.

Under these conditions we will arrive below at the formulae for free vibration
frequencies of the microperiodic plates in the framework of models presented by
equations (3.4), (3.5), (3.6) and (3.7), (3.9).

4.1. The general structural model

Solutions to Egs. (3.4) satisfying boundary conditions for the simply sup-
ported plate will be assumed in the form
(4.2) Wz, t) = Aw sin(kz) cos(wt), V(z,t) = Ay sin(kz) cos(wt),

where Ay, Ay are vibrations amplitudes, Aw Ay # 0 and k = 27 /L is the wave
number. Substituting the right-hand sides of Eqgs. (4.2) into Egs. (3.4) we obtain
the system of two linear algebraic equations for Aw, Ay

(BYk* ~ (u)o? = () ~Dy#? aw) _

—D11k? —D - (ugg)w? — (jga9.1)w*| | Av '
This system of equations has nontrivial solutions provided its determinant is
equal to zero. In this way we obtain the characteristic equation for free vibrations

frequencies.
Using the notations

(B) ~ s _ (Dp)? _ )
B = x=l@?). 1= GE @=4

where y, j are [-periodic functions defined by (2.1), B is defined by (3.2), and g
is the microshape function defined by (3.1), and calculating the constant value
¢ from the condition (ug) = 0, we can write this equation in the form

45 G (ER+1D)(B+x)
2 [(B)(8 + x) + D) (k2 + 1] + K [(B)D ~ (Du)?] =0,

From the above condition, the values of free vibration frequencies w can be
calculated. We arrive at the following formulae for lower w; and higher w; free
vibration frequencies:

w? = (21 +e2k?) (B + X)) {ak? (B +x) + D(1 + €%K?)
— \Ja(B+ 0k [a(B + x)k* — 2D(1 + £2k2)(2y — 1)) + D2(L +€%k2)? },
Wi = 21+ %2 (8 + X)) {ok (B +x) + D(1 + %)

+ (B + R (B + )kt — 2D(1 + €2k2)(2y — )] + D2(1 +£2k2)? }.

(4.3)

(4.4) a=

(4.6)
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The above formulae were obtained in the framework of the general structural
model, which is described by Eqs. (3.4), for the plates under consideration.

4.2. The structural model without rotational inertia terms

Solutions to Egs. (3.5) satisfying boundary conditions for the simply sup-
ported plate can be assumed in the form (4.2). Substituting the right-hand sides
of Egs. (4.2) into Egs. (3.5) we obtain the system of two linear algebraic equations
for Aw, AV

W (B)k* — (u)w'>  —Dyik? HAW } — (o).

—Dpk?* D —{(uggw'? ]| Av

This system has nontrivial solutions if its determinant is equal to zero. Hence
we obtain the characteristic equation for the free vibration frequencies. Using
notations (4.4), we can write this equation as

(4.8) Wi (B — W (K(B)B + D(u)) + K*[(B)D — (Dn)*] = 0.

From the above condition, after some manipulations, we arrive at the following
formulae for lower wj and higher w}, the free vibration frequencies

W = Lokt + (29) [D — J(aprt — Dy + 47aﬂDk4] ,

wh? = %Ozk}4 +(26)71 [D + \/(aﬁk4 - D)%+ 47a,3Dk4] .

The above formulae were obtained in the framework of the structural model
without rotational inertia terms described by Egs. (3.5).

4.8. The model without terms of order O(1%)

Solutions to Egs. (3.6) satisfying boundary conditions for the simply sup-
ported plate can be assumed in the form (4.2). Substituting the right-hand sides
of Egs. (4.2) into Eqgs. (3.6), we obtain the system of two linear algebraic equa-
tions for Ay, Ay

(BIK — (" — (j)u k2 —Duk2>w"2] {Aw} _ (0

4.10
(4.10) —Dy1k? D - (jgi9: Ay



FREE VIBRATIONS OF THIN PERIODIC PLATES 97

This system of equations has nontrivial solutions if its determinant is equal
to zero; hence we arrive at the characteristic equation for frequencies. Using
notations (4.4) we can write the aforementioned equation in the form

(4.11) w"4(u>(l + 62]92)&
= " [F(B)x + D)1+ %) + K[(B)D - (D)*] = 0.

