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OPTIMIZATION OF VARIABLE THICKNESS PLATES BY GENETIC
ALGORITHMS

M. PYRZ (LILLE)

The implementation of genetic algorithms to the optimal design of variable thickness plates
is presented. Thin, elastic, piecewise constant thickness plates subjected to bending are inves-
tigated. The material distribution that minimizes the structural strain energy under constant
volume constraint is searched. In numerical examples, square plates loaded by uniform normal
pressure are optimized for different boundary conditions. The best designs are compared with
the worst solutions, corresponding to the maximization of the strain energy. Significant changes
in strain energy can be achieved by modifying thickness distribution for the same material
volume. The performances of the approach are discussed.

1. INTRODUCTION

The development of sophisticated optimization methods and the multiplying
performances of present computers have opened up the possibility of finding
efficient design methods for many structural components. The structures which
efficiently face loads, vibrations, shocks, etc., with the minimum possible cost
or weight, are more and more required by modern engineering. A significant
enhancement of mechanical performances can be achieved by modification of
the shape. The minimization of the strain energy leads to rigid structures with
deflections and stresses considerably reduced. Such optimal forms have higher
stiffness and higher resistance against deformation. The paper is concerned with
the optimization of a particular structural element — the plate.

Among several computational techniques, developed to deal with engineering
optimization tasks, the promising applications of Genetic Algorithms (GAs) are
explored in recent years. The GAs (1] are a class of computational models inspired
by evolution, which may be used directly to solve unconstrained maximization
problems. They are particularly effective for non-differentiable and discontinuous
problems, or in the case of many locally optimal points. It cannot be mathemat-
ically shown that GAs always converge to a global optimum but they are very
effective in finding “near optimal” solutions. Such propositions can be acceptable
for engineering design and can introduce more realism into practical optimiza-
tion [2]. The papers (3, 4, 5] are among the first applications of GAs to structural
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optimization. Numerous publications follow this trend, and show usefulness of
this class of search procedures for various engineering problems.

Several authors have carried out optimization of plates subjected to bending.
A review of optimal plate design can be found in [6]. In [7], the maximum rigid-
ity plates have been investigated by minimizing the functional of the maximum
plate deflection, and by analyzing a corresponding integral optimality criteria.
A function-space gradient projection technique was proposed by [8] and mini-
mum volume plates were searched under displacements constraints. In [9, 10] the
structural shape optimization procedures are coupled with the finite strip method
to analyze the optimal forms of plates and curved shells under different loading,
boundary and design variable linking conditions. Discretized continuum-type op-
timality criteria method is applied by [11] to plates and shells. In [12] optimal,
discrete variables plates and shells are searched by applying continuous and dual,
discrete optimization approach.

The objective of the present work is to apply the GAs to the problem of
optimal design of plates subjected to bending, and to investigate numerical per-
formances of this optimization procedure. The thin, elastic, piecewise constant
thickness plate model is considered. The design variables are plate segment thick-
nesses, which have to be selected among the given, available values. The thickness
distribution that minimizes the strain energy for constant volume of the plate
is searched. We want to allocate the material where it is needed for maximum
performance, and remove it from where it is unnecessary. A brief presentation
of genetic algorithms is followed by the implementation of GAs to plate de-
sign problem. Chromosome representation of design variables, characteristics of
genetic operators, and fitness formulation are presented. In the numerical ex-
amples, square plates loaded by a normal uniform pressure are optimized for
different boundary conditions. The best designs are compared with the worst
material distribution, corresponding to the maximization of the strain energy.
The cases of two and four available thicknesses are considered. The changes in
the strain energy are examined. The efficiency of the proposed approach and
possible enhancement of the method are discussed.

2. FOUNDATIONS OF GENETIC ALGORITHMS

Genetic algorithms (GAs) are adaptive search strategies based on biological
observation. They imitate the mechanism of natural evolution, hereditary and
survival of the fittest. The basic principles were first laid down by [1] and next
extended and developed in many books, e.g. [13, 14, 15]. The genetic algorithms
are naturally adapted to solve unconstrained discontinuous maximization prob-
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lems. It cannot be shown mathematically that they always converge to a definite
optimum but numerous results from the literature demonstrate their robustness
and efliciency in various fields of application. GAs procedures are able to find
near-optimal solutions of difficult problems, where standard optimization proce-
dures cannot be successfully applied.