From the above condition the values of the free vibration frequencies w” can
be calculated. We arrive at the following formulae for lower wj and higher w}
resonance frequencies

W’ = [2x(1 + 52k2)]_1{axk4 +D(1+¢€%k?)

— \Jaxkifaxkt + 2D(1 + €2k2) (2y — 1)] + D*(1 + 2k?)2 3
4.12
(4.12) wi? = [2x(1 + szkz)]_l{axk4 + D(1 + £%k?)

+ \Jaxkilaxk + 2D(1 + e2k2)(2y — 1)] + D2(1 + e2k?)2 }

The above results were obtained in the framework of the model without terms
of order O(I%), which is described by Egs. (3.6).

4.4. The general local model

Solutions to Eqgs. (3.7), satisfying boundary conditions for the simply sup-
ported plate, can be assumed in the form
(4.13) W(z,t) = Aw sin(kz) cos(wt),

where Ay is a vibration amplitude, Ay # 0 and k = 2r/L is the wave number.
Substituting the right-hand side of Eq. (4.13) into Egs. (3.7) and using (4.4)5 we
obtain the linear algebraic equation for Ay in the form

(4.14) [Buuk:4 — LT)z(u)(l + 62k2)]AW =0,
which leads to the characteristic equation for frequencies
(4.15) —&*(u)(1 + €2k%) + Bunk* = 0.

From the above condition we can calculate the value of the free vibration fre-
quency @. Using notations (3.8) and (4.4), we arrive at the following formula for
the lower free vibration frequency

4

o A\ _k

(4.16) w* = (oz D> T e

The above result was obtained in the framework of the general local model,
which is described by Egs. (3.7).
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4.5. The local model without rotational inertia terms

Solutions to Egs. (3.9) satisfying boundary conditions for the simply sup-
ported plate can be assumed in the form (4.13). Substituting the right-hand side
of Eq. (4.13) into Egs. (3.9) and using the relation (4.4)5, we obtain the linear
algebraic equations for Ay in the form

(4.17) (Biiak* — (u)a@'"%) Aw =0,
which leads to the characteristic equation for free vibration frequencies
(4.18) —(u)&’2 + BunkA = 0.

From the above condition we can calculate the value of the free vibration fre-
quency &'. Using notations (3.8) and (4.4), we arrive at the following formula for
the lower free vibration frequency

(4.19) P2 = (a - %) K4

This formula was obtained in the framework of the local model without rota-
tional inertia terms described by Egs. (3.9).

It can be seen that the structural models, which are described by Egs. (3.4),
(3.5) and (3.6) lead to formulae for lower and higher free vibration frequencies.
However, using the local models (Egs. (3.7) and (3.9)), we can obtain only lower
frequencies of the microperiodic plates under consideration.

5. DIAGRAMS OF FREE VIBRATION FREQUENCIES

In this section we will present diagrams of free vibration frequencies for the
isotropic homogeneous plate simply supported on the opposite edges and having
the I-periodic thickness. We will make these diagrams using the obtained formu-
lae for frequencies, which will be shown below in the dimensionless form. To this
end we will introduce the notation

E
12(1 —v?)’

where E — is the Young modulus, v — is the Poisson ratio, and some dimensionless
coefficients €2, @, 3, X, D, satisfying relations

2 _ _
(52) €e2=g% a= a% . B=D7ol’  x=x0°  D=Dxl,

(5.1) K

where D is defined by (3.3)1, €2, a, B, x are defined by (4.4)5123, 0 is the
constant value of the mass density and [ is the microstructure parameter.
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Multiplying both sides of relations (4.6), (4.9), (4.12), (4.16), (4.19) by (*ox™~1,
we obtain the following dimensionless formulae for frequencies:

e free vibration frequencies for the general structural model:

2= p@E+00+2)] " {ad @+ 0 + D+ 2)

- \/a<B + 200t [7(F + X)¢* + 2D(1L + ¢ 2y - D] + D'+ 22}
5.3 _ _
5 2= @A+ +2¢)] T {adt @+ %) + D1+ )

+ \/a(B+ Rt [a(F + 06 + 2D+ 2¢)(2y - )] + DL+ 222}

o free vibration frequencies for the structural model without rotational inertia
terms:

o = (2) %\ ¢#5F + D - \/(aBe — D) + 4raBDa

(5.4)

25 = (2_5)“1/2\/q453 +D+ \/(aﬁq4 — D)2 + 4yaBDqg*,
e free vibration frequencies for the model without terms of order O(1*):

_ _ -1/2 — _
0 = [2x(1 + 62q2)] {axq4 +D(1 +7%¢?)

—_— e 1/2
- \/Wq“ [axgt +2D(1 + 2¢2)(27 - 1)] + D°(1 + 22¢)% } "

-1/2 —
2 = [235(1 +€2q2)] / {ayq“ +D(1+2%¢%)

— — 1/2
+ \/@‘Xq“ [axg* +2D(1+222) 2y - D] + D*(1 42222 |

e free vibration frequency for the general local model:

- 2
(56) = fa0 - s
14-gq
e free vibration frequency for the local model without rotational inertia terms
(5.7) 2 = \/a(l —v) ¢

In the above formulae ¢ is the dimensionless wave number (¢ = kI, where
k = 2m/L is the wave number, [ is the microstructure parameter, L is the span
of the plate along the z-axis).
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Fi1G. 4. Higher free vibration frequencies for the plate without concentrated masses (n = 0).
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(A): (m=0.08, 7,=0.06, 1=0.5)
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(D): the local model without rotational inertia terms: 2=0.5
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FIG. 5. Lower free vibration frequencies for the plate with concentrated masses (7 = 50).
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(A): (11,=0.08, 1,=0.06, 1=0.5)

25
SEE ST SRR R LY L RY SETURE SR SEY SR EF ShE T SR EE SRE AT 3
20
“e-a
15 ..m- b
—a—C
0
10
the X
a - the general structural model,
b - the structural mode! without ratational inertia temms,
5 ¢ - the moded without tesms of an order o(1*)
- -8 -8 8 -8 - -9 -5 -5 -5 5 8 -§ - - -8 -5 8§ 5
0
0 01 062 ¢q 03 04 05
(B): (m=0.1, 1,=0.08, 2=0.5)
25
SRUET SEDSET SR SEY SEPURE SEFCRY SEPURY URPUEE PP CRY SRR SR
20
—e-2a
15 --®- b
Q Tre
o T ]
the legend:
a - the general structural model,
b - the structural model without rotational inertia terms,
5 ¢ - the model without terms of an order (1)
%5985 8- 8- -3
0
0] 01 02 q 03 04 05
(C): the general structural model: 2=0.8
25
REVINS XTI SET CRTURY CRNCTRE CRE R SRS UEE CE RS B3 UEE SRR URE SR oRE
2
T R S N b SRV ST SETR S ot S ot 3
15
(s
RTST TN TET BB PRY PRV R R PR PRV PRV BRI BRS ER BN TER TR BRI BRI
1
—e-a- the legend:
054 a2 a-1 - 7,=0.08, 1,=0.08, 77,/1,=0.75,
— %= A-1 a-2 - 7,=0.04, 1,=0.3, n,/174=075,
- A2 A-1 - 1,=0.1, 7,=0.08, n,/n,=0.8,
1 A-2 - 7,=0.05, 17,=0.04, n,/n,=08,
0 + $ } § } + +
0 0.1 02 q 03 04 0.5
[F1G. 6]

(106]