GAs manipulate the coded information. Each potential solution is encoded
in a string data structure and represented in the form analogous to the chro-
mosomes of the biological individual in an evolutionary chain. In the presented
approach, a one-chromosome individual model is applied. Design variables can
be expressed as finite length substrings using, for example, binary representation.
All substrings are concatenated head-to-tail to form one “chromosome”, repre-
senting a potential design. A decoding procedure is used to obtain physical values
of design variables, and to evaluate individuals. A measure of performance, called
fitness, is directly related to the value of the objective function of a chromosome.

All each iteration Genetic Algorithm explores a fixed number of points called
population. The process of evolution is simulated using a set of biologically in-
spired operators (like selection, reproduction and mutation) defined over the
population itself. Each iterative step creates a new generation of individuals.
The potential designs in a population compete with each other to pass to next
generations. According to evolutionary theories, only the most suited elements
are likely to survive. The chromosomes with high fitness values will be chosen to
form next generation. New “children” chromosomes are generated by recombin-
ing the genes of “parents” strings, analogous to sexual reproduction in nature.

The structure of a simple GA program is presented in Fig.1l. At the first
stage, an initial population of potential solutions P(0), encoded into chromosome
forms, is generated at random. The population size is, however, to be kept mod-
erate. After evaluating the fitness of each individual of the population, a selection
mechanism chooses “parents” for reproduction. They will generate offspring and
transmit their biological heredity to new generations. The fitness is a measure
of the reproductive efficiency. The selection policy must assume survival of more
fitted individuals. The best strings get more copies, the average stay even, the
worst die off. The crossover and the mutation operators are applied to create new
population of individuals. Crossover is a procedure of exchange of information
between two parent strings. In the simplest model, a crossing site is chosen ran-
domly. Two new strings (children) are produced from the parent genetic material
by interchanging substrings behind the crossing site. The mutation operator al-
ters randomly the selected genes to prevent the premature convergence of the
population, and to vary genetic features. Crossover and mutation probabilities
are defined to determine whether operators should be implemented or not. The
most promising strings are searched for improved solutions and new populations
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n=0

initialize population of individuals P(n)

evaluate fitness of all individuals of P(n)

while (not termination criterion) do
n=n+1
select individuals for reproduction from P(n-1)
recombine selected individuals (crossover, mutation)
select the survivors to generate new population P(n)
evaluate fitness of all individuals of P(n)

end

F1G. 1. The structure of a genetic algorithm program.

P(n) are created, keeping only the fittest individuals from the past generation.
New designs are usually better and they replace members of old populations.
The cycle selection - reproduction — evaluation is repeated until a satisfactory
solution of the problem is found. The process can be stopped, for example, when
there is no improvement in the fitness average of a population, when a given
percentage in population uniformity has been obtained, or when a given number
of generations has been evaluated.

3. FORMULATION OF THE OPTIMIZATION PROBLEM

The paper is concerned with the optimization of plates subjected to bend-
ing. The distribution of thicknesses within the plate has to be found. The total
material volume V' of the structure should remain constant. Thin, elastic plates
are considered. The surface of the modeled structure is divided into N regions
of area a; and piecewise constant thickness ¢; (i = 1,..., N), which are design
variables. The problem is formulated as minimization of the structural elastic
strain energy SE of the plate, due to the action of transverse loads:

find ti (Z = 1, N),

to minimize

SE(t;) — min,
subject to

V= Z tia; = Veonst = const,

{t3,t$,~ 3.
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In the applied plate model, each thickness t; has to be selected from a cor-
responding set of k; values, where k; corresponds to the number of available
thicknesses for the i-th variable. For practical reasons, additional features of the
expected design can be easily introduced by linking the design variables. This
can be needed, for example, to take into account symmetry conditions and tech-
nological or manufacturing constraints.