(D): the structural model without rotational inertia terms: 2=0.8
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F1G. 6. Higher free vibration frequencies for the plate with concentrated masses (7 = 50).
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From formulae (5.3)-(5.7) we obtain below the diagrams shown in Figs. 3-6.
These diagrams are made for the plate having the l-periodic thickness h, which is
defined by (4.1) and Fig. 2. In order to investigate different cases of the thickness,
we will introduce dimensionless coefficients

h1 ha

(58) 7715—1—3 m=-,

where hy, hy are thicknesses of the plate in the cell A; (Fig.2) and ! is the mi-
crostructure parameter (the length size of this cell). Moreover, the concentrated
masses M can be put at the center of every cell. Because the averaged density
per unit area of this mass can be denote by m = pH, where H is the [-periodic
function and g is the mass density of the plate, we will introduce the notation

H

T

The value of 7 is equal to zero in the entire region of the cell except the center,
and in this point it can be greater than zero (if the mass is located at this point)
or equal to zero (if the mass is equal to zero).

In Figs. 3-6 the following diagrams are shown:

e Figures 3, 4 — diagrams of lower and higher free vibration frequencies, re-
spectively, for the plate under consideration without concentrated masses (n = 0
in the whole region of the cell, where 7 is defined by (5.9));

e Figures 5, 6 — diagrams of lower and higher free vibration frequencies,
respectively, for this plate with the concentrated mass in the middle of every cell
(hence, in this point n = 50).

Below, we will comment the above diagrams.

e Diagrams in Fig. 3 show lower free vibrations frequencies.

o Diagrams (A) and (B) in Fig.3 show the values of lower free vibrations
frequencies obtained for different models. These diagrams are made for parameter
A = 0.5, which describes the length of the part of the cell having the thickness h;
(Fig. 2). The parameters 71, 72 are defined by (5.8) and describe relation between
the thickness of the plate and the microstructure parameter /.

o In diagrams (C) and (D) in Fig. 3 we can see the values of lower frequencies
for the general structural model and the local model without rotational inertia
terms, respectively. These diagrams are made for the value A = 0.5, for different
values of the quotient 72/n; (where parameters 7, 7y are defined by (5.8)), and
for different values of these parameters describing the plate thickness. It can be
observed that the frequencies for all the structural and local models grow together
with increasing thickness of the plate (with increasing parameters 71, 72).

o Diagrams (E) and (F) in Fig. 3 are made for the general structural model and
the local model without rotational inertia terms, respectively, for the constant

(5.9) n
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quotient 75 /7 and different values of A. It can be observed that for every model,
lower frequencies grow with an increasing A € [0, 1].

e In diagrams in Fig. 4 we can see higher free vibration frequencies.

o Diagrams (A), (B) show higher frequencies for the general structural model
(Eq. (5.3)2), for the model without rotational inertia terms (Eq. (5.4)2), and for
the model without terms of order O(I*) (Eq. (5.5)2). We can observe that the
lowest values of the frequencies can be obtained from the general structural
model.

o Diagrams (C) and (D) demonstrate, that values of higher free vibration fre-
quencies obtained from any structural model, for constant parameter A and con-
stant relation 77 /7y, increase with increasing parameters 7y, 72 (which describe
the relation between the plate thickness and the microstructure parameter 7).

o Diagrams (E) and (F) in Fig. 4 are made for the general structural model and
the model without terms of order O(I*), respectively, for the constant quotient
ne/m and different values of A. It can be observed that for every model, higher
frequencies grow for the parameter A € [0, \], then decrease for X € [\, X"] and
grow for A € [\, 1], where X', \” depend on parameters 7y, 7.

e Diagrams in Figs.5 and 6, which show free vibration frequencies for the
plate with concentrated masses (the parameter 7 defined by (5.9) is equal to
n = 50 in the middle of the cell), can be commented in the following form.

o Diagrams (A)—(F) in Fig.5 and (A)—(F) in Fig. 6 can be described in the
same form as in the case of Figs.3 and 4 (free vibration frequencies of the plate
for the parameter n = 0 — without concentrated masses).

¢ Comparing diagrams of free vibration frequencies for the plate without and
with additional concentrated masses (e.g. Fig. 3(A)—(B) and Fig. 5(A)—(B)), we
can see that these masses decrease the values of free vibration frequencies.

6. PHYSICAL CORRECTNESS OF THE PROPOSED APPROACH

6.1. The structural model

In order to verify the presented modelling approach, let us investigate in this
section free vibrations of a special case of microperiodic plates. It will be shown
that assumption of only one microshape function is sufficient to consider the
micromotion of a plate described by this function.

Let us assume the plate discussed in Secs.3-5 — the plate strip simply sup-
ported on the opposite edges (r = 0 and z = L) and made of an isotropic
homogeneous material, having the I-periodic thickness h and with periodically
distributed concentrated masses M. An example of this plate is shown in the
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Fig. 1. Moreover, we would like to investigate micromotions described by the
microshape function in the form

(6.1) g(z) = 1*sin(2nz/1).

| | the symmetry axis

o ~‘\. 1ofthecell

M ] N M s x

14 112 174

L
1-A)1/4 L l?/Z L (1-4)1/2 L All2 1/(1 -A)l4
Il 71 i 1 7

F1G. 7. The unit cell A; and the microshape function g.

Hence, we assume the periodicity unit cell in the form shown in the Fig.7,
and the thickness h as

h 0f z e (1= A)/4,(1+M\)1/4) U ((3— N)i/4, (3 + A\)i/4),
hy if z €[(0,(1— A)/4] U ((1+ \)1/4),
(3= A)/AU[(3+ N)i/4),1],

(62)  h(z) =

where [ is the microstructure parameter, X is a real number from the interval
[0,1]. The concentrated masses M will be applied at two points of the unit cell
A1 on the z-axis — at = {/4 and z = 3[/4, and the averaged density of each of
them is denoted like it was in the Sec. 4.

For the purpose of investigation of free vibrations we will assume that trac-
tions p on upper and lower boundaries of the plate and the body force b are equal
to zero. Using the governing equations of the general structural model (3.4), this
plate will now be analysed. Describing micromotions by the microshape function
in the form (6.1) we obtain that (ug) = 0, (jg,1) = 0, and moreover, D;; = 0. In
this way Eqgs. (3.4) have the form

(6.3) (BYW 1111 + (i)W — ()W 11 = 0,
DV + {ugg)V + (jg19.)V = 0.

The above equations represent the system of two independent differential
equations — the first for the macrodeflections W and the second for the correc-
tor V.
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Solutions to Egs. (6.3) satisfying boundary conditions for the simply sup-
ported plate strip will be assumed in the form (4.2). Substituting the right-hand
sides of Egs. (4.2) into Egs. (6.3), we obtain two independent linear algebraic
equations for amplitudes Ay, Ay. After some manipulations we obtain the fol-
lowing formulae for free vibrations frequencies:

o the lower frequency

2 (B) 4

o = e g
o the higher frequency

D

2 __
(6.5) (w2)” = (ngg) + (jg,19,1) "

where k£ = 27/L is the wave number.

We can observe that in the case of micromotions described by the microshape
function (6.1), the lower frequency depends only on the plate macrostructure,
and the higher frequency depends only on the microstructure of the plate.

For the sake of simplicity we assume constant thickness h of the plate under
consideration. Hence, formulae (6.4)-(6.5) can be written in the following forms:

o the lower frequency

Eh? k4
o(1 —v) 12(h + 2H) + h3k2”’
o the higher frequency

(6.6) (w)? = k=2n/L,

ER? 4t
o(1 —v) [312(h + 4H) + mw2h3]i2”’

where E, p, v are the Young modulus, the mass density and the Poisson ra-
tio, respectively, h is the constant plate thickness, H is the function describing
concentrated masses and ! is the microstructure length-parameter.

It can be seen that the lower frequency (6.6) is independent of the size of
the plate microstructure, and that the higher frequency depends only on the
microstructure parameter ! and is independent of the wave number k.