This formulation corresponds to the discrete non-linear constrained optimiza-
tion problem. The complete enumeration of all combinations needs the analysis
of ky * kg * ... ¥ ky possible variants, and it seems to be rather prohibitive even
for moderate size problems. The search methods based on GAs are able to find
. a “good” solution. The optimal design of square plates under different support
conditions at the edges, subjected to uniform normal pressure, is carried out in
numerical examples. The material has to be removed from where it is useless,
and allocated where it is needed to obtain the best design. The presented results
can help in understanding the behavior, and in designing this type of structural
components.

4. IMPLEMENTATION OF GAS FOR PLATE OPTIMIZATION
4.1. Chromosome representation

Two-stage mapping process is carried out to express each design variable as a
finite length string constructed over the binary alphabet {0, 1}. First, the discrete
variable ¢; is mapped to an integer number & (1 < k < k;), corresponding to the
position of the value in the given catalogue of thicknesses. Next, k is represented
in the form of binary digit string. The chromosome representation consists in
concatenating head-to-tail all the N design variables coded as binary strings.
The inverse decoding process enables us to obtain real values of thicknesses.
The chromosome length depends on the number of design variables, and on the
number of genes necessary to encode discrete values for each variable.

4.2. Evaluation of the fitness

A standard GAs procedure resolves unconstrained maximization problems,
searching for the maximal fitness value. The classical constrained optimization
problem can be formulated as

F(x) — min, gi(x) <0, 1=1,..,M,
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where F' is the objective function to be minimized, x is the vector of design
variables, and g;(x) are constraints. The fitness function f can be represented
as a combination of the objective function and the penalty term. The following
formulation, based on the exterior penalty approach, has been applied

M
foc- (mzaig:),
=1

where C and «; (i = 1,..., M) are constant penalty parameters. The values F*
and g7 are given by

F

)
Fmax

g7 =max< gi ,0),
[gi maxl

where Fax and g; max are constant, maximum reference values.

F* =

4.3. Selection, crossover and mutation operators

Many different genetic operators have been developed to mimic the mecha-
nism of natural evolution and survival of the fittest. In the presented approach,
chromosomes are selected as parents according to their fitness values by using
the ranking selection scheme [15]. For the population of Npep individuals, which
are first sorted according to descending order of their fitness values, the n-th
chromosome is selected for reproduction. The integer index n is determined by

. — 2 _4(yp—1
n =1t (1[} \/¢2z/) — (21/] r Npop>,

where r is a random number between 0 and 1, and ¢ is the bias, which is given
the value 1.5.

New “children” strings are reproduced pair by pair from two parent strings.
A variant of the two-point crossover, using the uniform crossover technique, has
been proposed in the present study. First, two crossover sites are chosen randomly
and a binary crossover mask is generated at random for each gene between cut
points. Next, the genes of parents are changed according to the corresponding
mask value between two cut sites, as illustrated in Fig. 2.

The standard mutation operator, which alters a randomly chosen gene, has
been applied to introduce new genetic features and diversity into the population.
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cut point cut point

parent 1 ® 00 &6 6 8 6 &

paent2 O O OO O O O OO O

random binary mask 1 1 0 1 0

child 1 OO0 | ®® O e O
child 2 ®e e O0O06eOe

Fic. 2. Crossover operator.

5. OPTIMIZATION EXAMPLES

5.1. Plate model

Finite element approach was applied to model the plate structures. The thin
plate element ACM [16], based on the Kirchhoff theory, has been chosen for the

1
FEM analysis. For this study, the structural strain energy SE = 3 TK q of the

plate was taken as the objective function, where K is the stiffness matrix, and
q is the displacement vector.

A square plate of 1m by 1m, divided into 100 constant thickness, rectan-
gular elements, is optimized in numerical examples. The modulus of elasticity
E =2-10"" N/m? and Poisson’s ratio v = 0.3 have been chosen. The plate is
subjected to a uniform pressure load of intensity p = 10% N/m?. Only one quar-
ter of the plate is modeled with 5 x 5 element mesh. The constant piecewise
thickness areas are limited to the dimension of finite elements. All-round sim-
ply supported plates, all-round clamped plates, and plates with mixed boundary
conditions (with two opposite edges clamped and two others opposite edges sim-
ply supported) are considered in numerical examples. Optimal design of plates
having two different thicknesses {0.03m, 0.04m}, or four available thickness val-
ues {0.025m, 0.03m, 0.035m, 0.04m} is presented. For simply supported and
clamped plates, the thicknesses have been linked to 15 independent design vari-
ables, necessary to maintain the symmetry of solution. In the case of mixed
boundaries, 25 design variables were needed to represent thicknesses of one quar-
ter of the plate.
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5.2. Fitness formulation and GAs parameters