(6.7) (wo)? =

6.2. The Kirchhoff plate theory

In the framework of the classical Kirchhoff plate theory, the governing equa-
tion for the deflections U of the plate with the constant thickness A can be
written in the form

(6.8) BU 1111 + pU — jU 11 = 0.
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Using the above equation we will discuss below two cases.

e The first case — the plate strip simply supported on the opposite edges
(z =0 and z = L) and made of an isotropic homogeneous material, with constant
thickness h and periodically distributed concentrated masses M. The solution to
Eq. (6.8) will be assumed in the form

(6.9) U(z,t) = Ay sin(kz) cos(@t), Ay #0, k=2rn/L.

Substituting (6.9) and coefficients B, p, j into Eq. (6.8) and after some ma-
nipulations, we arrive at the formula for the first frequency
Eh? k*

A2 jmad —_
(6.10) W= i ooy nhrem ik e/

which is identical with the lower frequency (6.6) obtained in the framework of
the general structural model.

e The second case — the plate strip simply supported on the opposite edges
(z = 0 and z = I) and made of an isotropic homogeneous material, with constant
thickness h and two concentrated masses M distributed as in Fig. 7. The solution
to Eq. (6.8) will be assumed in the form

(6.11) U(z,t) = Ay sin(2rz/l) cos(@t), Ay #0.

Substituting (6.11) and coefficients B, u, j into Eq. (6.8) and after some ma-
nipulations, we arrive at the formula for the second frequency
.2 Eh3 4t

(6.12) YT o =) BE(h+4H) + 2R

which is identical with the higher frequency (6.7) obtained in the framework of
the general structural model.

Summing up, we can confirm that the results (6.6) and (6.7) obtained in the
framework of the structural model are correct.

7. CONCLUSIONS

In order to show that the length-scale effect plays a crucial role in a dynamic
macrobehaviour of plates with periodic structure, we have used in this paper
governing equations of the structural models which were obtained in [2]. In the
Sec. 3 these equations have been written for a special case of a plate — the plate
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strip simply supported on the opposite edges, made of an isotropic homogeneous
material and having the [-periodic thickness along the z-axis. Next, we have
investigated free cylindrical vibrations of this plate. The obtained diagrams in
Figs. 36 of free vibration frequencies for structural and local models have en-
abled us to formulate below the following essential conclusions concerning the
modelling methods for microperiodic plates.

e Lower free vibration frequencies calculated from the general structural
model (Eq. (4.6); or (5.3)1) can be approximated by similar frequencies derived
from this model with additional simplifying assumptions (Eq. (4.9); or (5.4);
and Eq.(4.12); or (5.5)1), and also from the local models (Eq.(4.16) or (5.6)
and Eq. (4.19) or (5.7)).

¢ Higher free vibration frequencies can be derived only from the general struc-
tural model (the refined theory) and its variant with additional simplifications.

o From the general structural model, described by Eqgs. (3.4), higher frequen-
cies are determined by Eq. (4.6)2 or (5.3)2.

o The structural model without rotational inertia terms given by Egs. (3.5).
In this case, we have higher free vibration frequencies determined by Eq. (4.9),
or (5.4).

o The model without terms of an order of O(I*) described by Egs. (3.6)
and higher frequencies, derived from this model, are determined by Eq. (4.12);
or (55)2

Using the structural models, which take into account the length-scale effect
and/or the effect of the rotational inertia terms on the dynamic plate behaviour,
we can obtain some informations about higher free vibration frequencies.

¢ The general structural model, governed by Egs. (3.4), determines the upper
bound of higher vibration frequencies, for which the resonance does not take
place, because using this model, the lowest from higher free vibration frequencies
can be calculated (Eq. (4.6)2 or (5.3)2).

e Comparing diagrams of free vibration frequencies of the plate without and
with the concentrated masses, we can confirm that the masses reduce the values
of these frequencies.

Hence, we can use the local models, which neglect the effect of the microstruc-
ture length parameter [, only to investigate the lower free vibration frequencies of
thin microperiodic plates. In this case the structural model can be approximated
by the local model. We can observe the advantages of the structural model for
periodic plates by investigating higher free vibration frequencies.

Verification of the structural model shown in the Sec. 6, confirms the results
obtained in the framework of this model.
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