The objective function to be minimized for a plate is formulated as

_ SE
SEmax ’
where SE is the strain energy of the plate, and the reference value SFE,,, corre-

sponds to the strain energy calculated for the plate of minimal available thickness.
The constant volume constraint has been expressed in the form

V - Vconst

Vmax - Vconst

F*

g1 =

3

where V' is the plate volume, Viopg; is the constant volume value, and Vipax is the
maximal possible volume. The fitness f (to be maximized by GA) is defined by

f=C—F*_O‘1gI7

where constants C' = 12 and oy = 10 have been applied in numerical examples.

For the population size of 30 individuals, 400 and 600 generations have been
analyzed respectively, in the first, and in the second example. The crossover
probability 0.75, and the mutation probability 0.003 have been taken. In order
to evaluate the statistical performances of the method, 100 runs of the GAs
optimization program have been carried out.

5.3. Optimal design of two-thicknesses plates

The constant volume condition Veonet = 0.034 m3 has been taken in this exam-
ple. It imposes the constant ratio 2/3 between the elements of different thickness.
The best designs for two-thicknesses plates are presented in Fig. 3 for different
boundary conditions. Computational results indicate the characteristic areas of
the greatest concentration of the material. The distribution of thicknesses de-
pends on the boundary conditions, and on the discrete values of available thick-
nesses. Table 1 summarizes the results for SE minimization. The SE for the
constant thickness plates of identical volume is included as well. The average SE
value, the standard deviation, the average number of the generation, when the
best solution has been found, and the percentage reduction in the average strain
energy with respect to the constant thickness plate of the same volume, are pre-
sented. The best designs from Table 1 correspond to the material distributions
presented in Fig. 3.

In Fig.4 and Table 2 the worst solutions of the problem are presented for
comparison. They have been obtained by the maximization of the strain en-
ergy for the same constant volume. The zones where the material is necessary
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Simply supported plate

FIc. 3. The best material distribution — SE minimization (two-thicknesses plates).

Table 1. Minimization of the strain energy for two-thicknesses plate.

100 runs of GA program

simply supported

clamped plates

mixed boundary

V = 0.034 m® plates cond. plates
Average SE value [Nm] 266.734 55.654 101.235
Standard deviation [Nm] 5.939 1.545 2.039
Average SE decrease -10.73% -19.17% —16.73%
(with respect to *)

Avg. best generation No. 60 108 228
The best design SE [Nm] 257.204 53.044 97.946
SE decrease for the best -13.92% -22.96% —19.44%
design (with respect to *)

* SE for the constant 298.781 68.851 121.579

thickness plate

[123)




Simply supported plate

F1G. 4. The worst material distribution — SE maximization (two-thicknesses plates).

Table 2. Maximization of the strain energy for two-thicknesses plate.

100 runs of GA program

simply supported

clamped plates

mixed boundary

V =0.034m? plates cond. plates
Average SE value [Nm)] 343.713 84.255 147.064
Standard deviation [Nm)] 12.138 1.937 3.124
Average SE increase +15.04% +22.37% +20.96%
(with respect to *)

Avg. “worst” generation No. 71 78 208
The worst design SE [Nm] 367.106 86.498 152.504
SE increase for the worst +22.87% +25.63% +25.44%
design (with respect to *)

* SE for the constant 298.781 68.851 121.579

thickness plate

[124]
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and needless are complementary. Significant changes in the value of SE can be
achieved by the modifications of thickness distribution.

A steady convergence of the best fitness, with “relatively good” results at the
beginning, and small enhancements at final generations, has been observed.

5.4. Optimal design of four-thicknesses plates

For this example, the constant volume V,onst = 0.036 m® has been taken. The
best material distributions for the strain energy minimization problem are shown
in Fig. 5. In Table 3 the statistical parameters of 100 runs of the GA optimization
program are given. “Near optimal” distributions of material are very similar to
the continuous optimization solutions, presented for example in [7, 8, 9].

Simply supported plate

F1G. 5. The best material distribution — SE minimization (four-thicknesses plates).
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Table 3. Minimization of the strain energy for four-thicknesses plates.

100 runs of GA program simply supported clamped plates mixed boundary
V =0.034m? plates cond. plates
Average SE value [Nm)] 292.404 60.148 108.102
Standard deviation [Nm] 8.946 2.564 2.311
Average SE decrease —13.73% —22.99% —21.62%
{(with respect to *)

Avg. best generation No. 300 275 448
The best design SE [Nm] 270.012 55.064 104.231
SE decrease for the best —20.34% —29.50% —24.42%
design (with respect to *)

* SE for the constant 338.951 78.108 137.924
thickness plate

In Fig. 6 and Table 4 the worst designs, obtained through the SE maximiza-
tion, are presented. They can be viewed as the worst solution of the minimization
problem. In terms of SE changes, greater deterioration of the design than its
improvement was possible with respect to constant thickness plate of the same
volume. The performance curves for various selection methods and crossover
operators are presented in [17] for similar optimization problem.

Table 4. Maximization of the strain energy for four-thicknesses plates.

100 runs of GA program

simply supported

clamped plates

mixed boundary

thickness plate

V =0.034 m? plates cond. plates
Average SE value [Nm)] 411.551 106.096 191.711
Standard deviation [Nm] 19.738 6.379 6.527
Average SE increase +21.42% +35.83% +39.00%
(with respect to *)

Avg. “worst” generation No. 286 312 467
The worst design SE [Nm] 477.091 116.236 203.140
SE increase for the worst +40.755% +48.81% +47.28%
design (with respect to *)

* SE for the constant 338.951 78.108 137.924
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Simply supported plate

F1G. 6. The worst material distribution — SE maximization (four-thicknesses plates).

6. FINAL REMARKS AND CONCLUSIONS

The presented solutions illustrate the performance of the genetic algorithms
in the optimal plate design. The results are qualitatively in good agreement
with the solutions of continuous optimization known from the literature. The
optimization procedure removes material from where little contribution to the
stiffness is made, and allocates it where it is needed most for maximum per-
formance. A considerable strain energy reduction with respect to the constant
thickness plate of the same volume can be obtained by modification of the form.
The percentage decrease depends on the value of constant material volume, on
the boundary conditions, and on the available values of discrete thicknesses. The
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strain maximization enables us to investigate the zones where the material is use-
less. A significant increase in the strain energy can be caused by a wrong material
distribution. It must be noted, that several runs of the optimization procedure,
due to the stochastic nature of the approach, have given the results slightly worse
than the best solutions presented in the figures. All these “near-optimal” plates
correspond however to very similar thickness distributions, keeping the concen-
tration of material in characteristic areas of maximal stiffness. A set of potential
designs of good performance can be proposed at the end of the optimization
procedure for the designer.

About 400 sec CPU time were needed for the analysis of 400 generations
of 30 plates (using 5 X 5 mesh in FEM) on DEC Alpha workstation. GAs can
handle discrete design variables efficiently, however a considerable number of
complete problem analysis is required to evaluate the fitness of all chromosomes.
In the example of mixed boundaries and four thicknesses plate, the research
space size reached 42° ~~ 10'® possible combinations. Only 1.8 x 10* (which is
about 2 x 107°%) of them needed to be analyzed by GAs to obtain the presented
results. Since the processing time increases proportionally to the complexity of
the FEM model, GAs should be used with care and, at present, they may be
applied reasonably to moderate size problems.

An additional study on influence of the GA parameters, like population size,
selection policy, crossover types, or probabilities of random operators, can give
more information on the effectiveness, and to enhance the possibilities of this
search method. Different heuristics can be proposed to enhance the GA ap-
proach for a given problem. For example, the initial population can be composed
of known feasible designs, instead of being generated randomly. The use of “eli-
tist” selection outperforms the “classical” selection methods [17]. Some “repair”
procedures may be applied to correct “unfeasible” chromosomes. The research
on evolutionary algorithms [15, 18], adapting evolutive operators to “natural”
problem representation, seems to be a promising direction for further investiga-
tion, and can lead to an efficient approach to practical engineering optimization
problems.
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